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Abstract

Transformers are unable to model long-term
memories effectively, since the amount of com-
putation they need to perform grows with
the context length. While variations of effi-
cient transformers have been proposed, they
all have a finite memory capacity and are
forced to drop old information. In this paper,
we propose the oco-former, which extends the
vanilla transformer with an unbounded long-
term memory. By making use of a continuous-
space attention mechanism to attend over the
long-term memory, the oco-former’s attention
complexity becomes independent of the con-
text length, trading off memory length with
precision. In order to control where pre-
cision is more important, oo-former main-
tains “sticky memories,” being able to model
arbitrarily long contexts while keeping the
computation budget fixed. Experiments on
a synthetic sorting task, language modeling,
and document grounded dialogue generation
demonstrate the co-former’s ability to retain
information from long sequences.'

1 Introduction

When reading or writing a document, it is impor-
tant to keep in memory the information previously
read or written. Humans have a remarkable ability
to remember long-term context, keeping in mem-
ory the relevant details (Carroll, 2007; Kuhbandner,
2020). Recently, transformer-based language mod-
els have achieved impressive results by increasing
the context size (Radford et al., 2018, 2019; Dai
et al., 2019; Rae et al., 2019; Brown et al., 2020).
However, while humans process information se-
quentially, updating their memories continuously,
and recurrent neural networks (RNNs) update a
single memory vector during time, transformers do
not — they exhaustively query every representation
associated to the past events. Thus, the amount

"The code is available at https://github.com/
deep-spin/infinite-former.

andre.t.martins@tecnico.ulisboa.pt.

of computation they need to perform grows with
the length of the context, and, consequently, trans-
formers have computational limitations about how
much information can fit into memory. For exam-
ple, a vanilla transformer requires quadratic time to
process an input sequence and linear time to attend
to the context when generating every new word.

Several variations have been proposed to address
this problem (Tay et al., 2020b). Some propose
using sparse attention mechanisms, either with
data-dependent patterns (Kitaev et al., 2020; Vyas
et al., 2020; Tay et al., 2020a; Roy et al., 2021;
Wang et al., 2021) or data-independent patterns
(Child et al., 2019; Beltagy et al., 2020; Zaheer
et al., 2020), reducing the self-attention complexity
(Katharopoulos et al., 2020; Choromanski et al.,
2021; Peng et al., 2021; Jaegle et al., 2021), and
caching past representations in a memory (Dai
et al., 2019; Rae et al., 2019). These models are
able to reduce the attention complexity, and, conse-
quently, to scale up to longer contexts. However, as
their complexity still depends on the context length,
they cannot deal with unbounded context.

In this paper, we propose the co-former (infinite
former; Fig. 1): a transformer model extended with
an unbounded long-term memory (LTM), which
allows the model to attend to arbitrarily long con-
texts. The key for making the LTM unbounded
is a continuous-space attention framework (Mar-
tins et al., 2020) which trades off the number
of information units that fit into memory (basis
functions) with the granularity of their represen-
tations. In this framework, the input sequence is
represented as a continuous signal, expressed as
a linear combination of N radial basis functions
(RBFs). By doing this, the oo-former’s attention
complexity is O(L? + L x N) while the vanilla
transformer’s is O(L x (L + Lym)), where L and
L1\ correspond to the transformer input size and
the long-term memory length, respectively (details
in §3.1.1). Thus, this representation comes with
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two significant advantages: (i) the context can be
represented using a number of basis functions N
smaller than the number of tokens, reducing the
attention computational cost; and (ii) N can be
fixed, making it possible to represent unbounded
context in memory, as described in §3.2 and Fig. 2,
without increasing its attention complexity. The
price, of course, is a loss in resolution: using a
smaller number of basis functions leads to lower
precision when representing the input sequence as
a continuous signal, as shown in Fig. 3.

