
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 5579 - 5589

May 22-27, 2022 c©2022 Association for Computational Linguistics

Predicate-Argument Based Bi-Encoder for Paraphrase Identification

Qiwei Peng
University of Sussex

Brighton, UK
qiwei.peng@sussex.ac.uk

David Weir
University of Sussex

Brighton, UK
d.j.weir@sussex.ac.uk

Julie Weeds
University of Sussex

Brighton, UK
j.e.weeds@sussex.ac.uk

Yekun Chai
Baidu, Inc.

Beijing, China
chaiyekun@baidu.com

Abstract

Paraphrase identification involves identifying
whether a pair of sentences express the same
or similar meanings. While cross-encoders
have achieved high performances across sev-
eral benchmarks, bi-encoders such as SBERT
have been widely applied to sentence pair
tasks. They exhibit substantially lower com-
putation complexity and are better suited to
symmetric tasks. In this work, we adopt a bi-
encoder approach to the paraphrase identifica-
tion task, and investigate the impact of explic-
itly incorporating predicate-argument informa-
tion into SBERT through weighted aggrega-
tion. Experiments on six paraphrase identifica-
tion datasets demonstrate that, with a minimal
increase in parameters, the proposed model is
able to outperform SBERT/SRoBERTa signifi-
cantly. Further, ablation studies reveal that the
predicate-argument based component plays a
significant role in the performance gain.

1 Introduction

Paraphrases are sentences that express the same or
similar meanings with different wording (Bhagat
and Hovy, 2013). Paraphrase pairs are either fully
or largely semantically equivalent. For example:

a) Marriage equality law passed in Rhode Island

b) Rhode Island becomes the 10th state to enact
marriage equality

It is generally considered to be a symmetric task
where the paraphrase relation holds in both direc-
tions (Bhagat and Hovy, 2013; Yang et al., 2019).

Since word order and sentence structure are cru-
cial in determining sentence meaning, effective
paraphrase models must be structure-aware and
word order sensitive. In light of this, paraphrase
datasets have been created that are specifically de-
signed to encourage models to consider structural

differences (Xu et al., 2015; Zhang et al., 2019b).
For example, PIT2015 (Xu et al., 2015) consists
of paraphrase pairs that are lexically diverse and
non-paraphrase pairs that are lexically similar but
semantically dissimilar.

There are generally two pre-trained based ap-
proaches for sentence pair tasks such as paraphrase
identification. The first is the cross-encoder ap-
proach, which involves concatenating the two in-
put sentences and performing full-attention over
the input. The second is the bi-encoder approach,
which adopts a conjoined twin network structure
and maps each sentence onto separate represen-
tations, which can then be compared using sim-
ilarity measures such as cosine. Though typical
cross-encoders like BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019b) have set state-
of-the-art performance on various sentence pair
tasks (Zhang et al., 2021; Xia et al., 2021), they
still face challenges from both extreme computa-
tional overhead for many use cases (Reimers and
Gurevych, 2019; Thakur et al., 2021) and incon-
sistent predictions (ranging from 2.66% to 8.46%
depending on specific datasets) when dealing with
symmetric tasks (Chen et al., 2020).

In contrast, a bi-encoder approach such as
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019) encodes sentences separately and generates
high-quality embeddings for each of them. This
architecture enables sentence embeddings to be
pre-computed, supporting efficient indexing and
comparison between different sequences. Due to
the nature of bi-encoders, the symmetry property
will be preserved as long as no asymmetry is intro-
duced in subsequent layers. These properties make
bi-encoders appealing for the paraphrase identifi-
cation task. Accordingly, here, we focus on bi-
encoders rather than cross-encoders.

One downside of SBERT is that it only adopts a
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very simple strategy, which is mean-pooling over
all tokens, to generate sentence embeddings. As
previously discussed, models should ideally be sen-
sitive to any structural differences between two
sentences. Relational Graph Convolutional Net-
works (RGCNs) (Schlichtkrull et al., 2018) have
been used to introduce structural information (e.g.
dependency/semantic parse trees) into SBERT and
improvements have been reported on unsupervised
similarity comparison tasks (Peng et al., 2021).
One drawback of RGCNs is the size of the pa-
rameter space. For example, a single-layer RGCN
can involve more than 30 million parameters. Fur-
thermore, as we will demonstrate, the performance
gain on different paraphrase identification datasets
is not consistent.

