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Abstract

Various models have been proposed to incor-
porate knowledge of syntactic structures into
neural language models. However, previous
works have relied heavily on elaborate compo-
nents for a specific language model, usually
recurrent neural network (RNN), which makes
themselves unwieldy in practice to fit into other
neural language models, such as Transformer
and GPT-2. In this paper, we introduce the
Dependency-based Mixture Language Models.
In detail, we first train neural language models
with a novel dependency modeling objective
to learn the probability distribution of future
dependent tokens given context. We then for-
mulate the next-token probability by mixing
the previous dependency modeling probability
distributions with self-attention. Extensive ex-
periments and human evaluations show that our
method can be easily and effectively applied to
different neural language models while improv-
ing neural text generation on various tasks.1

1 Introduction

Syntactic structures serve as the principle of how
words are correctly combined to form sentences.
It is widely acknowledged that learning syntactic
structures should improve neural text generation
(Shen et al., 2018; Peng et al., 2019; Du et al.,
2020). Even though current neural language mod-
els, such as Transformer (Vaswani et al., 2017) and
GPT-2 (Radford et al., 2019) have achieved out-
standing performance without explicitly modeling
latent syntactic structures, these models still fail to
learn the long-range syntactic dependencies (Kun-
coro et al., 2018; Xu et al., 2021).

To leverage explicit syntactic knowledge in nat-
ural language generation (NLG), many methods
have been proposed (Wu et al., 2017; Shen et al.,
2018; Zhang et al., 2019; Kim et al., 2019; Du

1Our code is available at https:
//github.com/FadedCosine/
Dependency-Guided-Neural-Text-Generation

et al., 2020). We conclude from previous works
that knowledge of syntactic structures can bring
four advantages to neural language models:

(1) Syntactic structures can be modeled to obtain
better representations of natural language sentences
(Jacob et al., 2018; Williams et al., 2018; Wang
et al., 2019).

(2) Jointly training syntactic structure parsing
and language modeling can contribute to each other
(Shen et al., 2018; Dyer et al., 2016; Kim et al.,
2019; Du et al., 2020; Shen et al., 2021b).

(3) Syntactic structures can be used to directly
model the composition of language (Socher et al.,
2013; Casas et al., 2020) and help with the long-
range dependency problem by providing shortcuts
for gradient backpropagation (Chung et al., 2017).

(4) Integrating syntactic structures into a neural
network can improve generalization via a better in-
ductive bias (Shen et al., 2019; Zhang et al., 2019).

Despite these advantages, it is not trivial to in-
corporate knowledge of syntactic structures into
neural language models effectively and efficiently.
Several practical problems arise:

(1) Previous works (Chung et al., 2017; Shen
et al., 2018; Dyer et al., 2016; Kim et al., 2019;
Shen et al., 2019) have relied heavily on elaborate
components for a specific language model, usually
recurrent neural network (RNN) (Sutskever et al.,
2014). These methods are difficult to be adapted to
other neural language models, such as Transformer
and GPT-2.

(2) If jointly modeling language modeling and
syntactic structure parsing, it will require much
more time/memory during training or inference.

To address these problems while keeping the ad-
vantages, we explore incorporating knowledge of
syntactic structures in a different manner. In this
work, we propose a novel dependency modeling ob-
jective to train neural language models to directly
predict the current token’s future dependent tokens
given the history. We define the future dependent to-
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Models External Parameters? External Networks? Architecture Agnostic?
RNNG (Dyer et al., 2016) Yes Yes No
PRPN (Shen et al., 2018) Yes Yes No

URNNG (Kim et al., 2019) Yes Yes No
ON-LSTM (Shen et al., 2019) Yes No No

DMLM (Ours) No or Negligible No Yes

Table 1: The difference between our DMLM and previous neural language models that incorporate knowledge of
syntactic structures. Previous models often require external networks and external Parameters. For example, PRPN
consists of three neural networks: Parsing Network, Reading Network and Predict Network. ON-LSTM is built
upon a single LSTM, but it requires two additional gates in the LSTM cells, which leads to external parameters.
All these previous models can only be built upon RNN architecture. However, as an architecture-agnostic method,
DMLM needs no external parameters or networks when built upon Transformer, while it only needs negligible
external parameters when built upon RNN.

kens of a specific token in a sentence as its children
and parent in the dependency parse tree that will
appear in the rest of the sentence. Further, we pro-
pose Dependency-based Mixture Language Models
(DMLM) that, at each timestep, mixes the previ-
ous dependency modeling probability distributions
with self-attention to get the next-token probabil-
ity. As shown in Table 1, the proposed method can
be adapted to any neural language model without
adding external networks or parameters.

Our core idea can be illustrated in Figure 1 and
Figure 2: when predicting the next-token "indi-
cate" after reading "red figures on the screen", com-
mon language models are easy to predict an in-
correct word, such as "indicates", since the predic-
tion of these models relies heavily on the recent
word, "screen" in this case. However, our propose
DMLM will directly look back into the long-range
context, and select the next-token from all the fu-
ture dependent tokens predicted by previous tokens.
According to the underlying dependency structure,
DMLM pays different weights to different tokens’
future dependent tokens. Thus, the model is more
likely to predict "indicate" since DMLM tends to
think of the next-token as a future dependent token
of "figures" rather than "screen".

We conduct experiments with different neural
language models including LSTM (Hochreiter and
Schmidhuber, 1997), Transformer (Vaswani et al.,
2017), and GPT-2 (Radford et al., 2019) across dif-
ferent tasks in conditional text generation, uncon-
ditional text generation, and language modeling.
Through extensive experiments we demonstrate
that DMLM consistently improves the generation
quality according to both human evaluations and
automatic metrics. Compared to other neural lan-
guage models that incorporate syntactic knowledge,

indicate

figures stocks

red screen falling

on the

ROOT

ROOT red figures on the screen indicate falling stocks .