To mitigate the problem of losing resolution, we
introduce the concept of “sticky memories” (§3.3),
in which we attribute a larger space in the LTM’s
signal to regions of the memory more frequently
accessed. This creates a notion of “permanence” in
the LTM, allowing the model to better capture long
contexts without losing the relevant information,
which takes inspiration from long-term potentiation
and plasticity in the brain (Mills et al., 2014; Bamji,
2005).

To sum up, our contributions are the following:

* We propose the co-former, in which we ex-
tend the transformer model with a continuous
long-term memory (§3.1). Since the attention
computational complexity is independent of
the context length, the co-former is able to
model long contexts.

* We propose a procedure that allows the model
to keep unbounded context in memory (§3.2).

* We introduce sticky memories, a procedure
that enforces the persistence of important in-
formation in the LTM (§3.3).

* We perform empirical comparisons in a syn-
thetic task (§4.1), which considers increas-
ingly long sequences, in language modeling
(§4.2), and in document grounded dialogue
generation (§4.3). These experiments show
the benefits of using an unbounded memory.

2 Background

2.1 Transformer

A transformer (Vaswani et al., 2017) is composed
of several layers, which encompass a multi-head
self-attention layer followed by a feed-forward
layer, along with residual connections (He et al.,
2016) and layer normalization (Ba et al., 2016).
Let us denote the input sequence as
X =[z1,...,v] € RFX¢, where L is the

input size and e is the embedding size of the
attention layer. The queries (), keys K, and values
V', to be used in the multi-head self-attention
computation are obtained by linearly projecting
the input, or the output of the previous layer, X,
for each attention head h:

Qn = XpWe Ky = Xp,Whe v, = X, WV,
(1)

where WO WHEn WVr € R9*4 are learnable
projection matrices, d = ¢/H, and H is the num-
ber of heads. Then, the context representation
Zy, € REX4, that corresponds to each attention
head h, is obtained as:

KT
7, = softmax (Qf/gh > Vi, 2)
where the softmax is performed row-wise. The
head context representations are concatenated to
obtain the final context representation Z € RE*¢:

Z=[Z,...,ZgW", 3)

where W € R®*¢ is another projection matrix
that aggregates all head’s representations.

2.2 Continuous Attention

Continuous attention mechanisms (Martins et al.,
2020) have been proposed to handle arbitrary con-
tinuous signals, where the attention probability
mass function over words is replaced by a probabil-
ity density over a signal. This allows time intervals
or compact segments to be selected.

To perform continuous attention, the first step
is to transform the discrete text sequence rep-
resented by X € R“*€ into a continuous signal.
This is done by expressing it as a linear combina-
tion of basis functions. To do so, each x;, with
i€ {1,...,L}, is first associated with a position
in an interval, ¢; € [0, 1], e.g., by setting t; = i/L.
Then, we obtain a continuous-space representation
X(t) € Re forany t € [0,1] as:

X(t)=B"u(), )
where 1(t) € RV is a vector of N RBFs, e.g.,
Qpj(t) — N(t5 Hj» Uj)v with Hj € [07 1]7 and
B € RV*¢ is a coefficient matrix. B is obtained
with multivariate ridge regression (Brown et al.,
1980) so that X (¢;) ~ x; for each i € [L], which
leads to the closed form (see App. A for details):

B'"=XTFUFFT+X)1=X"G, (5
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where F' = [{)(t1), ..., (tr)] € RNV*L packs the
basis vectors for the L locations. As G € REXN
only depends of F', it can be computed offline.

Having converted the input sequence into a con-
tinuous signal X (¢), the second step is to attend
over this signal. To do so, instead of having a
discrete probability distribution over the input se-
quence as in standard attention mechanisms (like
in Eq. 2), we have a probability density p, which
can be a Gaussian N (t; i1, 0%), where p and o
are computed by a neural component. A unimodal
Gaussian distribution encourages each attention
head to attend to a single region, as opposed to
scattering its attention through many places, and
enables tractable computation. Finally, having p,
we can compute the context vector c as:

c=E, [X(1)]. (©6)

Martins et al. (2020) introduced the continuous
attention framework for RNNs. In the following
section (§3.1), we will explain how it can be used
for transformer multi-head attention.

