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Abstract

In linguistics, there are two main perspectives
on negation: a semantic and a pragmatic view.
So far, research in NLP on negation has almost
exclusively adhered to the semantic view. In
this article, we adopt the pragmatic paradigm to
conduct a study of negation understanding fo-
cusing on transformer-based PLMs. Our results
differ from previous, semantics-based studies
and therefore help to contribute a more com-
prehensive – and, given the results, much more
optimistic – picture of the PLMs’ negation un-
derstanding.

1 Introduction

Transformer-Based pre-trained language models
(PLMs) have become the de facto standard in a
variety of natural language processing tasks. Based
on the original transformer architecture (Vaswani
et al., 2017), researchers have proposed a number
of extraordinarily successful architectures, such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), XLNet (Yang et al., 2019), and smaller ver-
sions such as DistilBERT (Sanh et al., 2019). Such
transformer-based models perform impressively at
standard natural language understanding (NLU)
benchmarks, often outperforming the human bench-
mark, as evinced by the GLUE and SuperGLUE
Leaderboards (Wang et al., 2018 and Wang et al.,
2019).

While it is impossible to deny the performance
of these models at such benchmarks, it is another,
particularly challenging question whether this per-
formance is driven by simple shallow heuristics
or by any real understanding of the languages that
they are processing.1 This study contributes to an-
swering this question with a focus on negation.

Answering the question is important for both
theoretical and practical reasons. On the theoreti-

1Compare the appendix, section A, for a more elaborate
sketch of the theoretical background of our concept of real
understanding.

cal side, the study contributes to a more accurate
understanding of the driving forces behind the pre-
dictions issued by PLMs. The phenomenon of
negation, being both highly semantically relevant
and having a small footprint on the syntactic sur-
face of a sentence, is ideally suited for this purpose.
For real-world applications, it is crucial to know
whether the model predicts based on simple con-
textual clues or on a real understanding of nega-
tion. For instance, for NLU applications, it makes a
substantial difference whether a certain microblog
recommends that one should “(not) get vaccinated
against covid-19”.

The question is challenging for two main rea-
sons. First, because the models’ performance is
typically strong. However, it is wrong, not cor-
rect predictions that potentially unveil underlying
heuristics. Second, as we will show, it requires
careful, linguistically conscientious construction of
the datasets to be able to draw sound conclusions
even from wrong predictions. For example, if a
model predicts “fly” in example (1), this has been
taken by most researchers as a clear indication that
the model does not understand negation, especially
if its confidence in this prediction is similar to the
confidence with which it predicts “fly” in example
(2).

(1) Birds cannot fly.

(2) Birds can fly.

In contrast, our hypothesis is that this behavior
of the models is not due to lack of negation un-
derstanding, but to a failure to, as it were, resolve
the context in samples such as (1) and (2). While
human beings automatically read sentences such
as (1) within a default context, perhaps something
like a biology class in primary school, where it
is clear that birds can fly, this does not mean that
it is never sensible or appropriate to say that they
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cannot.2 Our hypothesis is grounded in the linguis-
tic research tradition called “pragmatics”, while
virtually all research in NLP focusing on negation
understanding is based on the competing tradition
called “semantics” (for a case in point, see Kassner
and Schütze, 2020, who use samples very similar
to (1) and (2)). Semanticists tend to assume that
truth values and appropriateness of propositions
are unambiguous and context-independent. Prag-
matics, in contrast, emphasizes the importance of
context and of syntactic, prosodic and other details
to judge the appropriateness of a sentence. See
below, section 3, for more details and references.

To test our hypothesis, we construct datasets
that, while being designed to be challenging to the
models, provide a micro-context that allow us to
rule out failure to resolve context as a cause of
wrong predictions by the models.

In detail, we contribute to the investigation of
transformer-based PLMs in three ways. First, fol-
lowing the pragmatic tradition in linguistics, we
develop a novel testing approach for negation un-
derstanding. Rather than using isolated sentence-
pairs such as (2) and (1), our approach builds on
automatically creating pragmatically and stylisti-
cally sound micro-contexts. Second, by tailoring
our datasets to the individual models to be tested,
and by varying a number of possibly influencing
factors, we are able to pin down precisely the true
driving forces behind the models’ predictions. Fi-
nally, by fine-tuning the most successful models,
we gain a view towards the potential for improving
the performance with such fine-tuning.