.

Figure 1: Example of dependency parse tree

DMLM is architecturally simpler and easier to fit
into any neural language model, while possessing
wide applicability to different text generation tasks.

2 Methodology

Our goal is to propose a simple yet effective method
that can improve neural text generation by learning
from the underlying syntactic structure, and can fit
into any auto-regressive generation model without
using additional elaborate components. We first
introduce a novel dependency modeling objective
to force the model to directly predict the future
dependent tokens of the current token. Based on
the dependency modeling, we then present the pro-
posed DMLM.

2.1 Dependency Modeling

It has been a challenge to equip neural language
models with the capability of modeling long-range
dependency in text (Dai et al., 2019). In partic-
ular, previous works (Wu et al., 2017) observe
that vanilla RNN can hardly capture many sub-
tle long-range token dependencies effectively. On

7759



red

<BOS> red

figures

figures

on

on

the

the

screen

screen

+

A
tte

nt
io

n
D

is
tri

bu
tio

n

D
ep

en
de

nc
y 

M
od

el
in

g
D

is
tri

bu
tio

ns

× × × × × ×

indicate

Final
Prediction

Figure 2: Illustration of DMLM. For each timestep, the language model outputs a dependency modeling distribution,
while the self-attention produces a dependency attention distribution over the context. And then, the next-token
probability is the sum of the context’s dependency modeling probability distributions weighed by the dependency
attention scores. Best viewed in color.

the other hand, though self-attention mechanisms
can build direct connections between long-distance
token pairs, it is still elusive for Transformer to be
aware of syntactic dependency structures while also
obtaining strong language modeling performance
(Shen et al., 2021a).

The current neural language models are mostly
trained purely using the language modeling objec-
tive with Maximum Likelihood Estimation (MLE).
With the auto-regressive factorization, language
modeling can be reduced to modeling the condi-
tional distribution of the next-token xt given the
context x<t = {x1, . . . , xt−2, xt−1}. However, in
order to make neural language models aware of
long-range dependency and syntactic structures,
we propose the dependency modeling objective to
train models to learn the probability distribution
of the future dependent tokens directly. Following
Ahmed et al. (2019), we define the future depen-
dent tokens of a specific token in a sentence as its
children and parent in the dependency parse tree
that will appear in the rest of the sentence. Taking
Figure 1 as an example, the future dependent tokens
of "figures" are "screen" and "indicate", since "red"
does not appear after "figures" in this sentence.

Specifically, given a token sequence x =
{x1, . . . , xT−1, xT } where T ∈ N denotes the
sequence length, we first use dependency parser
to generate a dependency tree. Then, we de-
rive the future dependent tokens set Zt for
each token xt−1, where Zt = {xi | i ≥
t, xi is the child or parent of xt−1}. We train a lan-
guage model θ to maximize the log-likelihood sum

of tokens in Zt. This equals to minimize:

LDM (θ) = −
T∑
t=1

∑
zt∈Zt

log p
dep
θ (zt | x<t) , (1)

which is the dependency modeling objective.

2.2 Dependency-based Mixture Language
Models

To give a categorical probability distribution over
the next-token, a standard approach for the current
neural language models is to encode the context
into a fixed-size vector followed by an output em-
bedding layer and a softmax function.

In our case, given the context x<t, we
first train the language model to directly learn
the probability distribution of xt−1’s future de-
pendent tokens p

dep
θ (w | x<t) by dependency

modeling (Section 2.1). We then propose
DMLM (depicted in Figure 2) that mixes
dependency modeling probability distributions
P dep = {pdep

θ (w | x<1) , . . . , p
dep
θ (w | x<t−1) ,

p
dep
θ (w | x<t)}. All the probability distributions in

P dep are weighed by self-attention, and summed to
obtain the final next-token probability distribution.

We can easily implement a self-attention in both
Transformer-based and RNN-based language mod-
els. For example, in Transformer and GPT-2, the
penultimate layer seems to naturally learn align-
ments (Garg et al., 2019), so we use its average
attention weights over all the attentions heads as
the dependency attention distribution. In RNN-
based models, inspired by Merity et al. (2017) and
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Vaswani et al. (2017), at each timestep, we linearly
project the current hidden state ht ∈ RH to a query
vector qt = WQht and a key vector kt = WKht,
where WQ ∈ RH×H , WK ∈ RH×H , qt ∈ RH ,
and kt ∈ RH . To generate the dependency atten-
tion, we compute the match between the query qt
and the context’s keys {k1, . . . , kt−1, kt} by taking
the inner product, followed by a softmax to obtain
the dependency attention distribution:

e(t) = {e(t)1 , . . . , e
(t)
t−1, e

(t)
t },

e
(t)
i = qTt ki, 1 ≤ i ≤ t,

a(t) = softmax(
e(t)
√
H

),

a(t) = {a(t)1 , . . . , a
(t)
t−1, a

(t)
t },

(2)

where e(t) ∈ Rt, and a(t) ∈ Rt. We scale the dot
products by 1√

H
following Vaswani et al. (2017).