3 Infinite Memory Transformer

To allow the model to access long-range context,
we propose extending the vanilla transformer with
a continuous LTM, which stores the input embed-
dings and hidden states of the previous steps. We
also consider the possibility of having two mem-
ories: the LTM and a short-term memory (STM),
which consists in an extension of the transformer’s
hidden states and is attended to by the transformer’s
self-attention, as in the transformer-XL (Dai et al.,
2019). A diagram of the model is shown in Fig. 1.

3.1 Long-term Memory

For simplicity, let us first assume that the long-
term memory contains an explicit input discrete se-
quence X that consists of the past text sequence’s
input embeddings or hidden states,” depending on
the layer® (we will later extend this idea to an un-
bounded memory in §3.2).

First, we need to transform X into a continuous
approximation X (¢). We compute X () as:

X(t)=BTy(1), @
where () € RV are basis functions and coef-
ficients B € RV*¢ are computed as in Eq. 5,

2We stop the gradient with respect to the word embeddings
or hidden states before storing them in the LTM.
3Each layer of the transformer has a different LTM.

Dhyi Zr
0 i T
V(t) i qh,i
Masked Self-attention (—‘
X(t) //\/\

STM X

o OO

0 i

Figure 1: co-former’s attention diagram with sequence
of text, Xy, of size L = 2 and STM of size LgTym =
2. Circles represent input embeddings or hidden states
(depending on the layer) for head h and query 7. Both
the self-attention and the attention over the LTM are
performed in parallel for each head and query.

BT = XTG. Then, we can compute the LTM
keys, Kj, € RVN*4 and values, V}, € RV*4, for
each attention head h, as:

Ky, = ByWEe, v, =B,wW",  (8)

where W5r Ve € R4 are learnable projection
matrices.* For each query qniforie{1,..., L},
we use a parameterized network, which takes as
input the attention scores, to compute pp, ; €]0, 1]

and U,QM € Ryo:
Ky, th>>
’ 9
Vd ®

Ky qn;
2 . 1
Vd >> (10

Then, using the continuous softmax transforma-
tion (Martins et al., 2020), we obtain the probability
density pp, ; as N (¢; pon.i, 0,2177;).

Finally, having the value function V},(t) given
as Vi, (t) = V,T 4 (t), we compute the head-specific
representation vectors as in Eq. 6:

i =By, [Vi] = Vi By, [0(8)] (1)

which form the rows of matrix Zyp, € RLxd
that goes through an affine transformation,

fh,; = sigmoid (afﬁne <

aﬁ,i:softplus <afﬁne <

Zurm = [Zurams - Zuown, g | WO

The long-term representation, Zrrn, is then
summed to the transformer context vector, ZT , to
obtain the final context representation Z € R

Z = Z1 + Zyt™m, (12)
which will be the input to the feed-forward layer.

#*Parameter weights are not shared between layers.
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Figure 2: Diagram of the unbounded memory update procedure. This is performed in parallel for each embedding
dimension, and repeated throughout the input sequence. We propose two alternatives to select the positions used
for the function evaluation: linearly spaced or sticky memories.

3.1.1 Attention Complexity

As the oco-former makes use of a continuous-
space attention framework (Martins et al., 2020)
to attend over the LTM signal, its key matrix
size Kj, € RNV*? depends only on the number
of basis functions N, but not on the length
of the context being attended to. Thus, the
oo-former’s attention complexity is also indepen-
dent of the context’s length. It corresponds to
O(L x (L+ Lstm) + L x N) when also using
a short-term memory and O(L? + L x N) when
only using the LTM, both < O(L x (L + Lim)),
which would be the complexity of a vanilla trans-
former attending to the same context. For this rea-
son, the co-former can attend to arbitrarily long
contexts without increasing the amount of compu-
tation needed.