An important aspect of sentence meaning con-
cerns its predicate-argument structure. This has
been utilised to generate paraphrases (Kozlowski
et al., 2003) and to compare sentence meanings
(Shan et al., 2009). Inspired by the Self-Explain
model (Sun et al., 2020) which uses a span-based
framework to generate sentence embeddings, we
propose a method that effectively introduces sen-
tence structure into SBERT via the aggregation
of predicate-argument spans. This self-attention
based aggregation allows us to gain benefits with
minimal increased cost in terms of additional pa-
rameters. Empirical results indicate that the pro-
posed model yields improvements on six bench-
marks for paraphrase identification. Upon closer
investigation, we find the predicate-argument span
(PAS) component plays a crucial role in the perfor-
mance gains and can be easily generalised to other
models.

2 Related Work

2.1 Paraphrase Identification

The problem of paraphrase identification has been
explored now for several decades (Mihalcea et al.,
2006; Kozareva and Montoyo, 2006). Prior to the
emergence of pre-trained models, bi-encoder struc-
tures were widely used. For example, Mueller and
Thyagarajan (2016) applied LSTM in a twin ar-
chitecture with tied weights and used Manhattan
distance to compute similarity. InferSent (Con-
neau et al., 2017) exploited BiLSTM in a sim-
ilar twin structure with a fully-connected layer
for classification over interacted sentence embed-
dings. Although their model was mainly proposed
for transfer learning, experiments showed that it

achieves good performance when directly trained
on in-domain data.

Some bi-encoders do not generate single-vector
sentence embeddings and allow direct comparisons
between the words in the two sentences. Pang et al.
(2016) proposed MatchPyramid where interaction
matrix is constructed, and convolutional networks
were used to extract features for final classifica-
tion. PMWI (He and Lin, 2016) introduced more
fine-grained comparisons between words to better
dissect the meaning difference. ESIM (Chen et al.,
2017) further utilised BiLSTM to bring contextu-
alised token representations and allow rich inter-
actions between tokens. Researchers have further
improved these models by incorporating context
and structure information (Liu et al., 2019a), as
well as character-level information (Lan and Xu,
2018).

After the emergence of pre-trained models,
cross-encoders like BERT and RoBERTa have
achieved state-of-the-art performance on various
sentence pair tasks including paraphrase identifi-
cation. Zhang et al. (2019a) introduced pairwise
word interaction mechanism into BERT. Zhang
et al. (2021) improved BERT on paraphrase tasks
by using CNNs to gather local information and
an auxiliary task to further bring in semantic rela-
tion information. Xia et al. (2021) injected simi-
larity matrices into BERT’s attention mechanism.
Though improved performance can be obtained,
cross-encoders have known drawbacks. In partic-
ular, Reimers and Gurevych (2019) showed the
extreme computation overhead of cross-encoders,
and Chen et al. (2020) demonstrated that cross-
encoders often give inconsistent predictions when
reversing the input sentence order. Based on these
factors, bi-encoders are often preferred for the para-
phrase identification task.

2.2 Sentence Representation with Structures

Though pre-trained models like BERT seem to en-
code certain structures in their contextualised repre-
sentations, open questions remain about how to bet-
ter utilise such information (Hewitt and Manning,
2019; Clark et al., 2019) and how useful the hidden
structure is compared to externally provided sen-
tence structures (Glavaš and Vulić, 2021; Dai et al.,
2021). Recent improvements are also observed on
various natural language understanding tasks by in-
corporating structural information into pre-trained
models. SentiBERT proposed by Yin et al. (2020)