2 Previous NLP Research on Negation

We emphasize that our study is not directly con-
nected to research on negation clue and scope de-
tection (for an overview on that research, see Khan-
delwal and Sawant, 2019). Rather, our experiments
test whether the models are able to process the
information contained in a negated sentence to pre-
dict a semantically admissible token in a following
sentence.

Hence, our research is connected to other work
that examines various aspects of transformer-based

2For instance, when observing an ostrich, somebody might
use (1) as a shorthand for “These are some birds that cannot
fly”. Furthermore, one can imagine example (1) to pop up in
multiple-choice examinations, many dialogues (“Birds cannot
fly? – Of course they can!”; “Barcelona cannot win the Cham-
pions league!” – “Oh yes, and birds cannot fly.”), fictional
literature, etc.

PLMs (the field is often called “BERTology”, tes-
tifying to the dominance of BERT-focused stud-
ies in this area). Rogers et al. (2020) provides
an overview. There are studies examining the in-
ner functional differentiation of the system’s parts,
such as Voita et al. (2019), whose findings suggest
that many of the attention heads of the original
transformer are superfluous; Kovaleva et al. (2019)
examine the functions of BERT’s attention heads
and find none that are specifically dedicated to
negations. Wiedemann et al. (2019) report state of
the art performance in word-sense disambiguation
using BERT’s contextualized word embeddings.
Forbes et al. (2019) study the models’ abilities to
learn so-called “physical commonsense”. Zhang
et al. (2021) find that large models fare better in
particular regarding common-sense reasoning (and
show little improvement over smaller models with
regard to semantic or syntactic tasks).

As we are trying to get the models to commit
mistakes that reveal underlying shallow heuristics,
our research is connected to so-called adversarial
attack or probing studies. These studies are trying
to go beyond the NLU benchmarks such as GLUE
and SuperGLUE to see whether the models achieve
their impressive performance using shallow heuris-
tics or real understanding. There are such studies
in the field of argument reasoning (Niven and Kao,
2019) and natural language inference (McCoy et al.,
2019). Geirhos et al. (2020) have proposed a gen-
eral diagnosis of the problem of shallow heuristics,
and Ribeiro et al. (2020) have urged a more com-
prehensive, multi-dimensional approach to testing
the abilities of these models instead of simply sub-
mitting them to automated benchmarks.

Furthermore, as we are studying negation by
testing whether the models are able to draw very
simple inferences, research in natural language in-
ference (NLI) is also relevant for our work. In this
regard, Gururangan et al. (2018) show that, in the
main datasets used in NLI, negated sentences are
biased towards contradiction, Wallace et al. (2019)
show that certain triggers can be inserted context-
independently and lead to a stark decline in NLI ac-
curacy, and Hossain et al. (2020) show that simply
ignoring negation does not substantially decrease
model performance in many NLI datasets. Notably,
Jeretic et al. (2020) is among the rare NLP studies
that presuppose a pragmatic background, studying
the ability of PLMs to cope with implicatures.

Of particular importance for our study are contri-
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butions by Warstadt et al. (2020), Ettinger (2020),
and Kassner and Schütze (2020). All three stud-
ies develop minimal pairs to examine the ability of
PLMs to correctly categorize a number of linguistic
phenomena, including negation. Hence, all of these
studies are squarely based on the semantic side of
the ongoing debate in linguistics between seman-
tics and pragmatics (see above, section 1, examples
(1) and (2)), and all of them find that the models
largely ignore negation, as for each minimal pair,
the predictions differ little between positive and
negated sentence; Ettinger (2020) finds slightly bet-
ter performance for more natural examples, hinting
at the relevance of pragmatics in this context.

3 Linguistics & Philosophy of Language:
Understanding Negation Between
Semantics and Pragmatics

Negation is a multi-faceted phenomenon that can
be realized in a number of ways. In the study of
negation, it is common to distinguish two very dif-
ferent approaches in linguistics and philosophy of
language: semantics and pragmatics (for a recent
discussion of the distinction, see Preyer (2018)).
The tradition of semantics has been initiated in its
modern, formal-logical form by Frege (1892). Ar-
guably the most important analysis of negation in
this semantic tradition is Russell (1905). For a re-
cent contribution in this tradition with a focus on
computability, see Moot and Retoré (2019). As
mentioned above, (section 1), semanticists often
try to context-independently assess the truth of a
proposition.