3.2 Unbounded Memory

When representing the memory as a discrete se-
quence, to extend it, we need to store the new hid-
den states in memory. In a vanilla transformer, this
is not feasible for long contexts due to the high
memory requirements. However, the oco-former
can attend to unbounded context without increasing
memory requirements by using continuous atten-
tion, as next described and shown in Fig. 2.

To be able to build an unbounded representation,
we first sample M locations in [0, 1] and evaluate
X (t) at those locations. These locations can simply
be linearly spaced, or sampled according to the
region importance, as described in §3.3.

Then, we concatenate the corresponding vectors
with the new vectors coming from the short-term
memory. For that, we first need to contract this
function by a factor of 7 € ]0, 1] to make room for

the new vectors. We do this by defining:

Xcontracted(t) _ X(t/T) — BTw(t/T)~ (13)

Then, we can evaluate X (¢) at the M locations
0<t1,to,...,ty < 71as:

Tm = BTw(tm/T)7

and define a matrix Xpas = [21, 22, . . ., ry]" €
RMxe with these vectors as rows. After that, we
concatenate this matrix with the new vectors X cw,
obtaining:

form e [M], (14)

]
X = [Xpao T Xoew | € ROSFDX (15)

Finally, we simply need to perform multivari-
ate ridge regression to compute the new coeffi-
cient matrix B € RV*¢, via BT = X TG, as in
Eq. 5. To do this, we need to associate the vec-
tors in Xp,e with positions in [0, 7] and in Xyew
with positions in |7, 1] so that we obtain the matrix
G € RIMHL)XN  We consider the vectors posi-
tions to be linearly spaced.

3.3 Sticky Memories

When extending the LTM, we evaluate its current
signal at M locations in [0, 1], as shown in Eq. 14.
These locations can be linearly spaced. However,
some regions of the signal can be more relevant
than others, and should consequently be given a
larger “memory space” in the next step LTM’s sig-
nal. To take this into account, we propose sampling
the M locations according to the signal’s relevance
at each region (see Fig. 6 in App. B). To do so,
we construct a histogram based on the attention
given to each interval of the signal on the previ-
ous step. For that, we first divide the signal into
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D linearly spaced bins {di,...,dp}. Then, we
compute the probability given to each bin, p(d;)
forj € {1,...,D}, as:

H L
pldj) o<y ) /d N(t; png, 02,) dt,  (16)
=1 3

h=11

where H is the number of attention heads and L
is the sequence length. Note that Eq. 16’s integral
can be evaluated efficiently using the erf function:

/ab/\/(t; p,o?) = % <erf<\%) . erf(\%>(1)7')

Then, we sample the M locations at which the
LTM’s signal is evaluated at, according to p. By
doing so, we evaluate the LTM’s signal at the re-
gions which were considered more relevant by the
previous step’s attention, and will, consequently
attribute a larger space of the new LTM’s signal to
the memories stored in those regions.

3.4 Implementation and Learning Details

Discrete sequences can be highly irregular and,
consequently, difficult to convert into a continuous
signal through regression. Because of this, before
applying multivariate ridge regression to convert
the discrete sequence X into a continuous signal,
we use a simple convolutional layer (with stride =
1 and width = 3) as a gate, to smooth the sequence:

X = sigmoid (CNN(X)) ® X. (18)

To train the model we use the cross entropy loss.
Having a sequence of text X of length L as input,
a language model outputs a probability distribution
of the next word p(z¢4+1 | o¢,...,7—r). Given a
corpus of 7" tokens, we train the model to minimize
its negative log likelihood:

