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Abstract

Pre-trained language models such as BERT
have been successful at tackling many natural
language processing tasks. However, the unsu-
pervised sub-word tokenization methods com-
monly used in these models (e.g., byte-pair
encoding – BPE) are sub-optimal at handling
morphologically rich languages. Even given
a morphological analyzer, naive sequencing
of morphemes into a standard BERT architec-
ture is inefficient at capturing morphological
compositionality and expressing word-relative
syntactic regularities. We address these chal-
lenges by proposing a simple yet effective two-
tier BERT architecture that leverages a mor-
phological analyzer and explicitly represents
morphological compositionality. Despite the
success of BERT, most of its evaluations have
been conducted on high-resource languages,
obscuring its applicability on low-resource lan-
guages. We evaluate our proposed method
on the low-resource morphologically rich
Kinyarwanda language, naming the proposed
model architecture KinyaBERT. A robust set
of experimental results reveal that KinyaBERT
outperforms solid baselines by 2% in F1 score
on a named entity recognition task and by
4.3% in average score of a machine-translated
GLUE benchmark. KinyaBERT fine-tuning
has better convergence and achieves more ro-
bust results on multiple tasks even in the pres-
ence of translation noise.1

1 Introduction

Recent advances in natural language processing
(NLP) through deep learning have been largely en-
abled by vector representations (or embeddings)
learned through language model pre-training (Ben-
gio et al., 2003; Mikolov et al., 2013; Penning-
ton et al., 2014; Bojanowski et al., 2017; Peters
et al., 2018; Devlin et al., 2019). Language mod-
els such as BERT (Devlin et al., 2019) are pre-

1Code and data are released at https://github.
com/anzeyimana/kinyabert-acl2022

trained on large text corpora and then fine-tuned
on downstream tasks, resulting in better perfor-
mance on many NLP tasks. Despite attempts to
make multilingual BERT models (Conneau et al.,
2020), research has shown that models pre-trained
on high quality monolingual corpora outperform
multilingual models pre-trained on large Inter-
net data (Scheible et al., 2020; Virtanen et al.,
2019). This has motivated many researchers to pre-
train BERT models on individual languages rather
than adopting the “language-agnostic” multilingual
models. This work is partly motivated by the same
findings, but also proposes an adaptation of the
BERT architecture to address representational chal-
lenges that are specific to morphologically rich
languages such as Kinyarwanda.

In order to handle rare words and reduce the
vocabulary size, BERT-like models use statistical
sub-word tokenization algorithms such as byte pair
encoding (BPE) (Sennrich et al., 2016). While
these techniques have been widely used in language
modeling and machine translation, they are not op-
timal for morphologically rich languages (Klein
and Tsarfaty, 2020). In fact, sub-word tokenization
methods that are solely based on surface forms, in-
cluding BPE and character-based models, cannot
capture all morphological details. This is due to
morphological alternations (Muhirwe, 2007) and
non-concatenative morphology (McCarthy, 1981)
that are often exhibited by morphologically rich
languages. For example, as shown in Table 1,
a BPE model trained on 390 million tokens of
Kinyarwanda text cannot extract the true sub-word
lexical units (i.e. morphemes) for the given words.
This work addresses the above problem by propos-
ing a language model architecture that explicitly
represents most of the input words with morpholog-
ical parses produced by a morphological analyzer.
In this architecture BPE is only used to handle
words which cannot be directly decomposed by
the morphological analyzer such as misspellings,
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Word Morphemes Monolingual BPE Multilingual BPE

twagezeyo ‘we arrived there’ tu . a . ger . ye . yo twag . ezeyo _twa . ge . ze . yo
ndabyizeye ‘I hope so’ n . ra . bi . izer . ye ndaby . izeye _ ndab . yiz . eye
umwarimu ‘teacher’ u . mu . arimu umwarimu _um . wari . mu

Table 1: Comparison between morphemes and BPE-produced sub-word tokens. Stems are underlined.

proper names and foreign language words.
Given the output of a morphological analyzer,

a second challenge is in how to incorporate the
produced morphemes into the model. One naive
approach is to feed the produced morphemes to a
standard transformer encoder as a single monolithic
sequence. This approach is used by Mohseni and
Tebbifakhr (2019). One problem with this method
is that mixing sub-word information and sentence-
level tokens in a single sequence does not encour-
age the model to learn the actual morphological
compositionality and express word-relative syntac-
tic regularities. We address these issues by propos-
ing a simple yet effective two-tier transformer en-
coder architecture. The first tier encodes morpho-
logical information, which is then transferred to the
second tier to encode sentence level information.
We call this new model architecture KinyaBERT
because it uses BERT’s masked language model
objective for pre-training and is evaluated on the
morphologically rich Kinyarwanda language.

This work also represents progress in low re-
source NLP. Advances in human language technol-
ogy are most often evaluated on the main languages
spoken by major economic powers such as English,
Chinese and European languages. This has exac-
erbated the language technology divide between
the highly resourced languages and the underrepre-
sented languages. It also hinders progress in NLP
research because new techniques are mostly evalu-
ated on the mainstream languages and some NLP
advances become less informed of the diversity of
the linguistic phenomena (Bender, 2019). Specif-
ically, this work provides the following research
contributions:

• A simple yet effective two-tier BERT archi-
tecture for representing morphologically rich
languages.

• New evaluation datasets for Kinyarwanda lan-
guage including a machine-translated subset
of the GLUE benchmark (Wang et al., 2019)
and a news categorization dataset.

• Experimental results which set a bench-
mark for future studies on Kinyarwanda lan-
guage understanding, and on using machine-
translated versions of the GLUE benchmark.

• Code and datasets are made publicly available
for reproducibility1.

2 Morphology-aware Language Model

Our modeling objective is to be able to express
morphological compositionality in a Transformer-
based (Vaswani et al., 2017) language model.
For morphologically rich languages such as
Kinyarwanda, a set of morphemes (typically a stem
and a set of functional affixes) combine to produce
a word with a given surface form. This requires
an alternative to the ubiquitous BPE tokenization,
through which exact sub-word lexical units (i.e.
morphemes) are used. For this purpose, we use a
morphological analyzer which takes a sentence as
input and, for every word, produces a stem, zero
or more affixes and assigns a part of speech (POS)
tag to each word. This section describes how this
morphological information is obtained and then
integrated in a two-tier transformer architecture
(Figure 1) to learn morphology-aware input repre-
sentations.

2.1 Morphological Analysis and
Part-of-Speech Tagging

Kinyarwanda, the national language of Rwanda,
is one of the major Bantu languages (Nurse and
Philippson, 2006) spoken in central and eastern
Africa. Kinyarwanda has 16 noun classes. Modi-
fiers (demonstratives, possessives, adjectives, nu-
merals) carry a class marking morpheme that
agrees with the main noun class. The verbal mor-
phology (Nzeyimana, 2020) also includes subject
and object markers that agree with the class of
the subject or object. This agreement therefore
enables users of the language to approximately dis-
ambiguate referred entities based on their classes.
We leverage this syntactic agreement property in
designing our unsupervised POS tagger.
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    V5   tu ara ha mu bon yeNP35 John

Morphological Analyser

John twarahamubonye biradutangaza

   V9   bi  ra  tu tangar y a

Sentence/Document-Level Encoder

Morphology Encoder Morphology Encoder Morphology Encoder

John bon tangar

(We were surprised to find John there)

Figure 1: KinyaBERT model architecture: Encoding of the sentence ’John twarahamusanze biradutangaza’ (We
were surprised to find John there). The morphological analyzer produces morphemes for each word and assigns
a POS tag to it. The two-tier transformer model then generates contextualized embeddings (blue vectors at the
top). The red colored embeddings correspond to the POS tags, yellow is for the stem embeddings, green is for the
variable length affixes while the purple embeddings correspond to the affix set.

