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Abstract

The definition generation task can help lan-
guage learners by providing explanations for
unfamiliar words. This task has attracted much
attention in recent years. We propose a novel
task of Simple Definition Generation (SDG) to
help language learners and low literacy readers.
A significant challenge of this task is the lack
of learner’s dictionaries in many languages,
and therefore the lack of data for supervised
training. We explore this task and propose a
multitasking framework SimpDefiner that only
requires a standard dictionary with complex
definitions and a corpus containing arbitrary
simple texts. We disentangle the complexity
factors from the text by carefully designing
a parameter sharing scheme between two de-
coders. By jointly training these components,
the framework can generate both complex and
simple definitions simultaneously. We demon-
strate that the framework can generate relevant,
simple definitions for the target words through
automatic and manual evaluations on English
and Chinese datasets. Our method outperforms
the baseline model by a 1.77 SARI score on
the English dataset, and raises the proportion of
the low level (HSK level 1-3) words in Chinese
definitions by 3.87% 1.

1 Introduction

Helping language learners understand words in
doubt is an important topic in the field of Intelligent
Computer-Assisted Language Learning (ICALL)
(Segler et al., 2002; Enayati and Gilakjani, 2020;
Lolita et al., 2020). In recent years, researchers
attempted to automatically generate definitions for
words rather than formulating predefined word-
definition inventories (Ishiwatari et al., 2019; Yang
et al., 2020; Huang et al., 2021). There are two
reasons for this. Firstly, it can be difficult for users
to distinguish which sense is appropriate in the

∗Corresponding author
1Code can be found at https://github.com/blcuicall/

SimpDefiner.

a notice, picture or film telling people 
about a product, job or service.

Simple definition in OALD

a notice or announcement in a public 
medium promoting a product, service, 
or event or publicizing a job vacancy.

Complex definition in OD

advertisement

Figure 1: Different definitions for advertisement in
the Oxford Dictionary (OD) and Oxford Advanced
Learner’s Dictionary (OALD).

current context because of the cognitively inaccu-
rate nature of discrete sense boundaries (Rosch and
Mervis, 1975; Kilgarriff, 1997; Tyler and Evans,
2001). Secondly, the predefined inventories need
to be updated manually by lexicographers, which
is time-consuming and causes dictionaries to lag
behind the ever-changing language usage.

Different from previous work (Noraset et al.,
2017; Gadetsky et al., 2018; Mickus et al., 2019;
Kong et al., 2020) that focused only on how to gen-
erate definitions, we further propose a novel task
of Simple Definition Generation (SDG). Making
the definitions easier to read and understand could
benefit the language learners, low literacy readers,
as well as helping people with aphasia or dyslexia.
For example, compared with the Oxford Dictionary
(OD), the Oxford Advanced Learner’s Dictionary
(OALD) has simpler definitions, which are specif-
ically designed for language learners. As shown
in Figure 1, the definition of the word advertise-
ment in OALD does not contain difficult words or
phrases such as announcement and public medium.

The goal of SDG task is to generate simple def-
initions for languages that lack learner’s dictio-
nary. For example, Chinese as Second Language
(CSL) learners do not have suitable dictionaries.
As Zhang (2011) pointed out, since the difficulty of
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definitions is not considered, the existing dictionary
cannot meet CSL learner’s needs.

The SDG task is challenging because it requires
a model to learn from a standard dictionary con-
taining complex definitions and then generate sim-
ple ones, and hence fully unsupervised. A seem-
ingly feasible solution is to generate definitions
first and then simplify them, i.e., the generation-
simplification pipeline. However, the simplification
task requires dataset with complex-simple sentence
pairs, and such data is also difficult to find in lan-
guages other than English (Martin et al., 2020).
Besides, the pipeline methods do not perform well
due to accumulated errors (Section 6.1).

To solve this dilemma and bridge the gap be-
tween practical needs for simple definitions and
current trivial definition generation systems, we
present a novel method for the SDG task. As illus-
trated in Figure 2, our method leverages a multi-
tasking framework SimpDefiner to generate sim-
ple definitions by performing three sub-tasks at the
same time, which are definition generation, text
reconstruction, and language modeling tasks. The
framework consists of a fully shared encoder and
two partially shared decoders. We disentangle the
complexity factors from the text by designing a
parameter sharing scheme. Particularly, we share
parameters in Complexity-Dependent Layer Nor-
malization and Complexity-Dependent Query Pro-
jection of the transformer architecture (Vaswani
et al., 2017) to control the complexity (Section
3.3). Through joint learning and sharing parame-
ters between the decoders, the SimpDefiner is able
to generate complex and simple definitions simul-
taneously.