5580



incorporates constituency parse tree into BERT for
sentiment analysis. Xu and Yang (2019) model
each sentence as a directed dependency graph by us-
ing RGCN, and achieve improvements on pronoun
resolution. Zhang et al. (2020) propose a semantics-
aware BERT (SemBERT) model by further en-
coding semantic labels with BERT using a GRU.
RGCNs have also been used by Wu et al. (2021) to
introduce semantic information into RoBERTa, and
achieved consistent improvements when fine-tuned
on problem-specific datasets. Peng et al. (2021)
propose a SBERT-RGCN model where structural
information is explicitly encoded into SBERT in a
similar way, achieving improvements on unsuper-
vised sentence similarity comparison tasks. Similar
efforts can be seen where researchers try to provide
syntax information via self-attention mechanism
(Bai et al., 2021; Li et al., 2020). Self-Explain
model proposed by Sun et al. (2020) focuses on
continuous text spans. It generates sentence embed-
dings by taking the weighted sum over all possible
continuous text spans rather than individual tokens
in the sentence. Though, Self-Explain achieves
improvements over SentiBERT and SemBERT on
sentiment analysis and language inference tasks,
the continuous span strategy only captures linear
structure and not differences in linguistic structure.
In this paper, we draw inspiration from it, design-
ing a similar span-based component to incorporate
predicate-argument spans.

3 Model

Our proposed model adopts the same conjoined
twin architecture as SBERT and turns focus to the
predicate-argument structure of the given sentence.
As depicted in Figure 1, the model consists of dif-
ferent components:

BERT: Each sentence is first fed into the pre-
trained BERT-base model to produce both a sen-
tence representation, by applying mean-pooling
over all token representations from the last hid-
den layer, and an original contextualised sequence-
length token representation, which is used to derive
predicate-argument span representations.

Predicate Argument Spans (PAS): We use Al-
lenNLP (Gardner et al., 2018) with its BERT-based
semantic role labelling (SRL) tagger to obtain pred-
icates and relevant arguments for all input sen-
tences. We group the predicate and its arguments
together to generate predicate-argument spans. The

initial position in the sentence determines their po-
sition in the span. An example of such spans is
shown below:

He slices tomatoes in the kitchen

From this sentence, the predicate is the verb slices,
and the three arguments are (he, tomatoes and in the
kitchen), involving the relations (ARG0, ARG1 and
ARGM-LOC), respectively. In this way, we form
three predicate-argument spans and split them into
individual words: (He, slices), (slices, tomatoes),
(slices, in, the, kitchen). One sentence is likely
to have multiple predicates, by adopting this strat-
egy, we are able to obtain all potential predicate-
argument spans in the given sentence. We further
utilise these extracted spans to form a span-based
sentence representation. If no predicate-argument
structure can be found in the sentence, we directly
use the representation after mean-pooling over all
tokens as its sentence representation.

Aggregation: After obtaining all predicate-
argument spans, we derive corresponding span rep-
resentations by looking at BERT’s token representa-
tions. In BERT/RoBERTa, tokenization yields sub-
tokens, whereas in the created spans, we have an en-
tire word token. To properly align them, we use the
same tokenizer to break the original word into sub-
tokens and represent it as a sequence of sub-tokens
in the span if a sub-token exists. Given a predicate-
argument span sequence s = {s1, s2, ..., sN} in the
sentence, where N denotes the number of spans
and every span si consists of tokens {x1, ..., xl}
that make up the span. For each span si, we ob-
tain its dense vector representation hi by taking
mean-pooling over all tokens in it:

hi =MeanPooling(x1, .., xl) (1)

Therefore, the whole representation for span se-
quence s is represented as h = {h1, h2, ..., hN},
where hi ∈ RD.

Then, we aggregate information from all spans
using a simple self-attentive mechanism. Following
Sun et al. (2020), this is achieved by first assigning
weights αi to each span hi and combining these
representations using weighted sum:

oi =W · hi + b

αi =
exp(oi)

N∑
j=1

exp(oj)

(2)
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Figure 1: The proposed model in twin structure. All parameters are shared between two encoders. The final
sentence representation is the concatenation of the mean-pooling based sentence representation and the span-based
sentence representation.

where W ∈ R1×D and b are learnable parameters.
The span-based sentence representation ĥ from the
aggregation component is the weighted average of
all predicate-argument span representations:

ĥ =
N∑
i=1

αi · hi (3)

The weights are learned during training. This
gives the model flexibility to decide the best combi-
nation method on its own. The combination of self-
attentive mechanism and predicate-argument spans
allow us to construct structure-aware sentence em-
beddings without introducing a large number of
parameters.