Our morphological analyzer for Kinyarwanda
was built following finite-state two-level morphol-
ogy principles (Koskenniemi, 1983; Beesley and
Karttunen, 2000, 2003). For every inflectable word
type, we maintain a morphotactics model using a
directed acyclic graph (DAG) that represents the
regular sequencing of morphemes. We effectively
model all inflectable word types in Kinyarwanda
which include verbals, nouns, adjectives, posses-
sive and demonstrative pronouns, numerals and
quantifiers. The morphological analyzer also in-
cludes many hand-crafted rules for handling mor-
phographemics and other linguistic regularities of
the Kinyarwanda language. The morphological an-
alyzer was independently developed and calibrated
by native speakers as a closed source solution be-
fore the current work on language modeling. Simi-
lar to Nzeyimana (2020), we use a classifier trained
on a stemming dataset to disambiguate between
competing outputs of the morphological analyzer.
Furthermore, we improve the disambiguation qual-
ity by leveraging a POS tagger at the phrase level
so that the syntactic context can be taken into con-
sideration.

We devise an unsupervised part of speech tag-
ging algorithm which we explain here. Let
x = (x1, x2, x3, ...xn) be a sequence of tokens (e.g.
words) to be tagged with a corresponding sequence
of tags y = (y1, y2, y3, ...yn). A sample of actual
POS tags used for Kinyarwanda is given in Table 12
the Appendix. Using Bayes’ rule, the optimal tag

sequence y∗ is given by the following equation:
y∗ = argmax

y
P (y|x)

= argmax
y

P (x|y)P (y)
P (x)

= argmax
y

P (x|y)P (y)

(1)

A standard hidden Markov model (HMM) can
decompose the result of Equation 1 using first
order Markov assumption and independence as-
sumptions into P (x|y) =

∏n
t=1 P (xt|yt) and

P (y) =
∏n

t=1 P (yt|yt−1). The tag sequence y∗

can then be efficiently decoded using the Viterbi al-
gorithm (Forney, 1973). A better decoding strategy
is presented below.

Inspired by Tsuruoka and Tsujii (2005), we de-
vise a greedy heuristic for decoding y∗ using the
same first order Markov assumptions but with bidi-
rectional decoding.

First, we estimate the local emission probabili-
ties P (xt|yt) using a factored model given in the
following equation:
P (xt|yt) ∝ P̃ (xt|yt)
P̃ (xt|yt) = P̃m(xt|yt)P̃p(xt|yt)P̃a(xt|yt)

(2)

In Equation 2, P̃m(xt|yt) corresponds to the
probability/score returned by a morphological dis-
ambiguation classifier, representing the uncertainty
of the morphology of xt. P̃p(xt|yt) corresponds
to a local precedence weight between competing
POS tags. These precedence weights are man-
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ually crafted through qualitative evaluation (See
Table 12 in Appendix for examples). P̃a(xt|yt)
quantifies the local neighborhood syntactic agree-
ment between Bantu class markers. When there are
two or more agreeing class markers in neighboring
words, the tagger should be more confident of the
agreeing parts of speech. A basic agreement score
can be the number of agreeing class markers within
a window of seven words around a given candidate
xt. We manually designed a more elaborate set
of agreement rules and their weights for different
contexts. Therefore, the actual agreement score
P̃a(xt|yt) is a weighted sum of the matched agree-
ment rules. Each of the unnormalized measures P̃
in Equation 2 is mapped to the [0, 1] range using a
sigmoid function σ(z|zA, zB) given in Equation 3,
where z is the score of the measure and [zA, zB] is
its estimated active range.

σ(z|zA, zB) = [1 + exp(−8 z − zA
zB − zA

)]−8 (3)

After estimating the local emission model, we
greedily decode y∗t = argmax ytP̃ (yt|x) in de-
creasing order of P̃ (xt|yt) using a first order bidi-
rectional inference of P̃ (yt|x) as given in the fol-
lowing equation:

P̃ (yt|x) =

P̃ (xt|yt)P̃ (yt|y∗t−1, y
∗
t+1)P̃ (y

∗
t−1|x)P̃ (y∗t+1|x)

if both y∗t−1 and y∗t+1 have been decoded;
P̃ (xt|yt)P̃ (yt|y∗t−1)P̃ (y

∗
t−1|x)

if only y∗t−1 has been decoded;
P̃ (xt|yt)P̃ (yt|y∗t+1)P̃ (y

∗
t+1|x)

if only y∗t+1 has been decoded;
P̃ (xt|yt) otherwise

(4)

The first order transition measures P̃ (yt|yt−1),
P̃ (yt|yt+1) and P̃ (yt|yt−1, yt+1) are estimated us-
ing count tables computed over the entire cor-
pus by aggregating local emission marginals
P̃ (yt) =

∑
xt
P̃ (xt, yt) obtained through morpho-

logical analysis and disambiguation.

2.2 Morphology Encoding

The overall architecture of our model is depicted
in Figure 1. This is a two-tier transformer encoder
architecture made of a token-level morphology en-
coder that feeds into a sentence/document-level
encoder. The morphology encoder is made of a
small transformer encoder that is applied to each

analyzed token separately in order to extract its
morphological features. The extracted morpho-
logical features are then concatenated with the
token’s stem embedding to form the input vec-
tor fed to the sentence/document encoder. The
sentence/document encoder is made of a standard
transformer encoder as used in other BERT models.
The sentence/document encoder uses untied posi-
tion encoding with relative bias as proposed in Ke
et al. (2020).

The input to the morphology encoder is a set
of embedding vectors, three vectors relating to the
part of speech, one for the stem and one for each
affix when available. The transformer encoder op-
eration is applied to these embedding vectors with-
out any positional information. This is because
positional information at the morphology level is
inherent since no morpheme repeats and each mor-
pheme always occupies a known (i.e. fixed) slot
in the morphotactics model. The extracted mor-
phological features are four encoder output vectors
corresponding to the three POS embeddings and
one stem embedding. Vectors corresponding to
the affixes are left out since they are of variable
length and the role of the affixes in this case is to
be attended to by the stem and the POS tag so that
morphological information can be captured. The
four morphological output feature vectors are fur-
ther concatenated with another stem embedding at
the sentence level to form the input vector for the
main sentence/document encoder.

The choice of this transformer-based architec-
ture for morphology encoding is motivated by two
factors. First, Zaheer et al. (2020) has demonstrated
the importance of having “global tokens” such as
[CLS] token in BERT models. These are tokens
that attend to all other tokens in the modeled se-
quence. These “global tokens” effectively encapsu-
late some “meaning” of the encoded sequence. Sec-
ond, the POS tag and stem represent the high level
information content of a word. Therefore, having
the POS tag and stem embeddings be transformed
into morphological features is a viable option. The
POS tag and stem embeddings thus serve as the
“global tokens” at the morphology encoder level
since they attend to all other morphemes that can
be associated with them.