The dependency attention distribution reveals
which token in the context may have a strong de-
pendency relation with the token to be predicted.
Thus, the neural language model should pay more
attention to previous tokens with high dependency
attention scores, i.e., the next-token is more likely
to be the future dependent token of those tokens
in the context. Formally, the next-token probabil-
ity is the sum of the context’s dependency model-
ing probability distributions weighed by the depen-
dency attention scores:

pθ (w | x<t) =

t∑
τ=1

a(t)τ p
dep
θ (w | x<τ ) . (3)

where pdep
θ (w | x<τ ) is the probability distribution

of xτ−1’s future dependent tokens, since till now
the neural language model is only trained by de-
pendency modeling. Then, we further finetune the
neural language model using MLE, but with re-
spect to our modified probability distribution given
in Equation 3:

LLM (θ) = −
T∑
t=1

log pθ (xt | x<t) . (4)

For each timestep during inference, DMLM out-
puts a dependency modeling distribution, and we
store it in a list. To predict the next-token, DMLM
applies self-attention in Equation 2 to produce a
dependency attention distribution over the context,
and then the next-token probability can be calcu-
lated by Equation 3, where the list preserves all the
p

dep
θ (w | x<τ ) , 1 ≤ τ ≤ t.

3 Experiments

Despite previous works mainly focusing on lan-
guage modeling, it has always been a thorny is-
sue whether better language models lead to better
performance in downstream tasks. Therefore, we
showcase the performance of our proposed DMLM
in three different tasks: conditional text generation
(Section 3.1), unconditional text generation (Sec-
tion 3.2), and language modeling (Section 3.3).

To verify the effectiveness and architecturally
generalizability of our method, we conduct the gen-
eration tasks with three dominant neural language
models, including LSTM, Transformer and GPT-
2. We prefix the base model name with "DM-" to
denote the corresponding Dependency-based Mix-
ture language model. Specifically, we adopt AWD-
LSTM (Merity et al., 2018) as our base LSTM, and
further compare our DM-LSTM with PRPN (Shen
et al., 2018) and ON-LSTM (Shen et al., 2019)
which also incorporate knowledge of syntactic
structures, and are built on LSTM. In the same
task, we use exactly the same hyper-parameters and
setups for the pairs of base models and correspond-
ing DM-models. Other details of the experimental
setup for each task can be seen in Appendix A.

For all the tasks, we use a state-of-the-art parser,
HPSG Parser2 (Zhou and Zhao, 2019) to get the
dependency parse tree for each sentence in the
datasets. We discuss the impact of the dependency
parser in Appendix B.

3.1 Conditional Text Generation

Setup We take the story ending generation as
the conditional text generation task, and eval-
uate our method on the ROCStories corpus
(Mostafazadeh et al., 2016), which consists of
98,161 five-sentences. We follow the prepro-
cessing3 of Kong et al. (2021) to randomly split
ROCStories by 8:1:1 for training/validation/test,
respectively, and delexicalize stories by mask-
ing all the male/female/unknown names with
"[MALE]"/"[FEMALE]"/"[NEUTRAL]". We fi-
nally get a word-level vocabulary with 31, 216
unique tokens. The conditional text generation
task is to generate a reasonable ending given a four-
sentence story context. For all models, we generate
stories using nucleus sampling (Holtzman et al.,

2https://github.com/DoodleJZ/
HPSG-Neural-Parser

3We use the preprocessed data in https://github.com/thu-
coai/Stylized-Story-Generation-with-Style-Guided-Planning
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Models UNION ↑ BERTScore ↑ B-1 ↑ B-2 ↑ D2 ↑ D3 ↑ SB-2 ↓ SB-3 ↓
PRPN 83.37 29.11 21.45 6.84 13.22 33.50 95.17 86.76
ON-LSTM 82.18 29.41 22.16 7.33 13.93 35.71 94.98 85.80
AWD-LSTM 82.98 29.57 22.23 7.31 14.07 35.71 94.92 85.88
DM-LSTM 83.97⋆ 29.93 22.54⋆ 7.63⋆ 14.92 37.44 94.47⋆ 84.77⋆

Transformer 81.39 27.64 21.28 7.01 17.48 42.30 93.18 81.52
DM-Transformer 84.07⋆ 28.20⋆ 21.49 7.29⋆ 17.79 42.08 92.86⋆ 81.36⋆

GPT-2 84.41 29.02 21.79 7.45 17.09 40.74 93.51 82.55
DM-GPT-2 85.31⋆ 30.18⋆ 22.81⋆ 8.02⋆ 17.98 43.29 93.18 81.41⋆

Table 2: Automatic evaluation results for the conditional text generation task on Rocstories dataset. ⋆ denotes that
DM-model significantly outperforms the second best model for t-test (p-value<0.05).

Models Grammaticality Logicality
Win(%) Lose(%) Tie(%) κ Win(%) Lose(%) Tie(%) κ

DM-LSTM vs. PRPN 36.2⋆ 14.5 49.3 0.225 56.5⋆ 17.5 26.0 0.306
DM-LSTM vs. ON-LSTM 12.8⋆ 6.4 80.8 0.238 48.4⋆ 24.4 27.2 0.409
DM-LSTM vs. AWD-LSTM 28.0⋆ 14.5 57.5 0.224 43.0⋆ 34.5 22.5 0.214
DM-Transformer vs. Transformer 18.2⋆ 5.2 76.6 0.358 50.6⋆ 18.6 30.8 0.342
DM-GPT-2 vs. GPT-2 20.4⋆ 5.0 74.6 0.374 50.6⋆ 18.8 30.6 0.224

Table 3: Human evaluation results for the conditional text generation task on Rocstories dataset. κ denotes
the inter-annotator agreement Krippendorff’s alpha (Hayes and Krippendorff, 2007) score. ⋆ means statistical
significance for Wilcoxon signed-rank test (p-value<0.01). Note that, it is relatively easy for both models to generate
a single sentence that is grammatically correct, so the rate of "tie" in Grammaticality is relatively high.