Connect BERT and Aggregation: The final
sentence representation is the concatenation of both
BERT mean-pooling based sentence representation
and the span-based sentence representation. Sen-
tence embeddings of the given sentence-pair are
then combined using vector operations before pass-
ing to the final classifier for training as shown in
Figure 1. To combine the embeddings, we use
the concatenation of the element-wise multiplica-
tion u ∗ v and the absolute element-wise difference
|u−v|. This is different to the typical concatenation
strategy used with SBERT/SRoBERTa (Reimers
and Gurevych, 2019) which introduces asymmetry
into the task by using (u, v, |u-v|). In initial ex-
periments, we tested the prediction consistency of
SBERT on paraphrase tasks and found that, across
different datasets, between 2.78% and 9.16% of

test predictions change when the sentence order is
reversed. Furthermore, here, we find that SBERT
performs worse on paraphrase tasks with (u, v, |u-
v|) compared to (|u-v|, u ∗ v). Results are given in
Table 5 and discussed in Section 5.1.

Finally, we note that in this twin structure, all
parameters are shared and are updated accordingly.
Cross-entropy loss is used for optimisation.

4 Experiments

We compare our model with SBERT, SRoBERTa1

and the SBERT-RGCN (Peng et al., 2021) which
utilises RGCN to incorporate structures into
SBERT with an introduction of 32 million extra
parameters2. The original sentence-pair aggrega-
tion strategy of these models is (u, v, |u-v|). We
modify this to (|u-v|, u ∗ v) as discussed in Sec-
tion 3, but we retain the original notation. We
adopt their structures and directly fine-tune the
whole model on downstream tasks from the origi-
nal BERT/RoBERTa checkpoints. We considered
two strategies to apply SBERT on classification
inference. One involved finding the optimal sim-
ilarity threshold on the development set and then
applying it on the test set, while the other involved
directly using the trained classifier. In this paper,

1https://github.com/UKPLab/sentence-transformers. Due
to limited computational resources, all pre-trained models are
of base size.

2SBERT-RGCN tried both dependency and semantic parse
trees. In the following experiments, we use semantic parse
trees that that capture predicate-argument structures.
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we adopted the latter approach since we find it gave
improved and more robust results.

4.1 Datasets
We evaluate our model on six binary paraphrase
identification benchmarks. The statistics of these
datasets are listed in Table 1. Below we give some
basic descriptions:

• Microsoft Research Paraphrase Corpus
(MSRP): A corpus of sentence pairs obtained
by clustering news articles with an SVM
classifier and human annotations (Dolan and
Brockett, 2005). It has 4,076 train data and
1,725 test data. In this paper, we split 10% of
training data as the validation set according to
GLUE (Wang et al., 2019) standardised splits.

• TwitterURL: To better study the realistic lan-
guage usage, Lan et al. (2017) proposed the
TwitterURL corpus where sentence pairs in
the dataset are collected from tweets that share
the same URL of news articles.

• PIT2015: The corpus is derived from Twit-
ter’s trending topic data, containing 18,763
sentence pairs on more than 400 distinct top-
ics (Xu et al., 2015). Given we are dealing
with binary classification, we discard debat-
able sentence pairs according to its guideline
and obtain 16,510 sentence pairs in total. This
dataset contains paraphrase pairs that are lex-
ically diverse and non-paraphrase pairs that
are lexically similar, but semantically dissim-
ilar. To capture these properties, models are
assumed to be structure-aware.

• Quora Question Pairs (QQP): The Quora
Question Pairs dataset is a collection of po-
tential duplicate question pairs from the QA
website Quora.com (Iyer et al., 2017). In this
paper, we adopt the same split strategy as in
Wang et al. (2017).

• PAWS_QQP: QQP is criticised for lacking
negative examples with high lexical overlap-
ping. Models trained on QQP tend to mark
any sentence pairs with a high word overlap
as paraphrases despite clear clashes in mean-
ing. In light of these factors, Zhang et al.
(2019b) proposed a new paraphrase identifi-
cation dataset which has extremely high lexi-
cal overlap by applying word scrambling and
back translation to sentences in QQP.