In order to capture subtle morphological infor-
mation, we make one of the three POS embeddings
span an affix set vocabulary that is a subset of the
all affixes power set. We form an affix set vocabu-
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lary Va that is made of the N most frequent affix
combinations in the corpus. In fact, the morpho-
logical model of the language enforces constraints
on which affixes can go together for any given part
of speech, resulting in an affix set vocabulary that
is much smaller than the power set of all affixes.
Even with limiting the affix set vocabulary Va to a
fixed size, we can still map any affix combination
to Va by dropping zero or very few affixes from
the combination. Note that the affix set embedding
still has to attend to all morphemes at the morphol-
ogy encoder level, making it adapt to the whole
morphological context. The affix set embedding
is depicted by the purple units in Figure 1 and a
sample of Va is given in Table 13 in the Appendix.

2.3 Pre-training Objective

Similar to other BERT models, we use a masked
language model objective. Specifically, 15% of all
tokens in the training set are considered for pre-
diction, of which 80% are replaced with [MASK]
tokens, 10% are replaced with random tokens and
10% are left unchanged. When prediction tokens
are replaced with [MASK] or random tokens, the
corresponding affixes are randomly omitted 70% of
the time or left in place for 30% of the time, while
the units corresponding to POS tags and affix sets
are also masked. The pre-training objective is then
to predict stems and the associated affixes for all
tokens considered for prediction using a two-layer
feed-forward module on top of the encoder output.

For the affix prediction task, we face a multi-
label classification problem where for each predic-
tion token, we predict a variable number of affixes.
In our experiments, we tried two methods. For one,
we use the Kullback–Leibler (KL) divergence2 loss
function to solve a regression task of predicting the
N -length affix distribution vector. For this case,
we use a target affix probability vector at ∈ RN in
which each target affix index is assigned 1

m proba-
bility and 0 probability for non-target affixes. Here
m is the number of affixes in the word to be pre-
dicted and N is the total number of all affixes. We
call this method “Affix Distribution Regression”
(ADR) and model variant KinyaBERTADR. Alter-
natively, we use cross entropy loss and just predict
the affix set associated with the prediction word; we
call this method “Affix Set Classification” (ASC)
and the model variant KinyaBERTASC .

2https://en.wikipedia.org/wiki/
Kullback%E2%80%93Leibler_divergence

3 Experiments

In order to evaluate the proposed architecture,
we pre-train KinyaBERT (101M parameters for
KinyaBERTADR and 105M for KinyaBERTASC)
on a 2.4 GB of Kinyarwanda text along with 3 base-
line BERT models. The first baseline is a BERT
model pre-trained on the same Kinyarwanda cor-
pus and with the same position encoding (Ke et al.,
2020), same batch size and pre-training steps, but
using the standard BPE tokenization. We call this
first baseline model BERTBPE (120M parameters).
The second baseline is a similar BERT model pre-
trained on the same Kinyarwanda corpus but tok-
enized by a morphological analyzer. For this model,
the input is just a sequence of morphemes, in a sim-
ilar fashion to Mohseni and Tebbifakhr (2019). We
call this second baseline model BERTMORPHO

(127M parameters). For BERTMORPHO, we found
that predicting 30% of the tokens achieves better
results than using 15% because of the many affixes
generated. The third baseline is XLM-R (Con-
neau et al., 2020) (270M parameters) which is pre-
trained on 2.5 TB of multilingual text. We evaluate
the above models by comparing their performance
on downstream NLP tasks.

Language Kinyarwanda
Publication Period 2011 - 2021
Websites/Sources 370
Documents/Articles 840K
Sentences 16M
Tokens/Words 390M
Text size 2.4 GB

Table 2: Summary of the pre-training corpus.

3.1 Pre-training details

KinyaBERT model was implemented using Py-
torch version 1.9. The morphological analyzer and
POS tagger were implemented in a shared library
using POSIX C. Morphological parsing of the cor-
pus was performed as a pre-processing step, taking
20 hours to segment the 390M-token corpus on
an 12-core desktop machine. Pre-training was per-
formed using RTX 3090 and RTX 2080Ti desktop
GPUs. Each KinyaBERT model takes on aver-
age 22 hours to train for 1000 steps on one RTX
3090 GPU or 29 hours on one RTX 2080Ti GPU.
Baseline models (BERTBPE and BERTMORPHO)
were pre-trained on cloud tensor processing units
(TPU v3-8 devices each with 128 GB memory) us-
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ing PyTorch/XLA3 package and a TPU-optimized
fairseq toolkit (Ott et al., 2019). Pre-training on
TPU took 2.3 hours per 1000 steps. The baselines
were trained on TPU because there were no major
changes needed to the existing RoBERTA (base)
architecture implemented in fairseq and the TPU
resources were available and efficient. In all cases,
pre-training batch size was set to 2560 sequences,
with maximum 512 tokens in each sequence. The
maximum learning rates was set to 4×10−4 which
is achieved after 2000 steps and then linearly de-
cays. Our main results and ablation results were
obtained from models pre-trained for 32K steps in
all cases. Other pre-training details, model archi-
tectural dimensions and other hyper-parameters are
given in the Appendix.

3.2 Evaluation tasks

Machine translated GLUE benchmark – The
General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2019) has been
widely used to evaluate pre-trained language mod-
els. In order to assess KinyaBERT performance
on such high level language tasks, we used Google
Translate API to translate a subset of the GLUE
benchmark (MRPC, QNLI, RTE, SST-2, STS-B
and WNLI tasks) into Kinyarwanda. CoLA task
was left because it is English-specific. MNLI and
QQP tasks were also not translated because they
were too expensive to translate with Google’s com-
mercial API. While machine translation adds more
noise to the data, evaluating on this dataset is still
relevant because all models compared have to cope
with the same noise. To understand this transla-
tion noise, we also run user evaluation experiments,
whereby four volunteers proficient in both English
and Kinyarwanda evaluated a random sample of
6000 translated GLUE examples, and assigned a
score to each example on a scale from 1 to 4 (See
Table 11 in Appendix). These scores help us char-
acterize the noise in the data and contextualize our
results with regards to other GLUE evaluations.
Results on these GLUE tasks are shown in Table 3.

Named entity recognition (NER) – We use
the Kinyarwanda subset of the MasakhaNER
dataset (Adelani et al., 2021) for NER task. This
is a high quality NER dataset annotated by native
speakers for major African languages including
Kinyarwanda. The task requires predicting four
entity types: Persons (PER), Locations (LOC), Or-

3https://github.com/pytorch/xla/

ganizations (ORG), and date and time (DATE). Re-
sults on this NER task are presented in Table 4.

News Categorization Task (NEWS) – For a
document classification experiment, we collected
a set of categorized news articles from seven
major news websites that regularly publish in
Kinyarwanda. The articles were already catego-
rized, so no more manual labeling was needed.
This dataset is similar to Niyongabo et al. (2020),
but in our case, we limited the number collected
articles per category to 3000 in order to have a
more balanced label distribution (See Table 10 in
the Appendix). The final dataset contains a total of
25.7K articles spanning 12 categories and has been
split into training, validation and test sets in the
ratios of 70%, 5% and 25% respectively. Results
on this NEWS task are presented in Table 5.

For each evaluation task, we use a two-layer feed-
forward network on top of the sentence encoder as
it is typically done in other BERT models. The fine-
tuning hyper-parameters are presented in Table 14
in the Appendix.