Pragmatic studies of negation understanding
have traditionally had a focus on the readings of am-
biguous negated sentences, and on systematic ways
in which conversational contexts and other non-
semantic features systematically disambiguate such
sentences (e.g., identifying types of contexts in
which example (1) is read as containing a negated
universal quantifier, as opposed to the types of con-
texts in which it is read as containing a negated
existential quantifier). Noveck (2009) provides
an overview on recent experimental-pragmatic re-
search on negation understanding. For a study with
a focus on the influence of context on human’s un-
derstanding of negation, see Kaup (2009). In his
seminal study of negation, Horn (2001, 368f.) also
discusses contextual factors, Davis (2016) contin-
ues in Horn’s footsteps.

Furthermore, according to the orthodox Gricean

version of conversational implicatures (see Davis,
2019 for an introduction, for canonical texts by
Grice see Grice, 1975, Grice and Strawson, 1956,
and Grice, 1978), one can assume that participants
follow conversational maxims, including the one
of relation. This maxim urges the participants to a
conversation to only contribute statements that are
relevant. Accordingly, merely repeating the same
assertion in a discourse would be seen as apparently
violating this maxim, and hence as calling for a
non-standard interpretation according to which the
statement is, pace first appearances, in agreement
with that maxim.

Based on this pragmatic perspective on meaning,
and on its emphasis on the importance of context in
particular, testing anybody’s negation understand-
ing abilities with minimal pairs such as examples
(1) and (2) is questionable: There are many con-
texts in which it is appropriate to say that birds
cannot fly, and these contexts might be more com-
mon than others where, say, it is appropriate to say
that birds cannot breastfeed – even if the latter, but
not the former would be considered true from a zo-
ological point of view. This pragmatic perspective
then grounds our hypothesis that it is context res-
olution, not negation understanding, that explains
the models’ performance on minimal-pairs such as
(1) and (2), which is the main evaluation method in
current research.

4 Dataset

Following our pragmatic outlook and our hypothe-
sis, we construct our datasets always using micro-
contexts to guide the models and to avoid confound-
ing inability to determine context with inability to
understand negation. Furthermore, we pay careful
attention to grammatical details that might influ-
ence prediction, and we construct our positive ex-
amples (those not containing a negation) such that
they respect the maxim of relation.

We here give the generic way how we create our
datasets. In the following section 5, we discuss the
experiment-specific details of the templates used
in each of the experiments. As we are tailoring
our datasets to each individual model, we actually
create some 12 million of potentially different test
sentences in total. We have discussed each of the
templates (43 in total) with a native speaker and
philosopher of language, Dr. David Dolby. We
detail how his review has influenced the dataset in
the appendix, section C.
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4.1 Step 1: Hand-Craft Templates
For each experiment, the first step consists in hand-
engineering suitable templates. A simple example
for the kind of template that we want to test the
models on is given by (3), together with possible
replacements for the placeholders in curly brackets.

(3) FNAME{Petra} is PROF{an architect}
who doesn’t like to ACT{sail}. However,
she does like to MASK.

In template (3), “FNAME” (its male counterpart
being “MNAME”) is a placeholder for entries in a
list of female first names to be used in the following
step, “PROF” is a placeholder for a profession, also
to be used in the next step. The ACT-placeholder
will be replaced with a verb specific to the respec-
tive name and profession as well as to the respec-
tive PLM under scrutiny. A model that understands
negation is not going to predict “sail” (or, more gen-
erally speaking, any verb taking the position of the
ACT-placeholder, what we call ACT-replacement)
to replace the MASK token. We would call such a
prediction an exactly wrong prediction.

4.2 Step 2: Fill in First Names and Professions
Once the templates such as the one given in (3)
are available, we expand each of them into 9.1k
unsaturated sentences by replacing the F/MNAME-
and PROF-Placeholders with pre-set lists of male
and female names and professions. 3

Having completed step 2, our template (3) might
have been developed into the unsaturated sentence
shown in (4). The name and profession placehold-
ers have been replaced by real names and profes-
sions; the only remaining placeholder is “ACT”.

(4) Jessica is a printer who doesn’t like to ACT.
However, Jessica does like to [MASK].

4.3 Step 3: Extract Tailored ACT-Tokens of
Specific Probability Ranks

In this third step, we replace the ACT-placeholders
with verbs that are specific not only to the given
unsaturated sentence (that is, specific to the given
sentential context and to the specific combination
of name and profession), but also to the model
under scrutiny. We achieve this by individually
extracting each model’s predictions of the desired

3We use the top 100 male and female names in the USA
between 1920 and 2019 according to the US social security
administration. See here. For the professions, we use a list of
91 common professions.

probability rank for the MASK in (5) and use it to
replace the ACT-placeholder(s) in the unsaturated
sentence at issue.