Main contributions of our paper are listed below:

• For the first time, we propose the task of SDG
to generate simple definitions without super-
vised training data.

• We propose a multitasking framework Sim-
pDefiner to tackle this task. Through joint
training three sub-tasks, the framework can
generate complex and simple definitions si-
multaneously.

• Both automatic and manual evaluations
demonstrate the effectiveness of SimpDe-
finer. The framework outperforms the base-
line model by 1.77 SARI score on the English
test set. And the proportion of low level words

Encoder

word
+

context

noised
text

��

��

Gen.
Decoder

Rec.
Decoder

complex
definition

simple
text / definition

simple
text

Definition Generation

Text Reconstruction

Language Modeling

Figure 2: The SimpDefiner consists of three sub-tasks.
Gen. means generation and Rec. means reconstruction.
The solid black lines indicate the data-flow during train-
ing, and the dashed black lines indicate the data-flow
during inference.

(HSK level 1-3) in generated definitions raised
by 3.87% on the Chinese test set.

2 Related Work

2.1 Definition Generation

The definition generation task is first introduced
by Noraset et al. (2017). Although this task is
proposed as a potentially useful tool for explainable
AI, many subsequent works believe that it can assist
language learning by giving definitions for words
in the text (Ishiwatari et al., 2019; Mickus et al.,
2019; Yang et al., 2020).

Various studies attempted to generate multiple
different definitions for polysemous words. Gadet-
sky et al. (2018) tackled this problem by comput-
ing the AdaGram vectors (Bartunov et al., 2016)
of input words, which are capable of learning dif-
ferent representations at desired semantic resolu-
tions. However, generating different definitions
based on contexts, i.e., example sentences, became
the mainstream method (Chang et al., 2018; Reid
et al., 2020; Li et al., 2020; Bevilacqua et al., 2020).
Among them, some studies used pre-trained lan-
guage models to obtain contextualized embeddings.
Reid et al. (2020) initialized encoders with BERT
(Devlin et al., 2019) and employed variational in-
ference for estimation and leveraged contextual-
ized word embeddings for improved performance.
Bevilacqua et al. (2020) employed a novel span-
based encoding scheme to fine-tune a pre-trained
English encoder-decoder system to generate defini-
tions. Huang et al. (2021) leveraged the T5 (Raffel
et al., 2019) model for this task and introduced a
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re-ranking mechanism to model specificity in defi-
nitions.

Our proposed SimpDefiner also takes the given
word and context as input. Differently, our main fo-
cus is to generate definitions with appropriate com-
plexity to better help language learners. Besides,
our model is based on MASS (Song et al., 2019),
which is a pre-trained encoder-decoder model and
is suitable for generation tasks.

2.2 Sentence Simplification
Researchers usually regard the sentence simplifi-
cation task as a monolingual variant of machine
translation (MT) (Wubben et al., 2012). Benefiting
from the advancement of neural machine transla-
tion, this task has also made great progress in recent
years.

Lately, many works built upon the Seq2Seq MT
model (Sutskever et al., 2014) performed well.
First attempted by Nisioi et al. (2017), the Seq2Seq
models for this task are able to perform lexical sim-
plification and content reduction simultaneously by
training on complex-simple sentence pairs. This
method was inherited and improved by many sub-
sequent works, such as combining with the rein-
forcement learning method by setting a simplifica-
tion reward (Zhang and Lapata, 2017), augmenting
memory capacities (Vu et al., 2018) or training
with multitasking on entailment and paraphrase
generation (Guo et al., 2018). Martin et al. (2019)
proposed to prepend additional prompt tokens to
source sentences at train time, which enables the
end-users to condition the simplifications returned
by the model on attributes like length, lexical com-
plexity, and syntactic complexity. This control-
lable simplification system (called ACCESS) and
its improved version MUSS (Martin et al., 2020)
achieved SOTA results on the Turk corpus in terms
of the SARI metric (Xu et al., 2016).

The generation-simplification pipeline methods
are used as baselines of the SDG task, and we use
both ACCESS and MUSS models for the simplifi-
cation. Unlike the baseline, the SimpDefiner can
generate simple definitions directly, alleviating the
accumulated errors.