3.3 Main results

The main results are presented in Table 3, Table 4,
and Table 5. Each result is the average of 10 in-
dependent fine-tuning runs. Each average result is
shown with the standard deviation of the 10 runs.
Except for XLM-R, all other models are pre-trained
on the same corpus (See Table 2) for 32K steps us-
ing the same hyper-parameters.

On the GLUE task, KinyaBERTASC achieves
4.3% better average score than the strongest base-
line. KinyaBERTASC also leads to more ro-
bust results on multiple tasks. It is also shown
that having just a morphological analyzer is not
enough: BERTMORPHO still under-performs even
though it uses morphological tokenization. Multi-
lingual XLM-R achieves least performance in most
cases, possibly because it was not pre-trained on
Kinyarwanda text and uses inadequate tokeniza-
tion.

On the NER task, KinyaBERTADR achieves
best performance, about 3.2% better average F1
score than the strongest baseline. One of the archi-
tectural differences between KinyaBERTADR and
KinyaBERTASC is that KinyaBERTADR uses three
POS tag embeddings while KinyaBERTASC uses
two. Assuming that POS tagging facilitates named
entity recognition, this empirical result suggests
that increasing the amount of POS tag information
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Task: MRPC QNLI RTE SST-2 STS-B WNLI
#Train examples: 3.4K 104.7K 2.5K 67.4K 5.8K 0.6K
Translation score: 2.7/4.0 2.9/4.0 3.0/4.0 2.7/4.0 3.1/4.0 2.9/4.0

Model Validation Set

XLM-R 84.2/78.3±0.8/1.0 79.0±0.3 58.4±3.2 78.7±0.6 77.7/77.8±0.7/0.6 55.4±2.0

BERTBPE 83.3/76.6±0.8/1.4 81.9±0.2 59.2±1.5 80.1±0.4 75.6/75.7±7.8/7.3 55.4±1.9

BERTMORPHO 84.3/77.4±0.6/1.1 81.6±0.2 59.2±1.5 81.6±0.5 76.8/77.0±0.8/0.7 54.2±2.5

KinyaBERTADR 87.1/82.1±0.5/0.7 81.6±0.1 61.8±1.4 81.8±0.6 79.6/79.5±0.4/0.3 54.5±2.2

KinyaBERTASC 86.6/81.3±0.5/0.7 82.3±0.3 64.3±1.4 82.4±0.5 80.0/79.9±0.5/0.5 56.2±0.8

Model Test Set

XLM-R 82.6/76.0±0.6/0.6 78.1±0.3 56.4±3.2 76.3±0.4 69.5/68.9±1.0/1.1 63.7±3.9

BERTBPE 82.8/76.2±0.6/0.8 81.1±0.3 55.6±2.8 79.1±0.4 68.9/67.8±1.8/1.7 63.4±4.1

BERTMORPHO 82.7/75.4±0.8/1.3 80.8±0.4 56.7±1.0 80.7±0.5 68.9/67.8±1.5/1.3 65.0±0.3

KinyaBERTADR 84.4/78.7±0.5/0.6 81.2±0.3 58.1±1.1 80.9±0.5 73.2/72.0±0.4/0.3 65.1±0.0

KinyaBERTASC 84.6/78.4±0.2/0.3 82.2±0.6 58.8±0.7 81.4±0.6 74.5/73.5±0.2/0.2 65.0±0.2

Table 3: Performance results on the machine translated GLUE benchmark (Wang et al., 2019). The translation
score is the sample average translation quality score assigned by volunteers. For MRPC, we report accuracy and
F1. For STS-B, we report Pearson and Spearman correlations. For all others, we report accuracy. The best results
are shown in bold while equal top results are underlined.

Task: NER
#Train examples: 2.1K

Model Validation Set Test Set

XLM-R 80.3±1.0 71.8±1.5

BERTBPE 83.4±0.9 74.8±0.8

BERTMORPHO 83.2±0.9 72.8±0.9

KinyaBERTADR 87.1±0.8 77.2±1.0

KinyaBERTASC 86.2±0.4 76.3±0.5

Table 4: Micro average F1 scores on Kinyarwanda
NER task (Adelani et al., 2021).

Task: NEWS
#Train examples: 18.0K

Model Validation Set Test Set

XLM-R 83.8±0.3 84.0±0.2

BERTBPE 87.6±0.4 88.3±0.3

BERTMORPHO 86.9±0.4 86.9±0.3

KinyaBERTADR 88.8±0.3 88.0±0.3

KinyaBERTASC 88.4±0.3 88.0±0.2

Table 5: Accuracy results on Kinyarwanda NEWS cat-
egorization task.

in the model, possibly through diversification (i.e.
multiple POS tag embedding vectors per word),
can lead to better NER performance.

The NEWS categorization task resulted in dif-
fering performances between validation and test

sets. This may be a result that solving such task
does not require high level language modeling but
rather depends on spotting few keywords. Previous
research on a similar task (Niyongabo et al., 2020)
has shown that simple classifiers based on TF-IDF
features suffice to achieve best performance.

The morphological analyzer and POS tagger in-
herently have some level of noise because they do
not always perform with perfect accuracy. While
we did not have a simple way of assessing the im-
pact of this noise in this work, we can logically
expect that the lower the noise the better the results
could be. Improving the morphological analyzer
and POS tagger and quantitatively evaluating its
accuracy is part of future work. Even though our
POS tagger uses heuristic methods and was eval-
uated mainly through qualitative exploration, we
can still see its positive impact on the pre-trained
language model. We did not use previous work
on Kinyarwanda POS tagging because it is largely
different from this work in terms of scale, tag dic-
tionary and dataset size and availability.

We plot the learning curves during fine-tuning
process of KinyaBERT and the baselines. The re-
sults in Figure 2 indicate that KinyaBERT fine-
tuning has better convergence across all tasks. Ad-
ditional results also show that positional atten-
tion (Ke et al., 2020) learned by KinyaBERT has
more uniform and smoother relative bias while
BERTBPE and BERTMORPHO have more noisy
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Figure 2: Comparison of fine-tuning loss curves between KinyaBERT and baselines on the evaluation tasks.
KinyaBERTASC achieves the best convergence in most cases, indicating better effectiveness of its model archi-
tecture and pre-training objective.

relative positional bias (See Figure 3 in Appendix).
This is possibly an indication that KinyaBERT al-
lows learning better word-relative syntactic regular-
ities. However, this aspect needs to be investigated
more systematically in future research.

While the main sentence/document encoder of
KinyaBERT is equivalent to a standard BERT
“BASE” configuration on top of a small morphology
encoder, overall, the model actually decreases the
number of parameters by more than 12% through
embedding layer savings. This is because using
morphological representation reduces the vocab-
ulary size. Using smaller embedding vectors at
the morphology encoder level also significantly re-
duces the overall number of parameters. Table 8
in Appendix shows the vocabulary sizes and pa-
rameter count of KinyaBERT in comparison to the
baselines. While the sizing of the embeddings was
done essentially to match BERT “BASE” configu-
ration, future studies can shed more light on how
different model sizes affect performance.

3.4 Ablation study
We conducted an ablation study to clarify some
of the design choices made for KinyaBERT archi-
tecture. We make variations along two axes: (i)
morphology input and (ii) pre-training task, which
gave us four variants that we pre-trained for 32K
steps and evaluated on the same downstream tasks.