(5) Jessica is a printer and she likes to [MASK].

We run our first experiment with probability ranks
0, 50, 100, and 200. The goal of this procedure is to
control for the overall probability of the ACT-token
that the model might be tempted to repeat.

We expect that the models are more likely to
wrongly repeat a negated ACT-token if it has a low
probability rank: In this case, the model is inclined
to predict it in contexts involving the given gender,
first name, and profession; therefore, absent any un-
derstanding of negation, using an ACT-token of low
probability rank makes it likely that the model will
predict it to fill the MASK in patterns such as (3).
In contrast, the model is very unlikely to predict an
ACT-token of very high probability rank in these
contexts. As a consequence, we expect the models
to be less inclined to predict such ACT-tokens of
high probability rank. However, the very occur-
rence even of such ACT-tokens might incline some
models to predict them, despite both the overall
low probability rank and the presence of negation.

For instance, assuming that we want to use prob-
ability rank 0 to fully specify unsaturated sentence
(4) with regard to roberta-large, our method
proceeds as follows. For roberta-large, the
top three predictions to fill the MASK in (5)
are: draw (prob. 0.21), write (prob. 0.16), and
travel (prob. 0.15). Hence, we replace the ACT-
placeholder in (4) with “draw”, yielding (6). If we
were running the experiment with probability rank
200, we would adapt the probability rank of the
token used to replace the ACT-placeholder accord-
ingly.

(6) Jessica is a printer who doesn’t like to draw.
However, she does like to <mask>.

Here, we have a fully-fledged, grammatical sen-
tence with a MASK token. While “Jessica” and
“printer” have been inserted using the lists, “draw”
has been dynamically selected specific to both “Jes-
sica” and “printer” as well as to the model under
scrutiny by letting the model predict the MASK
token in (5).

Unlike minimal pairs such as (1) and (2), this
example (6) gives a minimal context: The situation
in which the prediction of the MASK-token is to
be made is one where Jessica does not like to draw.
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As a consequence, if the model predicts “draw”,
it cannot be because of lack of understanding of
context.

5 Experiments

For our experiments, we use the models provided
by Huggingface (Wolf et al., 2019). We fine-tune
the most promising models using a dataset that has
been filtered from English Wikipedia with a rather
simple regular expression, yielding 315 thousand
sentences. For details, see the appendix, section D.

We have conducted three different experiments
using the dataset creation method spelled out in the
previous section. All of our experiments obey the
basic pragmatic requirement to use micro-contexts,
we pay attention to syntactic details that might mat-
ter for prediction, and we observe the maxim of re-
lation for positive samples (requiring that we don’t
expect the models to merely repeat information).
The first experiment forms the basis, it examines
the ability of the models to correctly use informa-
tion contained in negated sentences for prediction
in a later sentence. In the second experiment, we
use three kinds of misprimes to see whether this
confuses the models, and in the final experiment,
we test whether the models are sensitive to changes
of referents. For a full list of the templates used in
all experiments, see the appendix, section B; the
scripts as well as these templates are also available
on github.4

Experiment 1 In the first experiment, we used
sentences of the form (7) and (8) to test the models’
sensitivity to negation.

(7) MNAME is PROF who doesn’t like to ACT.
However, he does like to MASK.

(8) FNAME is PROF who tries to ACT as of-
ten as possible. So, she really does like to
MASK.

Note that, with these templates, we made sure that
the negated versions have a higher subsequence
overlap than the corresponding positive versions,
as the PLMs have a reputation for reacting strongly
to such subsequences (“subsequence overlap” here
refers to the overlap in tokens between the con-
text where the ACT-token occurs and the context
where the MASK occurs, see McCoy et al. 2019).
This means that, if the results show that the models

4https://github.com/retoj/transnegpaper_acl2022pub.

predict an ACT-token to fill the MASK more of-
ten with positive than with negated sentences, this
cannot be because of the subsequence heuristic,
as following this heuristic would pull the models ’
prediction in the opposite direction. From a linguis-
tic perspective, examples such as (8) obey Grice’s
maxim of relation by introducing new information
in the second sentence.

Furthermore, we varied gender and the number
of ACT-tokens in the first sentence (ranging from
1 to 3), and we also varied the extent to which we
syntactically express the contrast in the negated
version, motivated by pragmatic attention to syn-
tactic detail. Starting from example (7), we first re-
moved the conjunction (“However”), then we also
removed the “does”, which also marks a contrast.
In the positive version, we added templates that
do not have a conjunction signaling implication
(“So”). Overall, this yields 30 different templates,
which we expanded into sentences as described
in the previous section. Then, we let the models
predict the tokens to fill the MASK.