T-1

Lain = — Y logp(xer | @, wp). (19)
=0

Additionally, in order to avoid having uniform
distributions over the LTM, we regularize the con-
tinuous attention given to the LTM, by minimizing
the Kullback-Leibler (KL) divergence, Dk, be-
tween the attention probability density, N (up, o),
and a Gaussian prior, N'(uo,00). As different
heads can attend to different regions, we set pg =
W, regularizing only the attention variance, and

get:
T-1 H
Lx1,= ZDKL (N, o) || N (pens 00))
=0 h=1
(20)

T-1 H 2

_ Zl<"g _ og<0h> - 1> .21
t=0 h=1 2\og go

Thus, the final loss that is minimized corre-
sponds to:
L = Lyrr + AkLLKL, (22)

where ki, is a hyperparameter that controls the
amount of KL regularization.

4 Experiments

To understand if the co-former is able to model
long contexts, we first performed experiments on a
synthetic task, which consists of sorting tokens by
their frequencies in a long sequence (§4.1). Then,
we performed experiments on language modeling
(§4.2) and document grounded dialogue genera-
tion (§4.3) by fine-tuning a pre-trained language
model.’

4.1 Sorting

In this task, the input consists of a sequence of
tokens sampled according to a token probability
distribution (which is not known to the system).
The goal is to generate the tokens in the decreasing
order of their frequencies in the sequence. One
example can be:

1213103132 <SEP>1320

1 occurs 4 times; 3 occurs 3 times, etc.

To understand if the long-term memory is being
effectively used and the transformer is not only
performing sorting by modeling the most recent
tokens, we design the token probability distribution
to change over time: namely, we set it as a mixture
of two distributions, p = apy + (1 — a)p1, where
the mixture coefficient o € [0, 1] is progressively
increased from O to 1 as the sequence is generated.
The vocabulary has 20 tokens and we experiment
with sequences of length 4,000, 8,000, and 16,000.

3See App.D for further experiments on language modeling.
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Figure 3: Left: Sorting task accuracy for sequences of length 4,000, 8,000, and 16,000. Right: Sorting task
accuracy vs regression mean error, when varying the number of basis functions, for sequences of length 8,000.

Baselines. We consider the transformer-XL5
(Dai et al., 2019) and the compressive transformer’
(Rae et al., 2019) as baselines. The transformer-XL
consists of a vanilla transformer (Vaswani et al.,
2017) extended with a short-term memory which is
composed of the hidden states of the previous steps.
The compressive transformer is an extension of the
transformer-XL: besides the short-term memory, it
has a compressive long-term memory which is com-
posed of the old vectors of the short-term memory,
compressed using a CNN. Both the transformer-XL
and the compressive transformer require relative
positional encodings. In contrast, there is no need
for positional encodings in the memory in our ap-
proach since the memory vectors represent basis
coefficients in a predefined continuous space.

For all models we used a transformer with 3 lay-
ers and 6 attention heads, input size L = 1,024
and memory size 2,048. For the compressive trans-
former, both memories have size 1,024. For the
oo-former, we also consider a STM of size 1,024
and a LTM with N = 1, 024 basis functions, hav-
ing the models the same computational cost. Fur-
ther details are described in App. C.1.

Results. As can be seen in the left plot of Fig. 3,
the transformer-XL achieves a slightly higher
accuracy than the compressive transformer and
oo-former for a short sequence length (4,000). This
is because the transformer-XL is able to keep al-
most the entire sequence in memory. However,
its accuracy degrades rapidly when the sequence
length is increased. Both the compressive trans-

We use the authors’ implementation available at https :
//github.com/kimiyoung/transformer—x1.
"We use our implementation of the model.

former and oco-former also lead to smaller accura-
cies when increasing the sequence length, as ex-
pected. However, this decrease is not so significant
for the co-former, which indicates that it is better
at modeling long sequences.