• AFS→STEM+ASC: Morphological features
are captured by two POS tag and one affix
set vectors. We predict both the stem and
affix set. This corresponds to KinyaBERTASC

presented in the main results.

• POS→STEM+ADR: Morphological fea-
tures are carried by three POS tag vectors and
we predict the stem and affix probability vec-
tor. This corresponds to KinyaBERTADR.

• AVG→STEM+ADR: Morphological fea-
tures are captured by two POS tag vectors and
the pointwise average of affix hidden vectors
from the morphology encoder. We predict the
stem and affix probability vector.

• STEM→STEM: We omit the morphology
encoder and train a model with only the stem
parts without affixes and only predict the stem.

Ablation results presented in Table 6 indicate
that using affix sets for both morphology encoding
and prediction gives better results for many GLUE
tasks. The under-performance of “STEM→STEM”
on high resource tasks (QNLI and SST-2) is an indi-
cation that morphological information from affixes
is important. However, the utility of this informa-
tion depends on the task as we see mixed results on
other tasks.

Due to a large design space for a morphology-
aware language model, there are still a number of
other design choices that can be explored in future
studies. One may vary the amount of POS tag em-
beddings used, vary the size affix set vocabulary
or the dimension of the morphology encoder em-
beddings. One may also investigate the potential
of other architectures for the morphology encoder,
such as convolutional networks. Our early attempt
of using recurrent neural networks (RNNs) for the
morphology encoder was abandoned because it was
too slow to train.
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Task: MRPC QNLI RTE SST-2 STS-B WNLI NER NEWS

Morphology→Prediction Validation Set

AFS→STEM+ASC 86.6/81.3 82.3 64.3 82.4 80.0/79.9 56.2 86.2 88.4
POS→STEM+ADR 87.1/82.1 81.6 61.8 81.8 79.6/79.5 54.5 87.1 88.8
AVG→STEM+ADR 85.5/80.3 81.4 63.0 82.1 79.6/79.5 55.8 86.6 88.3
STEM→STEM 86.4/81.5 80.4 63.4 77.5 79.7/79.5 50.4 86.6 88.0

Morphology→Prediction Test Set

AFS→STEM+ASC 84.6/78.4 82.2 58.8 81.4 74.5/73.5 65.0 76.3 88.0
POS→STEM+ADR 84.4/78.7 81.2 58.1 80.9 73.2/72.0 65.1 77.2 88.0
AVG→STEM+ADR 84.0/78.2 81.7 59.4 80.7 73.6/72.6 65.0 76.9 88.2
STEM→STEM 84.2/78.6 80.3 59.8 77.5 73.3/72.0 59.6 76.4 88.4

Table 6: Ablation results: each result is an average of 10 independent fine-tuning runs. Metrics, dataset sizes and
noise statistics are the same as for the main results in Table 3, Table 4 and Table 5.

4 Related Work

BERT-variant pre-trained language models (PLMs)
were initially pre-trained on monolingual high-
resource languages. Multilingual PLMs that in-
clude both high-resource and low-resource lan-
guages have also been introduced (Devlin et al.,
2019; Conneau et al., 2020; Xue et al., 2021;
Chung et al., 2020). However, it has been found
that these multilingual models are biased towards
high-resource languages and use fewer low quality
and uncleaned low-resource data (Kreutzer et al.,
2022). The included low-resource languages are
also very limited because they are mainly sourced
from Wikipedia articles, where languages with
few articles like Kinyarwanda are often left be-
hind (Joshi et al., 2020; Nekoto et al., 2020).

Joshi et al. (2020) classify the state of NLP
for Kinyarwanda as “Scraping-By”, meaning it
has been mostly excluded from previous NLP re-
search, and require the creation of dedicated re-
sources and models. Kinyarwanda has been studied
mostly in descriptive linguistics (Kimenyi, 1976,
1978a,b, 1988; Jerro, 2016). Few recent NLP works
on Kinyarwanda include Morphological Analy-
sis (Muhirwe, 2009; Nzeyimana, 2020), Text Clas-
sification (Niyongabo et al., 2020), Named Entity
Recognition (Rijhwani et al., 2020; Adelani et al.,
2021; Sälevä and Lignos, 2021), POS tagging (Gar-
rette and Baldridge, 2013; Garrette et al., 2013;
Duong et al., 2014; Fang and Cohn, 2016; Carde-
nas et al., 2019), and Parsing (Sun et al., 2014;
Mielens et al., 2015). There is no prior study on
pre-trained language modeling for Kinyarwanda.

There are very few works on monolingual PLMs

for African languages. To the best of our knowl-
edge there is currently only AfriBERT (Ralethe,
2020) that has been pre-trained on Afrikaans, a
language spoken in South Africa. In this pa-
per, we aim to increase the inclusion of African
languages in NLP community by introducing a
PLM for Kinyarwanda. Differently to the previous
works (see Table 15 in Appendix) which solely pre-
trained unmodified BERT models, we propose an
improved BERT architecture for morphologically
rich languages.

Recently, there has been a research push to im-
prove sub-word tokenization by adopting character-
based models (Ma et al., 2020; Clark et al.,
2022). While these methods are promising for
the “language-agnostic” case, they are still solely
based on the surface form of words, and thus have
the same limitations as BPE when processing mor-
phologically rich languages. We leave it to future
research to empirically explore how these character-
based methods compare to morphology-aware mod-
els.

5 Conclusion

This work demonstrates the effectiveness of ex-
plicitly incorporating morphological information
in language model pre-training. The proposed two-
tier Transformer architecture allows the model to
represent morphological compositionality. Experi-
ments conducted on Kinyarwanda, a low resource
morphologically rich language, reveal significant
performance improvement on several downstream
NLP tasks when using the proposed architecture.
These findings should motivate more research into
morphology-aware language models.

5355



Acknowledgements

This work was supported with Cloud TPUs from
Google’s TPU Research Cloud (TRC) program and
Google Cloud Research Credits with the award
GCP19980904. We also thank the anonymous re-
viewers for their insightful feedback.

References
David Ifeoluwa Adelani, Jade Abbott, Graham Neu-

big, Daniel D’souza, Julia Kreutzer, Constantine
Lignos, Chester Palen-Michel, Happy Buzaaba,
Shruti Rijhwani, Sebastian Ruder, Stephen May-
hew, Israel Abebe Azime, Shamsuddeen H. Muham-
mad, Chris Chinenye Emezue, Joyce Nakatumba-
Nabende, Perez Ogayo, Aremu Anuoluwapo,
Catherine Gitau, Derguene Mbaye, Jesujoba Al-
abi, Seid Muhie Yimam, Tajuddeen Rabiu Gwad-
abe, Ignatius Ezeani, Rubungo Andre Niyongabo,
Jonathan Mukiibi, Verrah Otiende, Iroro Orife,
Davis David, Samba Ngom, Tosin Adewumi, Paul
Rayson, Mofetoluwa Adeyemi, Gerald Muriuki,
Emmanuel Anebi, Chiamaka Chukwuneke, Nkiruka
Odu, Eric Peter Wairagala, Samuel Oyerinde,
Clemencia Siro, Tobius Saul Bateesa, Temilola
Oloyede, Yvonne Wambui, Victor Akinode, Deb-
orah Nabagereka, Maurice Katusiime, Ayodele
Awokoya, Mouhamadane MBOUP, Dibora Gebrey-
ohannes, Henok Tilaye, Kelechi Nwaike, Degaga
Wolde, Abdoulaye Faye, Blessing Sibanda, Ore-
vaoghene Ahia, Bonaventure F. P. Dossou, Kelechi
Ogueji, Thierno Ibrahima DIOP, Abdoulaye Diallo,
Adewale Akinfaderin, Tendai Marengereke, and Sa-
lomey Osei. 2021. MasakhaNER: Named entity
recognition for African languages. Transactions
of the Association for Computational Linguistics,
9:1116–1131.