2020) with p = 0.5.
We measure the generated story endings by the

following automatics metrics: (1) UNION (Guan
and Huang, 2020): It is a learnable unreferenced
metric for evaluating the quality of generated sto-
ries; (2) BERTScore (Zhang et al., 2020): The met-
ric measures the semantic consistency between the
generated and the referenced ones by BERT (De-
vlin et al., 2019); (3) BLEU (B-n) (Papineni et al.,
2002): BLEU evaluates n-gram overlap between
the generated stories and the references; (4) Dis-
tinct (D-n) (Li et al., 2016): The proportions of
distinct n-grams in the outputs to evaluate the diver-
sity of generated results. Since Distinct score will
become extremely low for small n, we calculate it
with n = 2, 3; (5) Self-BLEU (SB-n) (Zhu et al.,
2018): The metric is calculated by computing n-
grams (n = 2, 3) BLEU score of each generated
text with all other generated ones as references.
Smaller Self-BLEU scores indicate better diversity.
Results The experimental results of baselines
and corresponding DM-models are shown in Ta-
ble 2. Note that we do not conduct significant
tests on Distinct since it is a document-level met-
ric. We can see that, all the DM-models signifi-
cantly outperform baseline models on almost all
the metrics. Furthermore, compared with PRPN
and ON-LSTM, our DM-LSTM performs signifi-

Models LM score ↓ RLM score ↓
PRPN 5.24 5.75
ON-LSTM 5.20 5.59
AWD-LSTM 5.18 5.64
DM-LSTM 5.14 5.52
Transformer 5.00 5.59
DM-Transformer 4.97 5.49
GPT-2 4.89 5.55
DM-GPT-2 4.67 5.47

Table 4: Results of global metrics for the unconditional
text generation task on EMNLP2017 WMT News.

cantly better in all the metrics. This indicates that
incorporating knowledge of syntactic structures in
our proposed way can effectively contribute to both
the quality and diversity of the story ending gen-
eration. Moreover, no matter what the base model
is, our DM-model can substantially improves the
conditional text generation. This demonstrates that
our method can be effectively adapted to different
neural language models, such as the large scale lan-
guage model, GPT-2, while previous models like
ON-LSTM can only be built on LSTM.
Human evaluation To further evaluate the
fluency and logic of generated stories, follow-
ing (Guan et al., 2020), we conduct pair-wise com-
parisons between DM-models and corresponding
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Models
Nucleus-p

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
PRPN 41.48 45.77 55.32 64.23 83.98 109.3 172.09 302.57
ON-LSTM 37.46 42.98 46.16 56.69 72.36 98.06 152.60 274.43
AWD-LSTM 37.97 41.80 48.74 57.45 71.77 94.22 146.40 289.13
DM-LSTM 36.11 39.53⋆ 47.67 55.30 69.38 95.95 136.98⋆ 256.51⋆

Transformer 45.37 46.36 50.90 60.27 70.74 91.65 125.46 222.27
DM-Transformer 37.74⋆ 40.75⋆ 43.25⋆ 49.92⋆ 60.28⋆ 76.77⋆ 104.03⋆ 182.29⋆

GPT-2 41.19 44.05 47.86 53.97 63.18 81.45 112.81 192.10
DM-GPT-2 36.41⋆ 40.99⋆ 41.75⋆ 46.18⋆ 55.36⋆ 67.97⋆ 92.22⋆ 152.98⋆

Table 5: GPT-2 Perplexity on 1, 000 random samples with various sampling hyper-parameters generated by models
trained on EMNLP2017 WMT News dataset. Nucleus sampling is used here with various p. ⋆ denotes that
DM-model significantly outperforms the second best model for t-test (p-value<0.05).

Models Human score ↑
PRPN 0.380
ON-LSTM 0.278
AWD-LSTM 0.365
DM-LSTM 0.444
Transformer 0.400
DM-Transformer 0.448
GPT-2 0.468
DM-GPT-2 0.512
Real data 0.688

Table 6: Turing test results of the samples generated
by models trained on EMNLP2017 WMT News dataset.
To reach a good trade-off between quality and diversity,
we adopt nucleus sampling with p = 0.7 for all the
models to generate samples.

baselines. We randomly sample 100 story endings
from each model. For each pair of stories (one by
the DM-model and the other by the baseline, along
with the beginning), five annotators are hired to
give a preference (win, lose, or tie) from the fol-
lowing two aspects: (1) Grammaticality: whether
a story ending is natural and fluent; (2) Logicality:
whether a story is coherent to the given beginning
and reasonable in terms of causal and temporal
dependencies in the context. The detailed question-
naire and other details are shown in Appendix D.

The average win/lose/tie rates of the human eval-
uation are shown in Table 3. To measure the inter-
annotator agreement, we calculate Krippendorff’s
alpha (Hayes and Krippendorff, 2007) for each
pair-wise comparison, and all the results are fair
agreement (0.2 ≤ κ ≤ 0.4) or moderate agreement
(0.4 ≤ κ ≤ 0.6). The results show that our DM-
models significantly outperform baseline models
in both the grammaticality and logicality.

3.2 Unconditional Text Generation

Setup We perform experiments of unconditional
text generation on EMNLP2017 WMT News
dataset4. We use the preprocessed data of a recent
work5 (Caccia et al., 2020) that contains 5, 268
distinct words with maximum sentence length
51. The training/validation/test set consists of
268, 586/10, 000/10, 000 sentences.