Experiment 2 In the second experiment, we
wanted to further probe the robustness of the mod-
els’ negation understanding by adding specific mis-
primes. Examples (9), (10), and (11) illustrate the
patterns used here.

(9) MNAME is PROF who doesn’t like to
ACT. Of course, many people like to ACT.
MNAME, in contrast, likes to MASK.

(10) MNAME is PROF who doesn’t like to
ACT. Many people, but not MNAME, like
to ACT. MNAME likes to MASK.

(11) MNAME is PROF who doesn’t like to
ACT. Today is Tuesday and the Sun is
shining. MNAME likes to MASK.

By varying gender as well as the presence or ab-
sence of a contrastive conjunction (“in contrast”),
we obtained 10 templates, which we expanded and
saturated as described above.

The basic idea behind templates of the kind of (9)
and (10) is to bring to light shallow heuristics that
are based on occurrence of the verbs in the context
of the MASK to be filled. The expectation is that, if
the models do not represent any logical structures
involving negation, then the logically more explicit
patterns of the form (10) are going to be more
misleading to them than the less explicit ones of
the form (9): in the former sentences, the proper
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name appears again in the context of the activity
that is not supposed to be predicted as a filler of
the MASK. The random sentence inserted in (11),
finally, is intended to test whether the models can
transfer information contained in a negation across
an unconnected sentence (one, notably, that might
appear odd to humans as well, but which would not
lead them to forget about the negated sentence).

Experiment 3 This third experiment, finally, is
entirely dedicated to assessing whether the models
are sensitive to changes in referents. By using
templates of the form (12) (3 in total), we wanted
to see whether the models are sensitive to obvious
changes in referents.

(12) MNAME is PROF who doesn’t like to
ACT. Unlike MNAME, Cleopatra does
like to MASK.

In templates such as (12), we included gender-
incongruity and different proper names to clearly
signal that the person of the first sentence that does
not like to ACT is not the same as the Cleopatra of
the second sentence.

6 Results

In the following, we report on the results of the
experiments conducted as described in the previous
section. The key figure that we are reporting is the
percentage at which the model predicted an ACT-
replacement token (in the following: “ACT-token”),
for instance, “draw” in (6)) to fill the MASK. We
call this figure “%-ACT-Repetition”. Generally, a
high percentage of ACT-repetitions implies poor
performance with negated first sentences: these are
the exactly wrong predictions. In contrast, a high
percentage of ACT-repetitions is ok with positive
first sentences; indeed, it is often a natural comple-
tion of the sentence, given the information in the
first sentence. Furthermore, we report on results
obtained by using ACT-tokens of probability rank
0 and 50 (for information on probability ranks, see
above, section 4.3).

Finally, xlnet-large-cased performed so
poorly that it has been excluded in the display of
results in the present section. Since the predic-
tions of this model were often ungrammatical, list-
ing them along with the others would have given
a false impression of equivalence; for instance,
predicting “)” as an ACT-token in example (5)
and “,” to fill the MASK in example (6) would

not count as an exactly wrong prediction, but it
would of course be mistaken. In this sense, our ap-
proach requires that the predictions by the models
be more or less sensible and grammatical, which
all models except for this one fulfilled. However,
xlnet-large-cased’s performance is given
in detail in the appendix, section G, figure 12.

Experiment 1 Figure 1 displays the effect of
negation on prediction. The values shown are per-
centages of cases where the model predicted (one
of) the ACT-token(s) to fill the MASK in the final
sentence.

As mentioned, in general, repeating such an ac-
tivity token is correct if the activities are not in
the scope of a negation, but exactly wrong if they
are in such a scope, as in example (6). In figure
1, the red-to-reddish bars give the percentage at
which the models wrongly predicted an ACT-token
to fill the MASK, even though it was excluded by a
negation in the first sentence. The green bars show
the percentage at which the models predicted an
ACT-token that has not previously been excluded
via negation (which is perfectly fine).

In the first column of figure 1, the results
of neg-roberta-large are displayed. This
model wrongly predicts one of the ACT-tokens to
fill the MASK in roughly 8% of cases if the first
sentence is negated. The presence or absence of
contrastive signals matter little. If the first sentence
is not negated, the percentage goes up to some 52%
on average, despite the fact that the lexical over-
lap is much smaller with positive templates. This
yields a delta of 44% between negated and positive
templates. Such a high delta indicates a sensitiv-
ity of the model for negation. In contrast, if both
scores are low, they might be low simply because
the model is unable to retain any information and
hence predicts something completely unrelated to
the context, or even something ungrammatical.