2.3 Unsupervised Style Transfer
Style transfer aims to change the style attributes
while preserving the content. Our work is re-
lated to unsupervised style transfer by regarding
the text complexity as one of the style attributes
(Kawashima and Takagi, 2019).

Dumoulin et al. (2017) demonstrated that the
neural networks can capture the artistic style of
a diversity of paintings. The authors discovered
that adjusting parameters in the layer normaliza-
tion mechanism leads to different artistic styles.
This method permits users to transform images to
arbitrary styles learned from individual paintings.
Jin et al. (2020) successfully applied this method to
the task of headline generation, allowing the model
to generate headlines of a specific style, such as hu-
morous, romantic or click-baity, in an unsupervised
manner.

By treating the task of simplification as a variant
of style transfer, we borrow the insight of learn-
ing complexity-dependent parameters in the Layer
Normalization mechanism. Additionally, we intro-
duce the language modeling task into SimpDefiner,
which is to enhance the decoder and make it more
sensitive to text complexity.

3 Method

We integrate three sub-tasks of definition genera-
tion, text reconstruction, and language modeling
into the SimpDefiner. This section first gives a
formal definition of the SDG task, then introduces
each sub-task, and finally the parameter sharing
scheme.

3.1 Task Formulation

The SDG task is to generate a simple definition
dsim for a given word and context (w∗, c), where
c = [w1, . . . , w

∗, . . . , wn] is a sentence contain-
ing w∗. This task is challenging because there is
no corpus like {(w∗

i , ci,d
sim
i )}Ni=1 and hence it is

fully unsupervised.
The only data available in this work in-

clude a standard dictionary dataset G =
{(w∗

i , ci,d
com
i )}Ni=1 and a simple text corpus Y =

{yi}Mi=1. Note that we use dcom for complex defi-
nitions and dsim for simple ones.

3.2 Multitasking Framework

We design the three sub-tasks in the SimpDefiner
to learn different abilities. Cooperating with each
other, the entire framework obtains the ability to
compute the conditional probability P (dsim|w∗, c)
of simple definitions in a zero-shot manner.

Specifically, the definition generation task aims
to model the probability of a complex definition
given the word and context P (dcom|w∗, c) (Sec-
tion 3.2.1). And the text reconstruction task aims
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to model the probability of a simple sentence
given the corrupted version P (y|ỹ) (Section 3.2.2).
As we can see, neither task can directly get the
P (dsim|w∗, c). To solve the problem, we assume
that complexity and semantic information are con-
trolled by different parameters in the decoders, and
we attempt to disentangle the complexity factors
from the text through a carefully designed param-
eter sharing scheme. In the inference stage, we
obtain a simple definition by feeding the encoded
hidden state into the reconstruction decoder as in
Figure 2. The detailed parameter sharing scheme
is in Section 3.3.

Nevertheless, the complexity information may
still be kept in some shared parameters, resulting in
the reconstruction decoder fail to generate simple
definitions occasionally. Eliminating the complex-
ity information in all shared parameters is obvi-
ously technically impossible. Instead, we introduce
the language modeling task (Section 3.2.3) to en-
hance the reconstruction decoder and make it more
focused on simple text generation. The experiment
results in Section 6 confirm our assumption.

3.2.1 Definition Generation Task
We follow the mainstream method (Yang et al.,
2020; Kong et al., 2020; Reid et al., 2020) to con-
catenate the word and context together with a spe-
cial token [SEP] as x = (w∗; [SEP]; c). The entire
sequence is then fed into SimpDefiner, and the defi-
nition is obtained by the following language model:

P (dcom|x;θg) =
∏
t

P (dcom
t |dcom

<t ,x;θg) , (1)

where dcom
t is the t-th token of the definition, and

θg is the set of parameters. The model is optimized
using the following loss function.