Following Caccia et al. (2020), we evaluate the
models with the global metrics (Semeniuta et al.,
2018): (1) Language Model score (LM score):
We use the oracle Language Model to evaluate
the negative log-likelihood of generated text as the
metric to reflect quality; (2) Reverse Language
Model score (RLM score) We train a new Lan-
guage Model on the generated text, and then eval-
uate the negative log-likelihood of a held-out set
of real text. This metric can measure text diversity
since the generated text with better diversity would
have a broader coverage over the real data space,
and the new Language Model can be trained better,
thus leading to lower RLM score. Both the LM
score and RLM score are usually evaluated on the
sentences generated by purely random sampling.
Besides, to further measure the generation fluency,
we directly use the public GPT-2 checkpoint of pre-
trained parameters without finetuning to calculate
GPT-2 Perplexity of generated samples.
Results Table 4 shows the results of global met-
rics obtained by various models. All the DM-
models again outperform the baselines. The consis-
tently lower LM scores indicate that the generated

4http://statmt.org/wmt17/
translation-task.htm

5https://github.com/pclucas14/
GansFallingShort/tree/master/real_data_
experiments/data/news
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Models #Params Dev PPL Test PPL
Pointer Sentinel-LSTM (Merity et al., 2017) 21M 72.4 70.9
RNNG (Dyer et al., 2016) - - 88.7
Variational RHN (Zilly et al., 2017) 23M 67.9 65.4
PRPN (Shen et al., 2018) - - 62.0
Fraternal dropout (Zolna et al., 2018) 24M 58.9 56.8
URNNG (Kim et al., 2019) - - 85.9
ON-LSTM (Shen et al., 2019) 25M 58.3 56.2
AWD-LSTM (Merity et al., 2018) 24M 60.0 57.3
DM-LSTM (Ours) 24M 58.6 56.2
AWD-LSTM-MoS(Yang et al., 2018) 22M 56.5 54.4
AWD-LSTM-DOC(Takase et al., 2018) 23M 54.1 52.4

Table 7: Various language models’ perplexity evaluated on validation and test sets of Penn Treebank dataset. Yang
et al. (2018) and Takase et al. (2018) focus on improving the softmax of LSTM LM, which are orthogonal to ours.

sentences of DM-models are of better quality, while
the consistently lower RLM scores also demon-
strate that DM-models can generate more diverse
sentences meanwhile.

In addition, each model is used to generate 1, 000
sentences with various sampling hyper-parameters,
and GPT-2 Perplexity is further calculated. As
shown in Table 5, our proposed method can make
neural language models perform significantly bet-
ter in terms of generation fluency. In particular,
Transformer-based models can gain more signifi-
cant improvement from DMLM. We conjecture that
this is because, in our implementation, we directly
uses the penultimate multi-head attention layer of
Transformer to obtain the dependency attention dis-
tribution of DMLM. Thus, it can easily inherit all
the strengths of Transformer-based models.

Human evaluation Following previous
work (Yu et al., 2017; Guo et al., 2018), we con-
duct a Turing test to further evaluate the generated
text. In practice, we mix 100 randomly sampled
sentences from each model, and another 100 sen-
tences from the real test set. Five annotators are
hired to judge whether each of the 900 sentences
is created by human or machines. Each sentence
gets +1 score when it is regarded as a real one, and
0 score otherwise. The detailed questionnaire and
other details are shown in Appendix D.

The average score for each model is shown in
Table 6, from which we can see all the DM-models
surpass the baselines. Both automatic evaluations
and human evaluations indicate that DMLM can
help neural language models generate more read-
able, fluent, and natural sentences.

3.3 Language Modeling

Setup We evaluate the proposed method with
the word-level language modeling task by measur-
ing Perplexity (PPL) on the Penn Treebank (PTB)
(Marcus et al., 1993; Mikolov et al., 2012) corpora.
The PTB dataset has a vocabulary size of 10, 000
unique words, and the training/validation/test set
consists of 42, 068/3, 370/3, 761 sentences.

For this task, we mainly implement the DMLM
on the RNN-based language model, i.e., AWD-
LSTM (Merity et al., 2018). For a fair compari-
son, our DM-LSTM uses exactly the same hyper-
parameters and setups as AWD-LSTM. Since
Transformer-based models’ strong performance
relies on training with large datasets, it will per-
form worse than random when trained on a small
dataset (Shen et al., 2021a). We still report
Transformer-based models’ language modeling re-
sults on PTB in Appendix C.
Results We compare our method with its base
model, AWD-LSTM, and we report the results
along with other state-of-the-art models in Table 7.
Compared with the AWD-LSTM, our DM-LSTM
reduces the perplexity by 1.4 on the validation
set and 1.1 on the test set, indicating that incor-
porating knowledge of syntactic structures in our
proposed manner can substantially improve lan-
guage modeling. Compared with other models
that also leverage syntactic knowledge, our DM-
LSTM strongly outperforms RNNG, PRPN, and
URNNG. Moreover, though DM-LSTM does not
make any changes to the architecture of the AWD-
LSTM language model, it still achieves a compara-
ble perplexity with ON-LSTM. Note that, since our
method is model-agnostic, it can be harmonically
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Figure 3: Visualization of dependency attention distri-
butions. We left-shift the sentence by one step in the
y-axis to better display the attention between the pre-
dicted next-token and the context in each row.

combined with other state-of-the-art models, such
as MoS (Yang et al., 2018) and DOC (Takase et al.,
2018).

4 Discussion

4.1 Visualization

We show how our proposed method works by vi-
sualizing the dependency attention distributions.
We use DM-Transformer to generate a sentence:
"red figures on the screen indicate falling stocks."
For each generation step, we record this step’s de-
pendency attention distribution. When we finally
generate the whole sentence, we get 9 distributions
and plot Figure 3 from them. Each row in Fig-
ure 3 shows the dependency attention distribution
of the model when generating the corresponding
Y-axis token. When predicting the token "indicate",
DMLM pays great attention to "figures". This is
because these two tokens have a direct dependency
connection in the dependency parse tree, and our
method successfully captures this relationship. In
addition, DMLM also helps the model better orga-
nize dependency information when the next-tokens,
such as "screen" and "stocks", have dependencies
on more than one token in the context.