Fady Baly, Hazem Hajj, et al. 2020. Arabert:
Transformer-based model for arabic language under-
standing. In Proceedings of the 4th Workshop on
Open-Source Arabic Corpora and Processing Tools,
with a Shared Task on Offensive Language Detec-
tion, pages 9–15.

Kenneth R Beesley and Lauri Karttunen. 2000. Finite-
state non-concatenative morphotactics. In Proceed-
ings of the 38th Annual Meeting on Association for
Computational Linguistics, pages 191–198.

Kenneth R Beesley and Lauri Karttunen. 2003. Finite-
state morphology: Xerox tools and techniques.
CSLI, Stanford.

Emily M Bender. 2019. The# benderrule: On naming
the languages we study and why it matters. The Gra-
dient, 14.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. The journal of machine learning re-
search, 3:1137–1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

José Canete, Gabriel Chaperon, Rodrigo Fuentes, and
Jorge Pérez. 2020. Spanish pre-trained bert model
and evaluation data. PML4DC at ICLR, 2020.

Ronald Cardenas, Ying Lin, Heng Ji, and Jonathan
May. 2019. A grounded unsupervised universal part-
of-speech tagger for low-resource languages. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 2428–2439.

Branden Chan, Stefan Schweter, and Timo Möller.
2020. German’s next language model. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 6788–6796, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Hyung Won Chung, Thibault Fevry, Henry Tsai,
Melvin Johnson, and Sebastian Ruder. 2020. Re-
thinking embedding coupling in pre-trained lan-
guage models. In International Conference on
Learning Representations.

Jonathan H Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. Transactions of the Association for Computa-
tional Linguistics, 10:73–91.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Pieter Delobelle, Thomas Winters, and Bettina Berendt.
2020. RobBERT: a Dutch RoBERTa-based Lan-
guage Model. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
3255–3265, Online. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Long Duong, Trevor Cohn, Karin Verspoor, Steven
Bird, and Paul Cook. 2014. What can we get from
1000 tokens? a case study of multilingual pos tag-
ging for resource-poor languages. In Proceedings of

5356

https://doi.org/10.1162/tacl_a_00416
https://doi.org/10.1162/tacl_a_00416
https://doi.org/10.18653/v1/2020.coling-main.598
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.findings-emnlp.292
https://doi.org/10.18653/v1/2020.findings-emnlp.292


the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 886–897.

Meng Fang and Trevor Cohn. 2016. Learning when
to trust distant supervision: An application to low-
resource pos tagging using cross-lingual projection.
In Proceedings of The 20th SIGNLL Conference on
Computational Natural Language Learning, pages
178–186.

G David Forney. 1973. The viterbi algorithm. Proceed-
ings of the IEEE, 61(3):268–278.

Dan Garrette and Jason Baldridge. 2013. Learning
a part-of-speech tagger from two hours of annota-
tion. In Proceedings of the 2013 conference of the
North American chapter of the association for com-
putational linguistics: Human language technolo-
gies, pages 138–147.

Dan Garrette, Jason Mielens, and Jason Baldridge.
2013. Real-world semi-supervised learning of pos-
taggers for low-resource languages. In Proceedings
of the 51st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 583–592.

Kyle Jerro. 2016. The locative applicative and the se-
mantics of verb class in kinyarwanda. Diversity in
African languages, page 289.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The state and
fate of linguistic diversity and inclusion in the nlp
world. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6282–6293.

Guolin Ke, Di He, and Tie-Yan Liu. 2020. Rethink-
ing positional encoding in language pre-training. In
International Conference on Learning Representa-
tions.

Alexandre Kimenyi. 1976. Subjectivization rules in
kinyarwanda. In Annual Meeting of the Berkeley
Linguistics Society, volume 2, pages 258–268.

Alexandre Kimenyi. 1978a. Aspects of nam-
ing in kinyarwanda. Anthropological linguistics,
20(6):258–271.

Alexandre Kimenyi. 1978b. A relational grammar of
kinyarwanda. University of California, Publications
in Linguistics Berkeley, Cal, 91:1–248.

Alexandre Kimenyi. 1988. Passiveness in
kinyarwanda. In Passive and Voice, page 355.
John Benjamins.

Stav Klein and Reut Tsarfaty. 2020. Getting the ##life
out of living: How adequate are word-pieces for
modelling complex morphology? In Proceedings
of the 17th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology, pages 204–209, Online. Association for
Computational Linguistics.

Kimmo Koskenniemi. 1983. Two-level model for mor-
phological analysis. In IJCAI, volume 83, pages
683–685.

Fajri Koto, Afshin Rahimi, Jey Han Lau, and Timothy
Baldwin. 2020. Indolem and indobert: A bench-
mark dataset and pre-trained language model for
indonesian nlp. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 757–770.

John Koutsikakis, Ilias Chalkidis, Prodromos Malaka-
siotis, and Ion Androutsopoulos. 2020. Greek-bert:
The greeks visiting sesame street. In 11th Hellenic
Conference on Artificial Intelligence, pages 110–
117.

Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wa-
hab, Daan van Esch, Nasanbayar Ulzii-Orshikh, Al-
lahsera Tapo, Nishant Subramani, Artem Sokolov,
Claytone Sikasote, et al. 2022. Quality at a
glance: An audit of web-crawled multilingual
datasets. Transactions of the Association for Com-
putational Linguistics, 10:50–72.

Y Kuratov and M Arkhipov. 2019. Adaptation of deep
bidirectional multilingual transformers for russian
language. In Komp’juternaja Lingvistika i Intellek-
tual’nye Tehnologii, pages 333–339.

Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Max-
imin Coavoux, Benjamin Lecouteux, Alexandre Al-
lauzen, Benoit Crabbe, Laurent Besacier, and Didier
Schwab. 2020. Flaubert: Unsupervised language
model pre-training for french. In LREC.

Wentao Ma, Yiming Cui, Chenglei Si, Ting Liu, Shi-
jin Wang, and Guoping Hu. 2020. CharBERT:
Character-aware pre-trained language model. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 39–50, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Louis Martin, Benjamin Muller, Pedro Javier Or-
tiz Suárez, Yoann Dupont, Laurent Romary, Éric
de la Clergerie, Djamé Seddah, and Benoît Sagot.
2020. CamemBERT: a tasty French language model.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7203–7219, Online. Association for Computational
Linguistics.

Mihai Masala, Stefan Ruseti, and Mihai Dascalu. 2020.
Robert–a romanian bert model. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 6626–6637.

John J McCarthy. 1981. A prosodic theory of
nonconcatenative morphology. Linguistic inquiry,
12(3):373–418.