Datasets Train Dev Test

MSRP 3,668 408 1,725

TwitterURL 37,976 4,224 9,334

PIT2015 11,530 4,142 838

QQP 384,348 10,000 10,000

PAWS_QQP 11,986 8,000 677

PAWS_Wiki 49,401 8,000 8,000

Table 1: Statistics of all six benchmarks used in this
work.

• PAWS_Wiki: Similar to PAWS_QQP, Zhang
et al. (2019b) applied the same technique on
sentences obtained from Wikipedia articles to
construct sentence pairs. Both PAWS datasets
aim to measure sensitivity of models on word
order and sentence structure.

Due to the lack of development set for
PAWS_QQP, we use PAWS_Wiki’s development
set for early stopping since they are constructed in
the same way. It is worth noting that both PIT2015
and PAWS_QQP datasets have relatively small test
sets compared to others.

4.2 Training Details
Following the SBERT training protocol, we train
all models with a batch-size of 16. We tune the
learning rate in the range of (1e-5, 2e-5, 5e-5) with
Adam optimizer and a linear learning rate warm-
up over 10% of the training data. All models are
trained for four epochs and use the development
set for early stopping with a patience of 5. The
evaluation step depends on actual tasks but roughly
we evaluate them on the development set twice
each epoch. The maximum sequence length is
set to be 128. All experiments are conducted on
NVIDIA Titan V GPUs.

4.3 Evaluation
The main experiment results are summarised in Ta-
ble 2. We report the averaged F1 score of positive
class with standard error. In the table, we see that
the proposed model consistently outperforms its
SBERT and SRoBERTa versions on 5 paraphrase
identification tasks and show competitive, but not
statistically significantly different results on QQP.
As also revealed by Zhang et al. (2019b), negative
examples in QQP often have low lexical overlap,
and models trained on it tend to mark any sentence
pairs with high word overlap as paraphrases. We
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QQP TwitterURL MSRP PAWS_Wiki PAWS_QQP PIT2015

SBERT 90.78±0.09 70.85±0.28 81.67±0.46 81.57±0.53 66.01±0.45 52.03±1.44

SBERT-RGCN 90.41±0.09 70.40±0.22 81.70±0.17 81.14±0.81 66.22±0.75 59.11±0.93

PAS+SBERT 90.74±0.06 72.12±0.26 83.42±0.23 82.60±0.18 68.85±0.73 59.19±1.85

SRoBERTa 90.79±0.09 70.69±0.23 81.69±0.53 81.42±0.93 67.35±0.97 52.67±2.75

PAS+SRoBERTa 90.76±0.03 72.04±0.23 83.22±0.46 82.87±0.35 69.68±0.72 59.50±2.74

Table 2: Results on six paraphrase identification tasks, we calculate the F1 score of the positive class given most
of them are imbalanced datasets. We run 5 times with random seeds and report the mean with standard error. Cells
marked bold have the best performance in each column.

Params
SBERT-base 109M
PAS only +768
PAS+SBERT +3840
SBERT-RGCN + 32M

Table 3: The parameter comparison between different
models.

reason that the QQP task is relatively easy and
does not require much structural information to
achieve high scores. For tasks like PAWS_QQP and
PIT2015 where structures are more important, the
performance gap is more apparent. Furthermore,
despite bringing in more than 30 million param-
eters and explicitly encoding sentence structures
with a complex model, SBERT-RGCN does not
significantly outperform SBERT on most of these
tasks (excluding PIT2015) and underperforms our
proposed model.

In summary, the proposed model shows im-
proved performances on five out of six paraphrase
tasks, demonstrating the advantages of bringing in
the predicate-argument structure. Moreover, when
we combine PAS with SRoBERTa, we get similar
performance gains, proving the generalisation abil-
ity of our component. Similarly in Reimers and
Gurevych (2019), we only observe minor differ-
ences by replacing SBERT with SRoBERTa.

The number of parameters for different ap-
proaches are shown in Table 3. We note that com-
pared to SBERT, our proposed model introduces
3,840 additional parameters, and if we only con-
sider the span-based component, only 768 addi-
tional parameters are introduced. In comparison,
SBERT-RGCN brings in more than 32 million pa-
rameters.