Regression error analysis. To better understand
the trade-off between the co-former’s memory pre-
cision and its computational efficiency, we ana-
lyze how its regression error and sorting accuracy
vary when varying the number of basis functions
used, on the sorting task with input sequences of
length 8,000. As can be seen in the right plot of
Fig. 3, the sorting accuracy is negatively correlated
with the regression error, which is positively cor-
related with the number of basis functions. It can
also be observed, that when increasing substantially
the number of basis functions the regression error
reaches a plateau and the accuracy starts to drop.
We posit that the latter is caused by the model hav-
ing a harder task at selecting the locations it should
attend to. This shows that, as expected, when in-
creasing oo-former’s efficiency or increasing the
size of context being modeled, the memory loses
precision.

4.2 Language Modeling

To understand if long-term memories can be used to
extend a pre-trained language model, we fine-tune
GPT-2 small (Radford et al., 2019) on Wikitext-
103 (Merity et al., 2017) and a subset of PG-19
(Rae et al., 2019) containing the first 2,000 books
(= 200 million tokens) of the training set. To do
so, we extend GPT-2 with a continuous long-term
memory (oco-former) and a compressed memory
(compressive transformer) with a positional bias,
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Wikitext-103 PG19 PPL F1 Rouge-1 Rouge-L. Meteor
GPT-2 16.85 33.44 GPT-2w/odoc 1943 7.82 12.18 10.17 6.10
Compressive 16.87 33.09 GPT-2 18.53 8.64 14.61 12.03 7.15
oo-former 16.64 32.61 Compressive ~ 18.02 8.78 14.74 12.14 7.29
oo-former (SM) 16.61 32.48 oo-former 18.02 8.92 15.28 12.51 7.52
oo-former (SM) 18.04 9.01 15.37 12.56 7.55

Table 1: Perplexity on Wikitext-103 and PG19.

based on Press et al. (2021).%

For these experiments, we consider transform-
ers with input size L = 512, for the compressive
transformer we use a compressed memory of size
512, and for the oco-former we consider a LTM with
N = 512 Gaussian RBFs and a memory threshold
of 2,048 tokens, having the same computational
budget for the two models. Further details and
hyperparameters are described in App. C.2.

Results. The results reported in Table 1 show that
the co-former leads to perplexity improvements on
both Wikitext-103 and PG19, while the compres-
sive transformer only has a slight improvement
on the latter. The improvements obtained by the
oo-former are larger on the PG19 dataset, which
can be justified by the nature of the datasets: books
have more long range dependencies than Wikipedia
articles (Rae et al., 2019).

4.3 Document Grounded Dialogue

In document grounded dialogue generation, besides
the dialogue history, models have access to a doc-
ument concerning the conversation’s topic. In the
CMU Document Grounded Conversation dataset
(CMU-DoG) (Zhou et al., 2018), the dialogues are
about movies and a summary of the movie is given
as the auxiliary document; the auxiliary document
is divided into parts that should be considered for
the different utterances of the dialogue. In this
paper, to evaluate the usefulness of the long-term
memories, we make this task slightly more chal-
lenging by only giving the models access to the
document before the start of the dialogue.

We fine-tune GPT-2 small (Radford et al., 2019)
using an approach based on Wolf et al. (2019).
To allow the model to keep the whole document
on memory, we extend GPT-2 with a continuous
LTM (oco-former) with N = 512 basis functions.
As baselines, we use GPT-2, with and without ac-

8The compressive transformer requires relative positional
encodings. When using only GPT-2’s absolute positional en-
codings the model gives too much attention to the compressed
memory, and, consequently, diverges. Thus, we adapted it by
using positional biases on the attention mechanism.

Table 2: Results on CMU-DoG dataset.

cess (GPT-2 w/o doc) to the auxiliary document,
with input size L = 512, and GPT-2 with a com-
pressed memory with attention positional biases
(compressive), of size 512. Further details and
hyper-parameters are stated in App. C.3.

To evaluate the models we use the metrics: per-
plexity, F1 score, Rouge-1 and Rouge-L (Lin,
2004), and Meteor (Banerjee and Lavie, 2005).