Jason Mielens, Liang Sun, and Jason Baldridge. 2015.
Parse imputation for dependency annotations. In

5357

https://doi.org/10.18653/v1/2020.sigmorphon-1.24
https://doi.org/10.18653/v1/2020.sigmorphon-1.24
https://doi.org/10.18653/v1/2020.sigmorphon-1.24
https://doi.org/10.18653/v1/2020.coling-main.4
https://doi.org/10.18653/v1/2020.coling-main.4
https://doi.org/10.18653/v1/2020.acl-main.645


Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1385–
1394.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. Advances in neural information processing sys-
tems, 26.

Mahdi Mohseni and Amirhossein Tebbifakhr. 2019.
MorphoBERT: a Persian NER system with BERT
and morphological analysis. In Proceedings of
The First International Workshop on NLP Solutions
for Under Resourced Languages (NSURL 2019) co-
located with ICNLSP 2019 - Short Papers, pages 23–
30, Trento, Italy. Association for Computational Lin-
guistics.

Jackson Muhirwe. 2007. Computational analysis of
kinyarwanda morphology: The morphological alter-
nations. International Journal of computing and
ICT Research, 1(1):85–92.

Jackson Muhirwe. 2009. Morphological analysis of
tone marked kinyarwanda text. In International
Workshop on Finite-State Methods and Natural Lan-
guage Processing, pages 48–55. Springer.

Wilhelmina Nekoto, Vukosi Marivate, Tshinondiwa
Matsila, Timi Fasubaa, Taiwo Fagbohungbe,
Solomon Oluwole Akinola, Shamsuddeen Muham-
mad, Salomon Kabongo Kabenamualu, Salomey
Osei, Freshia Sackey, Rubungo Andre Niyongabo,
Ricky Macharm, Perez Ogayo, Orevaoghene Ahia,
Musie Meressa Berhe, Mofetoluwa Adeyemi,
Masabata Mokgesi-Selinga, Lawrence Okegbemi,
Laura Martinus, Kolawole Tajudeen, Kevin Degila,
Kelechi Ogueji, Kathleen Siminyu, Julia Kreutzer,
Jason Webster, Jamiil Toure Ali, Jade Abbott,
Iroro Orife, Ignatius Ezeani, Idris Abdulkadir
Dangana, Herman Kamper, Hady Elsahar, Good-
ness Duru, Ghollah Kioko, Murhabazi Espoir,
Elan van Biljon, Daniel Whitenack, Christopher
Onyefuluchi, Chris Chinenye Emezue, Bonaventure
F. P. Dossou, Blessing Sibanda, Blessing Bassey,
Ayodele Olabiyi, Arshath Ramkilowan, Alp Öktem,
Adewale Akinfaderin, and Abdallah Bashir. 2020.
Participatory research for low-resourced machine
translation: A case study in African languages.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 2144–2160,
Online. Association for Computational Linguistics.

Dat Quoc Nguyen and Anh Tuan Nguyen. 2020.
PhoBERT: Pre-trained language models for Viet-
namese. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 1037–1042,
Online. Association for Computational Linguistics.

Rubungo Andre Niyongabo, Qu Hong, Julia Kreutzer,
and Li Huang. 2020. Kinnews and kirnews:
Benchmarking cross-lingual text classification for

kinyarwanda and kirundi. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 5507–5521.

Derek Nurse and Gérard Philippson. 2006. The bantu
languages. Routledge.

Antoine Nzeyimana. 2020. Morphological disam-
biguation from stemming data. In Proceedings
of the 28th International Conference on Compu-
tational Linguistics, pages 4649–4660, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Sello Ralethe. 2020. Adaptation of deep bidirectional
transformers for afrikaans language. In Proceed-
ings of The 12th Language Resources and Evalua-
tion Conference, pages 2475–2478.

Shruti Rijhwani, Shuyan Zhou, Graham Neubig, and
Jaime G Carbonell. 2020. Soft gazetteers for low-
resource named entity recognition. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 8118–8123.

Piotr Rybak, Robert Mroczkowski, Janusz Tracz, and
Ireneusz Gawlik. 2020. Klej: Comprehensive
benchmark for polish language understanding. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1191–
1201.

Jonne Sälevä and Constantine Lignos. 2021. Mining
wikidata for name resources for african languages.
arXiv preprint arXiv:2104.00558.

Raphael Scheible, Fabian Thomczyk, Patric Tippmann,
Victor Jaravine, and Martin Boeker. 2020. Got-
tbert: a pure german language model. arXiv preprint
arXiv:2012.02110.

5358

https://www.aclweb.org/anthology/2019.nsurl-1.4
https://www.aclweb.org/anthology/2019.nsurl-1.4
https://doi.org/10.18653/v1/2020.findings-emnlp.195
https://doi.org/10.18653/v1/2020.findings-emnlp.195
https://doi.org/10.18653/v1/2020.findings-emnlp.92
https://doi.org/10.18653/v1/2020.findings-emnlp.92
https://doi.org/10.18653/v1/2020.coling-main.409
https://doi.org/10.18653/v1/2020.coling-main.409
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202


Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Fábio Souza, Rodrigo Nogueira, and Roberto Lotufo.
2020. Bertimbau: Pretrained bert models for brazil-
ian portuguese. In Brazilian Conference on Intelli-
gent Systems, pages 403–417. Springer.

Liang Sun, Jason Mielens, and Jason Baldridge. 2014.
Parsing low-resource languages using gibbs sam-
pling for pcfgs with latent annotations. In Proceed-
ings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 290–
300.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Bidi-
rectional inference with the easiest-first strategy for
tagging sequence data. In Proceedings of Human
Language Technology Conference and Conference
on Empirical Methods in Natural Language Process-
ing, pages 467–474.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

Antti Virtanen, Jenna Kanerva, Rami Ilo, Jouni Luoma,
Juhani Luotolahti, Tapio Salakoski, Filip Ginter, and
Sampo Pyysalo. 2019. Multilingual is not enough:
Bert for finnish. arXiv preprint arXiv:1912.07076.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019.

Linting Xue, Noah Constant, Adam Roberts, Mi-
hir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A massively
multilingual pre-trained text-to-text transformer. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 483–498, Online. Association for Computa-
tional Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, et al. 2020. Big bird: Transformers for
longer sequences. Advances in Neural Information
Processing Systems, 33:17283–17297.

5359

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41


Appendix A Data Tables,
Hyper-parameters &
Additional results

Module Values

Morphology Encoder:

Number of Layers 4
Attention heads 4
Hidden Size 128
Attention head size 32
FFN inner hidden size 512
Morphological embedding size 128

Sentence/Document Encoder:

Number of Layers 12
Attention heads 12
Hidden Size 768
Attention head size 64
FFN inner hidden size 3072
Stem embedding size 256

Table 7: KinyaBERT Architectural dimensions.

Model (#Params) Vocab. Size

XLM-R (270M):
Sentence-Piece tokens 250K

BERTBPE (120M):
BPE Tokens 43K

BERTMORPHO (127M):
Morphemes & BPE Tokens 51K

KinyaBERTADR (101M):
Stems & BPE Tokens 34K
Affixes 0.3K
POS Tags 0.2K

KinyaBERTASC (105M):
Stems & BPE Tokens 34K
Affix sets 34K
Affixes 0.3K
POS Tags 0.2K

Table 8: Vocabulary sizes for embedding layers.