4.2 Case Study

We perform case studies for a better understanding
of the model performance. Table 8 provides ex-
amples of conditional text generation produced by
our DM-models and other baselines. Obviously, all

the DM-models can generate more reasonable and
coherent story endings. Additionally, some exam-
ples of unconditional text generation are shown in
Table 9 and Appendix E. These examples show that
our DMLM can help base models generate more
reasonable, readable, fluent, and natural sentences.

4.3 Computational Complexity

Compared with vanilla RNN, our DM-RNN indeed
increases the computational complexity from O(T )
to O(T 2). In practice, we can follow Merity et al.
(2017) to set a context window that allows DMLM
looks L timesteps into the past at most, where L is
the context length. However, our DMLM can effi-
ciently apply to Transformer-based models without
additional computational complexity.

5 Related Works

Many previous studies have shown that leveraging
the knowledge of syntactic structures can improve
NLG (Chelba, 1997; Roark, 2001; Emami and Je-
linek, 2005; Buys and Blunsom, 2015). Mirowski
and Vlachos (2015) incorporated syntactic depen-
dencies into the RNN formulation, but they limited
the scope to the scoring of complete sentences, not
to next word prediction. Some other efforts have
been done to integrate dependency structure into
neural machine translation (NMT) from both the
source and target side. Eriguchi et al. (2016) pro-
posed a tree-to-sequence attentional NMT model
where source-side parse tree was used. Wu et al.
(2017) involved target syntactic trees into NMT
model to jointly learn target translation and depen-
dency parsing. Casas et al. (2020) introduced a
syntactic inductive bias to NLG in an iterative non-
autoregressive way.

For neural language models, recently, Dyer et al.
(2016) proposed recurrent neural network gram-
mar (RNNG) to jointly model syntax and sur-
face structure by incrementally generating a syn-
tax tree and sentence. Subsequent work (Kim
et al., 2019) extended the model to an unsuper-
vised version. Shen et al. (2018) introduced the
Parsing-Reading-Predict Networks (PRPN) to cal-
culate syntactic distances among words and use
self-attention to compose previous states. Its sub-
sequent work (Shen et al., 2019) transferred the
distance notion to LSTM cell, and introduced Or-
dered Neurons LSTM (ON-LSTM).

However, all these methods, mainly based on
RNN (Sutskever et al., 2014), incorporate knowl-
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Story context: [FEMALE] bought packets of vegetable seeds from the store . she dug up the dirt in her garden .
[FEMALE] planted onions , cilantro , and tomatoes . [FEMALE] watered the garden every night .

Golden Text: by the end of the summer [FEMALE] had enough vegetables to make salsa .
PRPN: she got to work in the morning and was happy to have a garden .
ON-LSTM: [FEMALE] planted the plants and made it a huge success .
AWD-LSTM: [FEMALE] was happy to be helping her plants .
DM-LSTM: soon , [FEMALE] had enough vegetables to grow in her garden !
Transformer: she went to the store to buy the seeds .
DM-Transformer: soon , [FEMALE] had her garden full of vegetables !
GPT-2: [FEMALE] ’s garden grew very quickly and dry .
DM-GPT-2: [FEMALE] now has fresh fruits and vegetables in her garden .

Table 8: Examples of conditional text generation on ROCStories dataset.

Golden Text: what this group does is to take down various different websites it believes to be criminal and
leading to terrorist acts .

PRPN: the right point to pay for the purchase of a bike , that ’ s all we want to do to build , build together
the support that i need to get here .

ON-LSTM: it ’ s great to know that my experience has changed my mind because i ’ m not going to work
because i ’ ve had to talk about that .

AWD-LSTM: this is a tragic attack and it is understood that the pair will come up with a package of documents
which may be possible .

DM-LSTM: the win over bernie sanders was an emotional moment for clinton , who was running in the
general election , though she lost their state of vermont .

Transformer: ’ i ’ ve just been in that position so i ’ ve never seen anything like this before , but it ’ s something
i have to say and i ’ m going to go to and win this series .

DM-Transformer: in the second quarter of 2015 , the outlook for consumer spending rose 8 . 6 per cent , but for the
fourth quarter , the company said it expects to expand by 0 . 7 per cent .

GPT-2: if i had said a bit of pressure , i would probably be in a different position if i was a coach .
DM-GPT-2: they ’ ve also said that it ’ s difficult to know how many emails clinton actually sent to her in

recent weeks or whether she would be the nominee .

Table 9: Examples of unconditional text generation on EMNLP2017 WMT News dataset.

edge of syntactic structures by introducing complex
architectural changes. Therefore, it can get very
unwieldy to adapt them to other neural language
models, such as Transformer and GPT-2.

6 Conclusion

In this paper, we introduce Dependency-based
Mixture Language Models, which can incorpo-
rate knowledge of dependency structures into ar-
bitrary auto-regressive generation models without
any changes to the original architectures. Both
automatic and human evaluation results in exten-
sive experiments across different tasks and differ-
ent architectures demonstrate the effectiveness and
generalizability of our method.

In the future, we will explore to incorporate the
dependency labels into our method, and combine
our DMLM with more neural language models.
Second, we would like to integrate other linguistic
knowledge, such as constituency structures and

semantic information, into neural language models
in our manner.
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A Experimental Setup

All the algorithms are implemented in Pytorch and
trained on a machine with 8 NVIDIA GTX 2080Ti
GPUs.

A.1 Conditional Text Generation

The dataset statistics of ROCStories dataset is re-
ported in Table 10.

Train Validation Test
#Stories 78,529 9,816 9,816

Table 10: Statistics of ROCStories dataset.

In this task, both the DM-LSTM and base LSTM
are built on a AWD-LSTM language model with an
embedding size of 400 and hidden layer units 1150.
The dropout rates are 0.4, 0.25, 0.4 for the output
of the last layer, outputs between LSTM layers, and
input embedding layers, respectively. The weight
dropout for the RNN hidden to hidden matrix is
0.5, and the dropout rate to remove words from
embedding layer is 0.1. The context length for
DM-LSTM is set to 56. For PRPN and ON-LSTM,
we keep their original settings.