Lgen(θg) = −
∑

(x,dcom)∈G

logP (dcom|x;θg) (2)

3.2.2 Text Reconstruction Task
We corrupt each sentence in the corpus Y by ran-
domly deleting or blanking some words and shuf-
fling the word orders. And then we obtain a new
corpus Ỹ = {(ỹi,yi)}Mi=1, and ỹ is a corrupted
version of y. We input ỹ into SimpDefiner and
obtain y by solving a self-supervised task of

P (y|ỹ;θr) =
∏
t

P (yt|y<t, ỹ;θr) , (3)

where yt is the t-th token of the sentence, and θr is
a set of parameters. The loss function of this task
is as follows:

Lrec(θr) = −
∑

(y,ỹ)∈Ỹ

logP (y|ỹ;θr). (4)

3.2.3 Language Modeling Task
This task facilitates zero-shot generation of
P (dsim|x) by jointly training the reconstruction
decoder as a language model. Once the model cap-
tures correct complexity that guides the model to
generate the desired simple texts, it’s more likely
for the model to ignore the wrongly shared com-
plexity information. Similar to Eq. 3, we have:

P (y|θl) =
∏
t

P (yt|y<t;θl) . (5)

It is equivalent to masking the encoder out and ig-
noring the attention modules between the encoder
and reconstruction decoder. The model is opti-
mized by the following loss function:

Llm(θl) = −
∑
y∈Y

logP (y|θl). (6)

Finally, we train the entire SimpDefiner by
jointly minimizing the weighted sum of all above
mentioned loss functions. And the overall loss
function is calculated as:

L = λαLgen + λβLrec + λγLlm, (7)

where λα, λβ , λγ are hyper-parameters.

3.3 Parameter-Sharing Scheme
For parameters in the decoders, we divided them
into two parts, which are complexity-independent
and complexity-dependent parameters. The former
ones are shared between decoders, and the latter
ones are not, as illustrated in Figure 3.

We now introduce the complexity-dependent lay-
ers, namely Complexity-Dependent Layer Normal-
ization and Complexity-Dependent Query Projec-
tion.

Complexity-Dependent Layer Normalization
Previous works (Dumoulin et al., 2017; Jin et al.,
2020) demonstrated that the layer normalization is
related to the style of the target texts. We further
argue that as an attribute of style, the complexity
can be retained by independent layer normalization.
Thus, we make the scaling and shifting parameters
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Figure 3: The parameter-sharing scheme between de-
coders. Parameters in blue layers are shared, and those
in green are not.

for layer normalization not shared in both decoders.
This approach is to transform a layer activation x
into a complexity-specific normalized activation z
as:

z = γc(
x− µ

σ
)− βc, (8)

where µ, σ are the mean and standard deviation of
the batch of x, and γc, βc are learnable parameters
specific to complexity c. Note that c is a binary vari-
able indicating different decoders. This mechanism
is used in all decoder layers.

Complexity-Dependent Query Projection The
decoder layers extract information from encoded
hidden states through cross-attention mechanism.
We believe that the required information may vary
for different complexity. Therefore, the parameters
of the linear mapping used for the query transfor-
mation in the cross-attention are not shared among
decoders. This calculation is as follows:

Q = Q̂ ·W q
c , (9)

where W q
c is the query transformation matrix spe-

cific to complexity c. The obtained query vector
Q is then fed into the cross-attention mechanism.
By using this approach, the model can obtain dif-
ferent information from the encoded hidden states
for different complexities.

4 Datasets

We evaluate the proposed multitasking framework
on both English and Chinese datasets. Each lan-
guage has a definition generation dataset and a
simple text corpus.

4.1 English Dataset

The English datasets are constructed from the
Oxford Dictionary (OD) and Oxford Advanced
Learner’s Dictionary (OALD). Since the OALD
is for language learners, it has much simpler defi-
nitions than OD. Therefore, we use the OD for the
definition generation training, and use the OALD
for validation of simple definition generation. Note
that the words used for testing are excluded from
the training and validation sets.

For the definition generation dataset, we directly
use the OD dataset published by Gadetsky et al.
(2018). The training set has 33,128 words and
97,855 entries. Each entry consists of a triplet
of (w∗, c,dcom). For testing, we align the words
and context in OD with the definitions in OALD
through manual annotation. The annotated test set
includes 3,881 words and 5,111 entries, which is
used for automatic evaluation in experiments. Each
entry in the test set has both golden complex and
simple definitions from OD and OALD, respec-
tively. Detailed statistics are listed in Table 1.

We extract the OALD definitions that are not in
the test set for constructing the simple text corpus.
This corpus has 32,395 sentences with an average
length of 12.12. We list more statistics in Table 2.

During training, the definition generation dataset
and the simple text corpus are randomly sampled
as mini-batches respectively. And there is no align-
ment between the two mini-batches at each step.