Hyper-parameter Values

Dropout 0.1
Attention Dropout 0.1
Warmup Steps 2K
Max Steps 200K
Weight Decay 0.01
Learning Rate Decay Linear
Peak Learning Rate 4e-4
Batch Size 2560
Optimizer LAMB
Adam ε 1e-6
Adam β1 0.90
Adam β2 0.98
Gradient Clipping 0

Table 9: Pre-training hyper-parameters

Category #Articles

entertainment 3000
sports 3000
security 3000
economy 3000
health 3000
politics 3000
religion 2020
development 1813
technology 1105
culture 994
relationships 940
people 852

Total 25724

Table 10: NEWS categorization dataset label distribu-
tion.

Score Translation quality

1 Invalid or meaningless translation
2 Invalid but not totally wrong
3 Almost valid, but not totally correct
4 Valid and correct translation

Table 11: Machine-translated GLUE benchmark scor-
ing prompt levels.
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POS Tag P̃p weight Description Example

V#000 1.8 Infinitive Verb kuvuga ‘to say’
V#001 1 Gerund or verbal noun uwavuze ‘the one who said’
V#002 1.5 Imperative verb vuga ‘say’
V#004 1.5 Continuous present verb aracyavuga ‘she is still saying’
V#005 1.5 Past tense verb yaravuze ‘she said’
V#006 1.5 Future tense verb azavuga ‘she will say’
V#010 1.5 Verb without tense mark avuga ‘saying’
N#011 1 Noun without augmment (wa)muntu ‘person’
N#012 2 Noun with augment umuntu ‘a person’
DE#013 2 Demonstrative ng- nguyu ‘this is her’
DE#020 3 Personal demonstrative wowe ‘you’
DE#021 2 Demonstrative with augment uwo ‘this (person)’
PO#025 2 Possessive +augment +owner uwawe ‘yours’
QA#026 0.5 Qualificative adjective +augment +bu ubuto ‘littleness’
QA#027 1 Qualificative adjective +augment -bu umuto ‘the little one’
QA#028 2.5 Qualificative adjective -augment muto ‘little’
QA#029 3 Qualificative adjective -augment +reduplication mutomuto ‘(kind of) little’
NU#030 2.5 Numeral babiri ‘two (people)’
OT#033 2.5 Quoting -ti bati: ‘they said:’
NP#035 2 Proper names Yohana ‘John’
DI#036 3 Digits 84
AD#037 2.5 Adverb bucece ‘silently’
VC#038 2.5 Conjunctive adverbs hanyuma ‘and then’
CO#039 2.5 Commanding expressions cyono ‘please’
CA#040 2.5 Calling expressions yewe ‘you’
QU#044 3 Questioning adverb he he ‘where’
SP#054 2.5 Spatial hakurya ‘over there’
TE#055 2.5 Temporal kare ‘early’
RL#056 3 Relatives masenge ‘my aunt’
PR#057 3 Prepositions ku ‘on’
OR#064 2.5 Orientations amajyaruguru ‘north’
AJ#065 2.5 Adjectives rusange ‘common’
NN#066 2.5 Nominal loanwords kopi ‘copy’
HR#067 3 Hours (saa) mbiri ‘eight o’clock’
DT#068 2.5 Date taliki ‘date’
EN#069 3 Common English terms live, like, share
IJ#070 2.5 Interjections dorere ‘see!’
CJ#071 3 Conjunctions ko ‘that’
CP#078 3 Copula ni ‘it is’
RE#079 3 Responses yego ‘yes’
UN#083 3 Measuring units metero ‘meter’
MO#084 4 Months Mutarama ‘January’
PT#085 3 Punctuations .

Table 12: Examples of POS tags used in KinyaBERT along with precedence weights P̃p(xt|yt) in Equation 2.
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Affix Set Example Surface form

V:2:ku-V:18:a ku-gend-a kugenda ‘to walk’
N:0:u-N:1:mu u-mu-ntu umuntu ‘a person’
PO:1:i i-a-cu yacu ‘our’
N:0:i-N:1:n i-n-kiko inkiko ‘courts’
PO:1:u u-a-bo wabo ‘their’
V:2:a-V:4:a-V:18:ye a-a-bon-ye yabonye ‘she saw’
DE:1:u-DE:2:u u-u-o uwo ‘that’
V:2:u-V:4:a-V:17:w-V:18:ye u-a-vug-w-ye wavuzwe ‘who was talked about’
QA:1:ki-QA:3:ki-QA:4:re ki-re-ki-re kirekire ‘tall’

Table 13: Examples of affix sets used by KinyaBERTASC ; there are 34K sets in total.

Hyperparameter MRPC QNLI RTE SST-2 STS-B WNLI NER NEWS

Peak Learning Rate 1e-5 1e-5 2e-5 1e-5 2e-5 1e-5 5e-5 1e-5
Batch Size 16 32 16 32 16 16 32 32
Learning Rate Decay Linear Linear Linear Linear Linear Linear Linear Linear
Weight Decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Max Epochs 15 15 15 15 15 15 30 15
Warmup Steps proportion 6% 6% 6% 6% 6% 6% 6% 6%
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW

Table 14: Downstream task fine-tuning hyper-parameters.

Paper Language Pre-training Positional Input
Tasks Embedding Representation

Mohseni and Tebbifakhr (2019) Persian MLM+NSP Absolute Morphemes
Kuratov and Arkhipov (2019) Russian MLM+NSP Absolute BPE
Masala et al. (2020) Romanian MLM+NSP Absolute BPE
Baly et al. (2020) Arabic WWM+NSP Absolute BPE
Koto et al. (2020) Indonesian MLM+NSP Absolute BPE
Chan et al. (2020) German WWM Absolute BPE
Delobelle et al. (2020) Dutch MLM Absolute BPE
Nguyen and Tuan Nguyen (2020) Vietnamese MLM Absolute BPE
Canete et al. (2020) Spanish WWM Absolute BPE
Rybak et al. (2020) Polish MLM Absolute BPE
Martin et al. (2020) French MLM Absolute BPE
Le et al. (2020) French MLM Absolute BPE
Koutsikakis et al. (2020) Greek MLM+NSP Absolute BPE
Souza et al. (2020) Portuguese MLM Absolute BPE
Ralethe (2020) Afrikaans MLM+NSP Absolute BPE

This work Kinyarwanda MLM: STEM+AFFIXES TUPE-R Morphemes+BPE

Table 15: Comparison between KinyaBERT and other monolingual BERT-variant PLMs. We only compare with
previous works that have been published in either journals or conferences as of August 2021. We excluded some
extremely high-resource languages such as English and Chinese. MLM: Masked language model; NSP: Next
Sentence Prediction; WWM: Whole Word Masked.
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BERTBPE ; Average non-adjacent diagonal STDEV = 0.81 for |i− j| ∈ [2, 10]

BERTMORPHO; Average non-adjacent diagonal STDEV = 0.80 for |i− j| ∈ [2, 10]

KinyaBERTADR; Average non-adjacent diagonal STDEV = 0.75 for |i− j| ∈ [2, 10]

KinyaBERTASC ; Average non-adjacent diagonal STDEV = 0.75 for |i− j| ∈ [2, 10]

Figure 3: Visualization of the positional attention bias (normalized) of the 12 attention heads. Each (i, j) attention
bias (Ke et al., 2020) indicates the positional correlations between the ith and jth words/tokens in a sentence.
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