In this task, all the models are trained on a singe
GPU with learning rate 30, weight decay 1.2e− 6.
LSTM baselines are trained for 500 epochs with
batch size 100. DM-LSTM is first trained by de-
pendency modeling objective for 100 epochs with
batch size 80, and then by language modeling in
Equation 4 for 400 epochs with batch size 60 due
the computational budgets limit.

For both the DM-Transformer and base Trans-
former, we use a standard 6-layer Transformer lan-
guage model with 8 attention heads, embedding
dimension 512, projection dimension 2048 and
dropout rate 0.1. During training, we use Adam
optimizer with β1 = 0.9, β2 = 0.98, weight decay
0.01 and learning rate 5e − 4, and apply the dy-
namic batching provided by fairseq6 to train both
the models with 4 GPUs. Transformer is trained for
60 epochs, while DM-GPT-2 is first trained by de-
pendency modeling for 30 epochs, and then trained
by language modeling in Equation 4 for 30 epochs.

We use the pretrained GPT-2-base model for
both the DM-GPT-2 and base GPT-2. In this com-
parison, we apply the same training settings with
Transformer-base models except that learning rate

6https://github.com/pytorch/fairseq

is set to 5e − 5. GPT-2 is trained for 80 epochs,
while DM-GPT-2 is first trained by dependency
modeling for 40 epochs, and then trained by lan-
guage modeling in Equation 4 for 40 epochs.

For all the models, we select the best checkpoint
according to the loss of validation set for testing.

A.2 Unconditional Text Generation
The dataset statistics of EMNLP2017 WMT News
dataset is reported in Table 11.

Train Validation Test
#Stories 268,586 10,000 10,000

Table 11: Statistics of EMNLP2017 WMT News
dataset.

The context length for DM-LSTM is set to 36.
LSTM baselines are trained for 500 epochs with
batch size 300. DM-LSTM is first trained by de-
pendency modeling objective for 100 epochs with
batch size 300, and then by language modeling for
400 epochs with batch size 200. Besides, all the
other experimental setups are the same with those
for the conditional text generation task.

A.3 Language Modeling
The dataset statistics of Penn Treebank dataset is
reported in Table 12.

Train Validation Test
#Stories 42,068 3,370 3,761

Table 12: Statistics of Penn Treebank dataset.

The context length for DM-LSTM is set to 16.
DM-LSTM is trained for 1000 epochs with batch
size 20, following (Merity et al., 2018). Besides,
all the other experimental setups are the same with
those for the conditional text generation task.

B Impact of the Dependency Parser

In our work, we use an off-the-shelf dependency
parser to get the dependency parse trees for de-
pendency modeling. Consequently, the better the
quality of dependency parsing, the better the per-
formance of our method. HPSG Parser (Zhou and
Zhao, 2019), the dependency parser we use, is one
of the state-state-of-the-art parsers. This ensures
the high quality of parsing results. Zhou and Zhao
(2019) trained HPSG Parser with the training set
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of PTB, and kept the test set held-out. So, when
we do language modeling on PTB, the parser will
not inject any future predictions that contribute to
testing.

HPSG Parser maintains high-quality on out-
of-domain text, as shown in its paper (Zhou
and Zhao, 2019). Most importantly, even on
the out-of-domain datasets, i.e., ROCStories and
EMNLP2017 WMT News, our work can still ob-
tain a significant improvement, as shown in Sec-
tion 3.1 and Section 3.2.

C Language Modeling on
Transformer-based Models

The language modeling results of Transformer-
based models evaluated on PTB dataset are shown
in following Table 13.

Models #Params Dev PPL Test PPL
Transformer 24M 100.7 106.7
DM-Transformer 24M 80.6 84.6
GPT-2 163M 62.6 55.2
DM-GPT-2 163M 58.8 51.6

Table 13: Transformer-based models’ perplexity evalu-
ated on validation and test sets of Penn Treebank dataset.

The good performance of Transformer-based
models often rely on training with large datasets,
but PTB is a very small dataset. Therefore,
Transformer-based models perform worse than
LSTM-based models, as shown in Table 7 and Ta-
ble 13. However, our DM-models still substantially
reduce the perplexity compared with base models.
DM-Transformer improves the base Transformer
by over 20 perplexity points on both the validation
and test set, and DM-GPT-2 also improves the base
GPT-2 by almost 4 perplexity points. These results
further confirm the effectiveness our method.

D Human Evaluation

We post the human evaluation questionnaire, as
shown in Table 14 and Table 15, and then recruit
five workers with sufficient high English skills. We
pay each worker 45 US dollars, and let them com-
plete the evaluation within a week.