It is notable that fine-tuning does show
a significant, albeit slightly unstable effect
both regarding roberta-large and regarding
bert-large-cased. Furthermore, as men-
tioned previously, the effect is much stronger with
xlnet-large, as the vanilla version was sim-
ply predicting gibberish (closing brackets, for in-
stance), while the fine-tuned version shows very
strong performance.

Figure 2 shows further results from experiment
one. We are here only showing the performance
on negated templates. This means that, gener-
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Figure 1: Percentages of prediction of ACT-token(s)
(“neg”: negated sentences, “pos”: positive sentences,
“N”: no additional markers, “d”: contrastive “does”,
“c_d” contrastive does with contrastive conjunction,
“i_d”: implicative conjunction plus “does” for empha-
sis). These predictions are ok if there is no negation in
the first sentence (greenish bars) and exactly wrong if
the first sentence is negated (red-reddish bars).

ally, an ACT-repetition is wrong here, as it has
been explicitly excluded by negation (for exam-
ple, compare (7)). Furthermore, we are show-
ing the results categorized by probability rank
of ACT-token chosen. This means that, for in-
stance, neg-roberta-large wrongly predicts
an ACT-token to fill the MASK in almost 14% of
all cases if the probability rank of the ACT-token
in question is 0, while it does so in less than 3% of
cases for the lower probability ranks.

Figure 2 clearly shows that the BERT models
(both large and base) react very strongly to high
probability ranks: neg-bert-large’s error rate
drops from almost 40% to about 2% if the prob-
ability rank of the act token is lowered from 0 to
50, 100, or 200. XLNET, in contrast (and quite sur-
prisingly), has a lower error rate with probability
rank 0 tokens than with tokens of lower probability
ranks.

Experiment 1 has also shown some differences in
performance of PLMs depending on the gender of
the templates. In particular, the RoBERTas perform
worse with male gender than with female gender.
For details, see section F.

Experiment 2 Figure 3 shows percentages of
ACT-repetition depending on the misprime or ad-
ditional sentence inserted (for the interpretation of

Figure 2: Percentages of erroneous predictions of
negated ACT-tokens by probability rank of ACT-tokens.

the Cleo-row, see below, experiment 3). Overall,
the results show that all models are confused by the
misprimes, but notably, neg-roberta-large
only really loses performance with the one ran-
dom sentence inserted. Furthermore, the results
resemble the one presented above in figure 1 as
far as the smaller models are performing worse,
with distilbert being clearly at a loss. Fine-tuned
XLNET loses much precision with the misprime
with a “but”, indicating a lack of representation of
logical structure (see above, section 5).

Experiment 3 With “Cleo”, the templates used
are such that it should be maximally clear that the
person that does not like to ACT according to the
first sentence is clearly different from the person
that does like to MASK (see (12)). And the mod-
els are very sensitive to that, as figure 3 shows.
The RoBERTas, for instance, repeat the ACT-token
with some 86% probability, regardless of the pres-
ence of a contrastive conjunction or a contrastive
“does” in the second sentence, while this figure has
not exceeded 30% for any of the misprimes with
neg-roberta-large.

7 Discussion

In the following, we first conduct a brief analysis of
the predicted tokens, then we discuss four insights
that flow from our results.

Analysis of Predicted Tokens Overall, per prob-
ability rank, each model issued 400k predictions
of activities that persons might like to do; as it
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Figure 3: Percentages of exactly wrong predictions by
inserted element (probability ranks 0 and 50): Either
a misprime (MP, see example (9)), a misprime with
a but (MP_but, see example (10)), or a random sen-
tence (1rand, see example (11)). Finally, “Cleo” refers
to the clearly different referent in the second sentence
(“Cleopatra”, see example (12)).

were, they made a guess as to what hobby a person
with a specific gender, first name, and profession
might have. Extensive inspection shows that in
the clear majority of cases, with the stark excep-
tion of xlnet-large-cased, these predictions
resulted in grammatical, sensible sentences, with
some decline in grammaticality with higher prob-
ability ranks. Notably, the insertion of a random
sentence (“Today is Tuesday and the sun is shin-
ing”) has not had any observable impact on the
semantics of predictions. For instance, it did not
lead to a higher rate of predictions of activities in-
volving the outdoors, or generally requiring good
weather.