5 Analysis

In order to better understand how the performance
gain is achieved, we have carried out several ex-
periments to investigate different aspects of the
proposed model. The following experiments are
conducted only with SBERT, since we would ex-
pect similar results with SRoBERTa.

5.1 Ablation Study
Our proposed model is made of different compo-
nents and so it is important to dissect the impact
of each component so as to explain the improved
performance. Given that the final sentence repre-
sentation is the concatenation of both mean-pooling
based BERT representation and the weighted sum
of span representations, we first assess their perfor-
mances individually on six datasets. Furthermore,
it is necessary to assess the impact of adopting the
weighted sum strategy when we derive span-based
sentence representations. We experimented with
simple averaging over all spans and compared it
with the weighted sum where the model learns to
combine different spans.

The ablation experiment results are shown in Ta-
ble 4. The SBERT-only component appears to per-
form the poorest, and the complete model achieves
the highest performance on five out of six tasks. By
only using the span-based sentence representation,
we are able to achieve significant improvements
over SBERT on most of these tasks. The improve-
ments are more substantial when concatenating
with SBERT sentence representations. We observe
considerable performance decreases on most tasks
when switching from weighted sum to simple aver-
aging, which further verifies the benefits of adopt-
ing learnable weights.

The original asymmetric sentence aggregation
strategy (u, v, |u-v|) of SBERT assumes an ordering
of the sentences by concatenating two individual
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QQP TwitterURL MSRP PAWS_Wiki PAWS_QQP PIT2015

PAS+SBERT 90.74±0.06 72.12±0.26 83.42±0.23 82.60±0.18 68.85±0.73 59.19±1.85

- SBERT-only 90.78±0.09 70.85±0.28 81.67±0.46 81.57±0.53 66.01±0.45 52.03±1.44

- PAS only 90.70±0.08 71.64±0.14 82.91±0.12 82.26±0.34 67.38±0.22 54.95±1.45
- PAS only
(simple average)

90.11±0.13 71.09±0.30 82.13±0.14 81.85±0.26 66.55±0.41 51.82±1.31

Table 4: Experimental results for ablation study. The second row gives the result for the complete model and
following rows for different components. We calculate F1 score of the positive class and report the mean with
standard error across 5 runs with random seeds. Cells marked bold perform the best among different components.

QQP TwitterURL MSRP PAWS_Wiki PAWS_QQP PIT2015
(u, v, |u-v|) 90.52±0.08 70.83±0.27 80.68±0.36 80.90±0.78 65.91±0.47 45.71±1.25

(|u-v|) 65.46±1.80 58.17±2.36 80.48±0.21 61.92±0.97 64.91±4.39 34.25±0.54
(|u-v|, u*v) 90.78±0.09 70.85±0.28 81.67±0.46 81.57±0.53 66.01±0.45 52.03±1.44

Table 5: Results on SBERT with different concatenation strategies. F1 score of the positive class with standard
error across 5 random runs is reported. Cells marked bold give the best performance.

sentence embeddings. u ∗ v has been widely used
elsewhere (Conneau et al., 2017; Cer et al., 2018)
and we found that concatenating this with |u-v| gave
the best performance on all tasks. The results are
summarised in Table 5. Therefore, we use (|u-v|,
u ∗ v) as our concatenation method for all of our
other experiments.

5.2 Span Strategy Analysis

The impact of incorporating predicate-argument
spans into SBERT in terms of the performance on
various paraphrase identification tasks has been
investigated in the above experiments. We now
address the question of whether it is the use of
specifically predicate-argument based spans that
is critical, or whether this is simply a result of
the fact that we are benefiting from the use of
representations based on spans rather than all to-
kens. To verify this, we further conduct experi-
ments with different span strategies. We pick three
paraphrase identification datasets for this purpose
(MSRP, PAWS_QQP and PIT2015) since perfor-
mance gaps between PAS+SBERT and SBERT are
more apparent in previous experiments.