4.2 Chinese Dataset

For the definition generation dataset, we use the
Chinese WordNet (CWN) (Huang et al., 2010),
which is a semantic lexicon aiming to provide a
knowledge base of sense distinction.2 We use the
corresponding words, contexts, and definitions in
CWN for the definition generation task. We split
the entire dataset into training, validation, and test
sets roughly according to the ratio of 8:1:1. The
training set contains 6,574 words and 67,861 en-
tries. Statistics are listed in Table 1.

2Chinese WordNet: http://lope.linguistics.
ntu.edu.tw/cwn2
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OD OALD CWN

Train Valid Test Test Train Valid Test
Words 33,128 8,867 3,881 3,881 6,574 823 823
Entries 97,855 12,232 5,111 5,111 67,861 8,082 8,599
Context Length 17.74 17.80 16.24 16.24 34.49 34.73 34.06
Def. Length 11.02 10.99 10.03 12.74 14.76 14.60 14.72

Table 1: Statistics of the OD (English) dataset, OALD (English) test set, and CWN (Chinese) dataset. The rows are
number of words and entries, and the average length of contexts and definitions.

Sents Tokens Avg. Len
English 32,395 392,625 12.12
Chinese 58,867 860,761 14.62

Table 2: Statistics of simple text corpora. The columns
are number of sentences and tokens, and the average
length of sentences.

For the simple text corpus, we extract 58,867
sentences from a number of primary level Chinese
as Second Language textbooks, with an average
sentence length of 14.62.

Since no suitable dictionary can be used for eval-
uation, there are no golden simple definitions in
Chinese Dataset. In the experiments, we count
the difficulty level of words in definitions to esti-
mate if they are simple. We also organize a manual
evaluation to score the accuracy and simplicity of
definitions.

5 Experiments

This section presents the experimental settings and
evaluation methods.

5.1 Settings

Baselines We compare the SimpDefiner with
generation-simplification pipelines. We first em-
ploy LOG-CaD (Ishiwatari et al., 2019) and MASS
(Song et al., 2019) models to generate definitions,
and then employ ACCESS (Martin et al., 2019)
and MUSS (Martin et al., 2020) models to sim-
plify them. Thus, we have four different pipeline
baselines. Since these models are not available in
Chinese, we only apply these pipelines to English
datasets. For the Chinese SDG task, we specially
pretrained a MASS-ZH model from scratch using
the Chinese Gigaword Fifth Edition3 corpus. Note
that we set the learning rate to 3e-4, warmup steps
to 500 when fine-tuning both MASS and MASS-
ZH.

3https://catalog.ldc.upenn.edu/LDC2011T13

SimpDefiner We use the parameters in the
MASS model to initialize the encoder and two de-
coders in SimpDefiner. For the sentence corruption
in the text reconstruction task, we randomly delete
or blank words with a uniform probability of 0.2,
and randomly shuffle the order of words within 5
tokens. For the language modeling task, we set the
input representations to 0 and use the simplified
text as the target output. We tune the λ parameters
in Eq. 7 on the validation set and adopt the same
hyper-parameters as the baseline for comparison.
We set 5 different random seeds as and report the
average result of multiple runs. Each run takes 7.68
GPU hours on 4 GeFource RTX 2080 Ti GPUs.

5.2 Evaluation

Evaluation of the generated definitions mainly fo-
cuses on two aspects, i.e., accuracy and simplicity.
We perform both automatic and manual evaluations
for each aspect.

We first introduce these automatic metrics, and
then the manual evaluation method.

BLEU Previous definition generation studies
(Noraset et al., 2017; Yang et al., 2020; Kong et al.,
2020) used the BLEU (Papineni et al., 2002) score
to measure the closeness of generated results to
the standard answers, and to evaluate the accuracy
of results. Since the English test set is manually
annotated, we calculate the BLEU score of both
complex and simple definitions, respectively.

Semantic Similarity In addition to the BLEU
score, we use the sentence-transformers toolkit
(Reimers and Gurevych, 2020) to convert the gen-
erated definitions and references into sentence vec-
tors, and calculate cosine similarity between them.