For the runs conducted with
neg-roberta-large and tokens of probabil-
ity rank 0, the predicted tokens belong to just 108
verb types, five of which account for 57% of all
predictions: read, write, cook, dance, and sing
(read accounts for 22% alone).

Clear Sensitivity to Negation The first ba-
sic insight provided by experiment one is
thoroughly positive: With the exception of
distilbert-base-cased, all models show
sensitivity to negation (see figure 1): they are much
less inclined to ACT-repetition if the token has been
negated, even if the ACT-token is highly probable,
given the model, the gender, the first name and the

profession, and even though there is much less sub-
sequence overlap with the positive (not negated)
templates than with the negated ones. Hence, al-
most all models showed sensitivity to negation de-
spite the contrary pull exerted by several shallow
heuristics.

Note also that the models are generally not
overly sensitive to contrast-highlighting elements
in the negated sentences, but very sensitive to
implication-indicating elements in the positive sen-
tences, which, considering examples such as (8),
seems pragmatically sound: In the absence of such
an element, one might think that the first and the
second sentence in these templates have little con-
nection except for the common referent. Further-
more, note that the BERT-models perform signif-
icantly worse with patterns containing contrast-
highlighting elements. This is surprising as one
would expect that such elements would make it
easier for the models to realize that a prediction of
an ACT-token to replace the MASK is inaccurate.

These results put the pioneering findings by
Ettinger (2020), Kassner and Schütze (2020),
Warstadt et al. (2020), and Ribeiro et al. (2020)
in perspective: our study clearly shows that
pre-trained transformer-based language models
do show sensitivity to negation. In figure
1, neg-roberta-large’s tendency to repeat
verbs that replace ACT-placeholders drops by some
44% if these replacements are in the scope of a
negation. Clearly, this model does not simply ig-
nore negation.

There are two explanations for this contrast
with earlier research. The first one consists
simply in a reminder that these earlier studies
did not test models based on the RoBERTa or
XLNET architectures. Furthermore, Ribeiro et al.
(2020) only use base-sizes of the models they
test. Still, even with bert-large-cased and
bert-base-cased, the difference between pre-
vious findings and our result are stark.

This means that a second explanation is needed.
We suggest that the best candidate for such an ex-
planation is precisely our hypothesis that, in these
early studies, the models are struggling less with
negation and more with the contextualization of
the tasks: they are not unable to represent negation;
rather, they are unable to identify a default context
that rules out certain predictions ab initio.

Inferences to the best explanations are always fal-
lible (for the standard study of abductive inferences,
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see Lipton 2004): There could be another explana-
tion that we have failed to consider that explains
the difference in performance. However, given that,
we are using highly controlled, synthetic, and rel-
atively simple sentences, that we have extensively
varied syntactic structure, gender, profession, and
first name, and that we have tested a number of
misprimes, all resulting in the same basic outcome,
namely a sensibility to negation, we feel confident
that we can rule out other explanations to the de-
gree to which this is possible given current methods
in BERTology. We therefore do take our results as
providing strong support for our main hypothesis.

The Influence of Probability Ranks Further-
more, experiment one also shows that the model-
and context-specific probability rank, which was
controlled for in this experiment by a new method,
is highly relevant for prediction (see figure 2). This
effect is particularly pronounced for the BERT
models, and much less for the RoBERTas and
XLNET.

Another interesting aspect of the influence of
probability ranks is that fine-tuning seems to reduce
error rate less for highly probable tokens. Finally,
the figures also show that the big drop in error
rate occurs between probability ranks 0 and 50.
Between 50 and 200, little further reduction occurs.

Robustness Against Misprimes & Random In-
sertions We have been testing the models’ ro-
bustness against the insertion of two different
misprimes as well as a random sentence in ex-
periment 2. For results, see figure 3. These
results show a very nuanced picture. First,
neg-roberta-large is hardly disturbed by
the misprimes, with the exception of the random
sentence: its error rate doesn’t surpass 12%. In
stark contrast, neg-xlnet-large’s error rate
skyrockets with all of the misprimes inserted: it
shows an increase in error rate from 8 to 43%, and
well beyond that. The other models are somewhere
in between; notably, the BERT-models are strug-
gling most with the random sentence inserted.

As robustness against misprimes indicates de-
pendence on real understanding rather than shal-
low heuristics, these results further corroborate the
finding of experiment 1 that the best performing
models, neg-roberta-large in particular, un-
derstand negation.