Here we experiment with two other span strate-
gies. The first, inspired by the Self-Explain model
(Sun et al., 2020), is the continuous random span,
where instead of following the predicate-argument
structure, we randomly sample continuous word
sequences from the sentence to build a span. The
length of the sampled spans is arbitrary. To make
a fair comparison, the number of sampled spans is

Task Span Type Span only Self-Explain* SBERT

MSRP
PAS 82.91±0.12

81.23±0.27 81.67±0.46Continuous
Random Span

81.40±0.43

Random Span 81.86±0.47

PAWS_QQP
PAS 67.38±0.22

66.88±0.46 66.01±0.45Continuous
Random Span

65.45±0.44

Random Span 65.75±0.74

PIT2015
PAS 54.95±1.45

47.60±1.01 52.03±1.44Continuous
Random Span

51.62±1.92

Random Span 50.85±2.11

Table 6: Evaluation for different span strategies using
our span-only component on three datasets. We calcu-
late the F1 score of the positive class and report the
mean with standard error across 5 runs with random
seeds. Cells marked bold have the best performance in
the row. * denotes the Self-Explain based bi-encoder.

the same as that of the predicate-argument spans in
the sentence. The other one is random span, where
we do not necessarily sample continuous words,
but allow word leaps from one to another. In this
strategy, we have the opportunity to get both con-
tinuous and discontinuous word sequences to form
spans, which better matches the scenario of PAS.
The only difference between these two strategies
and PAS is the words in the span.

We also experiment with a bi-encoder approach
more directly based on the Self-Explain cross-
encoder model (Sun et al., 2020). This model ex-
tracts all possible continuous text spans and obtains
span representations by taking the first and last to-
ken in the span, passing them through a complex
mapping function. Unlike our PAS model, this
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Figure 2: Performance of SBERT and our proposed model on six benchmarks with different training data size.
X-axis: Percent of supervised training data. Y-axis: F1 score of the positive class. The coloured bands indicate the
standard error across 5 random runs.

model brings in 2.36 million more parameters com-
pared to SBERT.

Table 6 shows the results. In order to focus on
the impact of different span strategies, we only
use the PAS component and do not concatenate it
with SBERT sentence representations in this ex-
periment. As shown in the table, the PAS-based
model outperforms the Self-Explain inspired bi-
encoder model and achieves the best performance
among all other span-based models. The continu-
ous random span and the random span model have
comparable performances with SBERT. This is ex-
pected because they do not introduce linguistically-
meaningful structures and the impact of contextu-
alisation makes them similar to SBERT despite the
absence of some tokens. Despite introducing 2.36
million more parameters, the Self-Explain inspired
bi-encoder model does not show consistent im-
provements over SBERT on these datasets, which
further suggests the importance of the predicate-
argument structure in this paraphrase identification
task.

5.3 Training Size Analysis

In order to examine the stability of our model
and the impact of the predicate-argument structure
when different sizes of training data are available,
we conduct experiments with different training data
scales. We randomly sample from 10% to 100%
data (10%, 30%, 60%, 100%) from the training
set as training data. We show the results in Fig-

ure 2. In spite of limited increased parameters,
the proposed model appears to yield consistent im-
provements across different training scales. We
also note that, whilst our proposed model performs
comparably to SBERT on QQP when trained with
the complete data-set, we can see that when only a
small proportion of training data (e.g. 10%, 30%)
is available, our model demonstrates improvements
over SBERT. Thus the introduction of predicate-
argument structures may be more beneficial with
limited annotated training data.

6 Conclusion

In this work, we propose a method which ef-
fectively introduces sentence structure to a sen-
tence embedding via the aggregation of predicate-
argument spans (PAS). Experiments with SBERT
and SRoBERTa show that such method brings im-
provements on six paraphrase identification tasks.
Compared to models based on RGCNs, our method
obtains more consistent benefits with minimal in-
creased cost in terms of numbers of parameters.
Upon closer investigation, we show that the PAS
component and its learnable weights play a sub-
stantial impact in the performance gain. This PAS
component, as demonstrated with SRoBERTa, can
be easily extended to other models that require the
generation of sentence embeddings. Our future
work will include enhancing the structural differ-
ence between sentences by taking use of the argu-
ment tag information.
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