SARI SARI (Xu et al., 2016) is a lexical simplic-
ity metric that measures how good are the words
added, deleted and kept by a simplification model.
This metric compares the model output to simplifi-
cation references and the original sentence. We use

5939



Complex Simple SARIBLEU SSim BLEU SSim
LOG-CaD 19.04 40.32 – – –

+ ACCESS – – 12.32 32.63 38.02
+ MUSS – – 11.74 27.66 36.53

MASS 24.00 52.78 – – –
+ ACCESS – – 12.95 38.53 38.59
+ MUSS – – 12.58 37.49 38.48

SimpDefiner 24.17 53.87 15.05 46.99 40.36

Table 3: Main results on the English test set. LOG-CaD
(Ishiwatari et al., 2019) is a definition generation model.

L1-3 (%) L7+ (%)
MASS 44.16 37.05
SimpDefiner 48.03 36.59

Table 4: Main results on the Chinese test set.

the SARI implementation in the EASSE toolkit4.

HSK Level HSK, namely Chinese Proficiency
Test, is set up to test the proficiency of non-native
speakers5. It has nine levels, from easy to hard,
and each level corresponds to a vocabulary. We
count the proportion of words at levels 1-3 and
7+ in the generated definitions. The higher the
proportion of words in levels 1-3 (7+), the easier
(more challenging) the definitions are understood.

Manual Evaluation We randomly select 200
words and contexts from the Chinese test set and
let the MASS and SimpDefiner generate definitions
for them one by one. We mix the two generated
definitions and the golden complex definition and
then ask three native-speaker annotators to score
them. Specifically, each annotator evaluates the
definitions on two criteria of accuracy and simplic-
ity. Both criteria have a range of 1-3. For accuracy,
the annotators are asked to evaluate how semanti-
cally relevant the definitions are to the word. For
simplicity, the annotators are asked to evaluate how
simple the definitions are. After collecting evalua-
tion results, we average the scores as final score.

6 Results and Analysis

6.1 Main Results

Table 3 and Table 4 present the experiment re-
sults on the English and Chinese test sets respec-
tively. Results show that our proposed SimpDe-
finer significantly outperforms baseline methods of
generation-simplification pipelines on both English
and Chinese datasets.

4https://github.com/feralvam/easse
5http://www.chinesetest.cn

#1 #2 #3 Avg.

Acc.
Golden 3.00 2.93 2.98 2.97
MASS 1.26 1.30 1.38 1.31
SimpDefiner 1.48 1.47 1.59 1.51

Sim.
Golden 2.04 2.06 2.11 2.07
MASS 1.92 2.03 1.89 1.95
SimpDefiner 2.14 2.04 2.21 2.13

Table 5: Manual evaluation results on the Chinese test
set. Accuracy and simplicity scores are listed in the
table. The last column are averaged scores among all
three annotators.

For English results, the performance of simple
definition generation improves 2.1 and 8.46 on the
BLEU and SemSim metrics respectively, and im-
proves 1.77 on the SARI metric. This indicates
that both accuracy and simplicity are effectively
improved comparing with the baseline. We also
observe that complex definition generation also im-
proves by 0.17 on BLEU and 1.09 on SemSim.
This shows that SimpDefiner improves the ability
to generate both complex and simple definitions.

For Chinese results, we compute the HSK Level
metric on generated simple definitions. We can see
that the proportion of low-level (HSK level 1-3)
words increases by 3.87%, and that of high-level
(HSK level 7+) words decreases by 0.46%. The
lexical complexity of the SimpDefiner generated
definitions are significantly reduced.

Besides, we also conduct a manual evaluation
on the Chinese test set, and the results are listed in
Table 5. From the averaged scores, we observe that
SimpDefiner outperforms MASS by 0.2 in terms
of accuracy (more accurate) and 0.18 in terms of
simplicity (more straightforward). On the accuracy
score, all three annotators agree that SimpDefiner
has higher accuracy than MASS, which shows the
superiority of our framework. As expected, the
golden definitions have the highest accuracy in the
table, far exceeding the definitions generated by
the two models. We believe this is caused by in-
sufficient knowledge in the model, and this can be
solved by using larger pretrained models, such as
BART (Lewis et al., 2019). On the simplicity score,
three annotators agree that SimpDefiner generates
simpler definitions than MASS, and two of three
annotators think SimpDefiner generates simpler
definitions than the golden ones.