Results. As shown in Table 2, by keeping
the whole auxiliary document in memory, the
oo-former and the compressive transformer are
able to generate better utterances, according to
all metrics. While the compressive and co-former
achieve essentially the same perplexity in this task,
the co-former achieves consistently better scores
on all other metrics. Also, using sticky memo-
ries leads to slightly better results on those metrics,
which suggests that attributing a larger space in the
LTM to the most relevant tokens can be beneficial.

Analysis. In Fig. 4, we show examples of ut-
terances generated by oo-former along with the
excerpts from the LTM that receive higher atten-
tion throughout the utterances’ generation. In these
examples, we can clearly see that these excerpts
are highly pertinent to the answers being generated.
Also, in Fig. 5, we can see that the phrases which
are attributed larger spaces in the LTM, when using
sticky memories, are relevant to the conversations.

5 Related Work

Continuous attention. Martins et al. (2020) in-
troduced 1D and 2D continuous attention, using
Gaussians and truncated parabolas as densities.
They applied it to RNN-based document classi-
fication, machine translation, and visual question
answering. Several other works have also proposed
the use of (discretized) Gaussian attention for natu-
ral language processing tasks: Guo et al. (2019)
proposed a Gaussian prior to the self-attention
mechanism to bias the model to give higher atten-
tion to nearby words, and applied it to natural lan-
guage inference; You et al. (2020) proposed the use
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Cast: Macaulay Culkin as Kevin. Joe Pesci as
Harry. Daniel Stern as Marv. John Heard as Peter.
Roberts Blossom as Marley.

The film stars Macaulay Culkin as Kevin
McCallister, a boy who is mistakenly left behind
when his family flies to Paris for their Christmas
vacation. Kevin initially relishes being home alone,
but soon has to contend with two would-be
burglars played by Joe Pesci and Daniel Stern.
The film also features Catherine O'Hara and John
Heard as Kevin's parents.

Movie Name: Home Alone. Rating: Rotten
Tomatoes: 62% and average: 5.5/10, Metacritic
Score: 63/100, CinemaScore: A. Year: 1990. The
McCallister family is preparing to spend Christmas
in Paris, gathering at Peter and Kate's home
outside of Chicago on the night before their
departure. Peter and Kate's youngest son, eight-
year-old Kevin, is being ridiculed by his siblings
and cousins. A fight with his older brother, Buzz,
results in Kevin getting sent to the third floor of the
house for punishment, where he wishes that his

Previous utterance: Or maybe rent, anything is
reason to celebrate..l would like to talk about a
movie called "Home Alone"

Answer: Macaulay Culkin is the main actor and it
is a comedy.

Previous utterance: That sounds like a great
movie. Any more details?

Answer: The screenplay came out in 1990 and
has been on the air for quite a while.

Figure 4: Examples of answers generated by oco-former on a dialogue about the movie “Home Alone”. The
excerpts from the LTM that are more attended to throughout the utterances generation are highlighted on each
color, correspondingly.

Toy Story: Tom Hanks as Woody | animated buddy comedy | Toy Story was the first feature length computer animated film |
produced by Pixar | toys pretend to be lifeless whenever humans are present | focuses on the relationship between Woody and Gold |
fashioned pull string cowboy doll

La La Land: Ryan Gosling | Emma Stone as Mia | Hollywood | the city of Los Angeles | Meta critics: 93/100 | 2016 | During a gig
at a restaurant Sebastian slips into a passionate jazz | despite warning from the owner | Mia overhears the music as she passes by |
for his disobedience

Figure 5: Phrases that hold larger spaces of the LTM, when using sticky memories, for two dialogue examples (in

App. BE).

of hard-coded Gaussian attention as input-agnostic
self-attention layer for machine translation; Dubois
et al. (2020) proposed using Gaussian attention as a
location attention mechanism to improve the model
generalization to longer sequences. However, these
approaches still consider discrete sequences and
compute the attention by evaluating the Gaussian
density at the token positions. Farinhas et al. (2021)
extend continuous attention to multimodal densi-
ties, i.e., mixtures of Gaussians, and applied it to
VQA. In this paper, we opt for the simpler case,
an unimodal Gaussian, and leave sparse and multi-
modal continuous attention for future work.