E Generated Examples

For a more general comparison, we present more
generated examples of unconditional text genera-
tion in Table 16.
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Task Description
Each story contains about five sentences. For each story, we will put the first four sentences into two
different systems, and then systems generate the last sentence. The requirement for this manual evaluation
is to judge which story better complies with the English grammar norm, and is more logically related
to the first four sentences.
NOTE that the names in all stories are replaced with "[MALE]" or "[FEMALE]" or "[NEUTRAL]", and
all the sentences are preprocessed by lowercasing, separating punctuation, and splitting conjunctions.
They are not grammar errors. Please ignore these when evaluating and do not allow them to affect your
judgments.
Evaluation Criterion
You need to compare the stories from two metrics: grammaticality and logicality. And the two metrics
are independent of each other. One of the judgments should not have any influence on the other one.
Specific criteria for evaluating are as follows:
1. Grammaticality
In the process of evaluating grammaticality, it should be considered whether the statement itself complies
with the English standard usage. Then annotate which story is better at grammaticality. You may not care
about what the generated sentences are saying but only if there are any grammatical problems in the
sentence itself.
2. Logicality
In the process of evaluating logicality, you need to carefully read the whole story including the first four
sentences and the generated sentence, and compare stories in logicality. Then annotate which story is better
at logicality in terms of the coherence to the given beginnings and the inter-sentence causal and temporal
dependencies. In this process, you may encounter sentences that are not completely grammatical.Please
make a logical evaluation based on the main part of the sentence (such as some keywords, etc.) and
what you can intuitively feel. Under the circumstances, the story can be judged totally illogical only if
the grammar is too poor to understand the meaning or the logic is unreasonable.
Notes
· Again, the grammaticality and logicality of the story are two independent metrics. Some very logically
inappropriate generated stories are good in the grammaticality part, and there are some stories with
obvious grammatical errors but they don’t affect the respective judgment.
· Sometimes, there may be more than one kind of reasonable story for a beginning. Please do not limit
your imagination. As long as the story is logically reasonable, direct, and able to make sense, it can
be judged good in logicality.
· Some stories may not be accurately judged. In the process of determining the comparison of this type
of two stories, according to your own understanding of the examples and the subjective feelings of the
stories, choose a better story you think is the most appropriate. Please ensure that your evaluation
criterion for different stories is the same.

Table 14: Human evaluation questionnaire for conditional text generation.

Task Description
In this review, you will read 900 sentences. For each sentence, you should determine whether the
sentence is written by human. Note: All the sentences are preprocessed by lowercasing, separating
punctuation, and splitting conjunctions. They are not grammar errors. Some sentences may have a specific
context, or they may be talking about completely fictitious things. Please ignore these when evaluating
and do not allow them to affect your judgments.
Evaluation Criterion
The judgment can mainly depend on your own understanding and the subjective feelings. But fluency,
readability, engagement (whether you felt interested about the sentence), and anything else that you think
is important can also help you make a decision.

Table 15: Human evaluation questionnaire for unconditional text generation.
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Golden Text:

over 1 , 600 a day have reached greece this month , a higher rate than last july when the crisis was
already in full swing .
" we ’ re working through a legacy period , with legacy products that are 10 or 20 years old , " he says .
’ the first time anyone says you need help , i ’ m on the defensive , but that ’ s all that i know .
out of those who came last year , 69 per cent were men , 18 per cent were children and just 13 per cent
were women .

PRPN:

as a mother , i can ’ t work to be working on some kind of stuff , but i ’ m not really sure that the single
market is going to be as bad as i ’ m on .
in fact , there is a good position to focus on this and that will be a clear opportunity for the us to make
sure that we do not have any concerns .
there ’ s still more opportunities than that , but this is what you ’ re talking about , but it ’ s not right .
as well as a labour party , the former party member who claimed the vote in the referendum on whether
to vote to leave the eu should be questioned .

ON-LSTM:

so they did that because we ’ ve been saying they ’ re going to be fighting for this state , but they ’ re
going to keep going .
the official said they were hoping to make a contribution in its strong inflation growth in the future ,
and that a more conservative leader could look for jobs and be stronger .
it ’ s something that i think are a good team , the first place to do it and i ’ m really happy .
’ there ’ s no question that the person we ’ re going to take is probably an important thing to be asked ,
" said john .

AWD-LSTM:

in this month ’ s election , the u . s . economy has fallen in the past few years , a higher than a decade
ago .
in the last year i had been an 18 - year - old woman in my two - year - old son .
it was a great test for me to try to get back on the bench and be there , it ’ s a huge challenge for us .
i just think it ’ s important for us to do something that would help them in the best way we can to do it .

DM-LSTM:

" the united states has to come to mind that the threat of climate change is less of a serious issue , " the
pentagon said in a statement .
in the event of an initial campaign for the democratic nomination , he had released some of the most
controversial ads that they had been speaking about since he was a president .
there is an example of a presidential candidate who has been on the debate trail for more than a year .
the central bank of japan is set to raise its benchmark interest rate at its first time in nearly a decade .

Transformer:

you can ’ t get away with things that are better than you did at home and hopefully get better than not
the first team .
in the case of the cases , the nsw government said it would accept 10 , 000 additional emergency costs
if it did not help the industry .
if there is an oil price that is at stake , it is not as far as the price of oil .
the country has promised to build a nationwide population of about 150 , 000 to more than 2 , 000 ,
with a budget to help in building more affordable housing .

DM-Transformer:

in this particular area , as in the modern world , he is seen as someone who takes the risk of suffering a
heart attack .
that ’ s why we ’ re talking about the second half of the year , and a lot of people have asked us to do
the best we can .
the vast majority of american voters , particularly those who chose trump , said that he had changed
the result .
so this is a big step , and i ’ m really excited to be part of the new york olympics .

GPT-2:

the reason is that the student community who doesn ’ t know what he ’ s talking about , or who ’ s not
even a businessman , he ’ s going to take care of itself .
the difference is that the reality of " brexit " has been the single largest trading partner in the world ,
and now is it .
the game is now used to push for players to learn from them and learn from them and also play in the
front of them .
the first woman to run for president is to make a case for a woman she wants to make as president of
the united states .

DM-GPT-2:

" i just thought that the whole picture was a strange story , " he said in a telephone interview on
thursday .
" the importance of local authorities is very strong , " she said in an interview on friday afternoon .
we are working closely with the government to resolve this issue and have to work with local authorities
to resolve the problem .
a final verdict will be held on thursday at the supreme court in washington on march 15 , 2017 .

Table 16: Examples of unconditional text generation on EMNLP2017 WMT News dataset.
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