6.2 Ablation Study

We conduct ablation experiment to demonstrate
the effectiveness of SimpDefiner components and
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ID Model Complex Simple SARIBLEU SSim BLEU SSim
① SimpDefiner 24.31 53.60 15.24 47.05 40.19
② ① – LM 23.83 53.04 14.82 45.74 39.63
③ ② – TR 25.02 53.80 13.66 44.01 38.58
④ ① – LN 24.45 53.76 13.87 44.66 38.61
⑤ ① – QP 23.40 52.95 14.61 45.57 39.87
⑥ ④ – QP 24.80 53.95 13.90 44.77 38.52

Table 6: Ablation study on the English test set. LM:
the language modeling task. TR: the text reconstruction
task. LN: complexity-dependent layer normalization.
QP: complexity-dependent query projection.

(λα, λβ , λγ) Complex Simple SARIBLEU SSim BLEU SSim
(0.8,0.1,0.1) 24.31 53.60 15.24 47.05 40.19
(0.6,0.2,0.2) 23.27 53.19 15.01 46.85 40.49
(0.4,0.3,0.3) 21.92 51.82 15.11 46.54 40.74

Table 7: Different hyper-parameter settings on the En-
glish test set.

the parameter sharing scheme. For the language
modeling (LM) and text reconstruction (TR) tasks,
we ablate them by setting their weights to 0. For
the layer normalization (LN) and query projection
(QP) as parameter-shared layers, we ablate them
by sharing their parameters between models. We
illustrate the experiment results in Table 6.

In general, ablating any of the components or
parameter-shared layers reduces the performance in
terms of simple definitions, which indicates that the
SimpDefiner benefits from both components and
parameter sharing scheme. We also observe that the
performance of ablation experiments have slight
disturbance on complex definitions. But since we
pay more attention to the performance on simple
definitions, we argue that the benefits of SimpDe-
finer far outweigh the losses.

6.3 Analysis on Hyper-Parameters
Furthermore, we conduct additional experiments
on the English dataset to study how hyper-
parameters affect the performance. By setting dif-
ferent λ to each model, we observe the relationship
between the performance and these weights.

The experiment results are listed in Table 7.
From the table, we observe the inconsistency be-
tween metrics. As the definition generation task
weight declines, the BLEU and SemSim metrics
are generally declining, but the SARI metric is in-
creasing. Since the BLEU and SemSim measure
the accuracy and the SARI measures simplicity,
we consider this phenomenon as a seesaw between
the two attributes of accuracy and simplicity. The

Word commander

Context Military commanders have warned coalition
troops in the south.

Golden
A person who is in charge of sth, especially
an officer in charge of a particular group of
soldiers or a military operation.

Baseline An officer of the highest rank is a country
in a country.

SimpDefiner The head of a military force.
Word 督促 (supervise and urge)

Context
我很感谢他的支持、鼓励与督促。
I appreciate his support, encouragement
and supervision.

Golden
监督他人并促使后述事件发生。
Supervise others and promote the
occurrence of the following events.

Baseline 以后述对象为凭借进行特定事件。
Sb. is used as a reference for specific events.

SimpDefiner 要求后述对象赶快行动。Ask sb. to act quickly.

Table 8: Cases of generated simple definitions.

balance between them can be achieved by condi-
tioning the hyper-parameters.

6.4 Case Study

Table 8 shows two generation cases from English
and Chinese test set respectively. In both cases, the
golden definition is a long sentence with quite com-
plicated syntax. The baseline generated definitions
contains difficult words and often wrongly defines
the given word. In the English case, the word com-
mander is defined by the baseline as an officer of
the highest rank in a country, which is incorrect in
most cases. In the Chinese case, the baseline gen-
erated definition contains difficult words like凭借
(reference) and特定事件 (specific events). On the
other hand, the SimpDefiner generates simple and
accurate definitions in both cases.

7 Conclusion

In this work, we propose the SDG task, a novel task
of generating simplified definitions in a zero-shot
manner. To this end, we leverage a multitasking
framework SimpDefiner to tackle this task. We
introduce a text reconstruction task to the frame-
work to control the text complexity, and a language
modeling task to enhance the decoder. For evalu-
ation, we construct a novel test set in English by
manually aligning the two dictionaries of OD and
OALD. The automatic and manual evaluations indi-
cate that the our proposed framework can generate
more accurate and more straightforward definitions
than other models and the generation-simplification
pipelines. In the future, we will try to combine

5941



the current method with prompt learning methods,
aiming to let users condition the complexity of gen-
erated definitions.
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