Efficient transformers. Several methods have
been proposed that reduce the transformer’s at-
tention complexity, and can, consequently, model
longer contexts. Some of these do so by perform-
ing sparse attention, either by selecting pre-defined
attention patterns (Child et al., 2019; Beltagy et al.,
2020; Zaheer et al., 2020), or by learning these
patterns from data (Kitaev et al., 2020; Vyas et al.,
2020; Tay et al., 2020a; Roy et al., 2021; Wang
et al., 2021). Other works focus on directly re-
ducing the attention complexity by applying the
(reversed) kernel trick (Katharopoulos et al., 2020;
Choromanski et al., 2021; Peng et al., 2021; Jae-
gle et al., 2021). Closer to our approach are the
transformer-XL and compressive transformer mod-
els (Dai et al., 2019; Rae et al., 2019), which extend
the vanilla transformer with a bounded memory.

Memory-augmented language models. RNNs,
LSTMs, and GRUs (Hochreiter et al., 1997; Cho
et al., 2014) have the ability of keeping a memory
state of the past. However, these require backprop-
agation through time which is impractical for long
sequences. Because of this, Graves et al. (2014),
Weston et al. (2014), Joulin and Mikolov (2015)
and Grefenstette et al. (2015) proposed extending
RNNs with an external memory, while Chandar
et al. (2016) and Rae et al. (2016) proposed effi-
cient procedures to read and write from these mem-
ories, using hierarchies and sparsity. Grave et al.
(2016) and Merity et al. (2017) proposed the use
of cache-based memories which store pairs of hid-
den states and output tokens from previous steps.
The distribution over the words in the memory is
then combined with the distribution given by the
language model. More recently, Khandelwal et al.
(2019) and Yogatama et al. (2021) proposed using
nearest neighbors to retrieve words from a key-
based memory constructed based on the training
data. Similarly, Fan et al. (2021) proposed retriev-
ing sentences from a memory based on the training
data and auxiliary information. Khandelwal et al.
(2019) proposed interpolating the retrieved words
probability distributions with the probability over
the vocabulary words when generating a new word,
while Yogatama et al. (2021) and Fan et al. (2021)
proposed combining the information at the architec-
ture level. These models have the disadvantage of
needing to perform a retrieval step when generating
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each token / utterance, which can be computation-
ally expensive. These approaches are orthogonal
to the co-former’s LTM and in future work the two
can be combined.

6 Conclusions

In this paper, we proposed the co-former: a trans-
former extended with an unbounded long-term
memory. By using a continuous-space attention
framework, its attention complexity is independent
of the context’s length, which allows the model
to attend to arbitrarily long contexts while keep-
ing a fixed computation budget. By updating the
memory taking into account past usage, the model
keeps “sticky memories”, enforcing the persistence
of relevant information in memory over time. Ex-
periments on a sorting synthetic task show that oco-
former scales up to long sequences, maintaining
a high accuracy. Experiments on language model-
ing and document grounded dialogue generation
by fine-tuning a pre-trained language model have
shown improvements across several metrics.

Ethics Statement

Transformer models that attend to long contexts,
to improve their generation quality, need large
amounts of computation and memory to perform
self-attention. In this paper, we propose an exten-
sion to a transformer model that makes the attention
complexity independent of the length of the con-
text being attended to. This can lead to a reduced
number of parameters needed to model the same
context, which can, consequently, lead to gains in
efficiency and reduce energy consumption.

On the other hand, the co-former, as well as the
other transformer language models, can be used on
questionable scenarios, such as the generation of
fake news (Zellers et al., 2019), defamatory text
(Wallace et al., 2019), or other undesired content.
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