Changes in reference The results of this experi-
ment are surprising when the RoBERTas and fine-

tuned XLNET are considered. All three models
repeat the ACT-token with a probability of more
than 85% if it is clear that the subject of the activity
in question is clearly distinct from the subject of
which the same activity has been negated in the first
sentence. These results indicate that the models are
clearly sensible to such changes in referents.

8 Conclusion

In this paper, we have examined the extent to which
contemporary transformer-based PLMs understand
negation. We have done so by presenting the mod-
els with tailored masked language modelling tasks
that are structured in a way that is pragmatically
sound and that ensures that the known shallow
heuristics are of no help. We have found that all
but two models are clearly sensitive to negation.
It seems justified to say that the best-performing
model understands negation, as it erroneously re-
peats a negated token in only 12% of cases even
when strong misprimes are used (with the exception
of the questionable insertion of a random sentence,
where the figure is 30%), and it shows clear sensi-
tivity to changes in reference. Our results comple-
ment and partly contrast earlier, semantics-based
studies of PLMs’ negation understanding.
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A Our Concept of Real Understanding

It is a matter of dispute which conditions are suf-
ficient to credit any being with “real” linguistic
understanding. In philosophy of mind as well as
in cognitive psychology there are two very broad
camps. On the one hand, there is a representation-
alist one that emphasizes what is going on inside
the mind or brain of the being in question (compare
Searle, 1980, 417, who argues that “causal pow-
ers equal to those of the brain” are necessary, or
Marr, 2010 [1982], whose pioneering monograph
on vision science became one of the founding doc-
uments of cognitive science). On the other hand,
there are neo-behaviorist researchers who empha-
size the importance of the being’s behavior for any
judgment on its understanding (see Glock, 2019).
This study sides with the neo-behaviorists in fo-
cusing on the behavior of the models in question
rather than on their internal going-ons. Hence, to
really understand negation, a being must be able
to react to negated sentences competently in a va-
riety of circumstances with a performance that is
comparable to what humans are capable of.

Note that the representationalists generally agree
that the neo-behaviorists requirements are neces-
sary; they just doubt that they are sufficient for real
understanding. Hence, if it should turn out that
current models do not satisfy the neo-behaviorist’s
requirement, the representationalist would agree
that, as a consequence, the models do not really
understand negation.

Furthermore, note that this question is related
to another one that Bender and Koller (2020) have
raised forcefully: What kind of relation (if any) is
expressed by meaning? Following Searle (1980),
they argue that it is a relationship between a linguis-
tic item, say a word, and something extralinguistic.
On this view, understanding negation would require
understanding the meaning of negation which, sup-
posedly, involves a word-world-relation. Continu-
ing our loosely Wittgensteinian neo-behaviorism,
we disagree: the meaning of a word is given by its
use in language (Wittgenstein, 2006/1953, § 43).
Unfortunately, at this point, we can only point to
this disagreement without properly engaging the
arguments by Bender and Koller (2020).

B Full list of Templates

In tables 1, 2, and 3, we give the full list of tem-
plates with their features by experiment. “N-ACTs”
refers to the number of activities used (that is, one,

two or three verbs that the person in question is sup-
posed to like or not to like doing), “Negtype” ex-
presses whether the template is positive or contains
a negation, “Conj” refers to the kind of conjunc-
tion used (if any), “Add. El.” specifies whether an
additional sentence between the first and the final
sentence is inserted, or whether a shift in reference
occurs (“Cleo”), and “MorF” specifies th gender of
the first names and pronouns used.

C Analysis of Stylistic Proposals

As mentioned above, section 4, we have discussed
all of the templates with a native speaker and
philosopher of language, Dr. David Dolby. He has
made the following suggestions, which we adopted
for our main experiments. In addition, we carried
out all of the experiments with the original tem-
plates as well. We here list his suggestions as well
as the effect on model performance with regard to
the six templates in total which were affected.

Proposal 1 (3 templates affected) In sentences
as the following, it was proposed to replace
“to swim, nor does she like to fish, and she also
doesn’t like to surf” with “to swim, fish, or
surf”: “Petra is an architect who doesn’t like
to swim, nor does she like to fish, and she also
doesn’t like to surf. She does like to MASK.”

Proposal 2 (2 templates affected) In sentences
as the following, it was proposed to replace
“to swim, to fish, and to surf” with “to swim,
fish, and surf”: “Petra is an architect who tries
to swim, to fish, and to surf as often as possi-
ble. So, she really does like to MASK.”

Proposal 3 (1 template affected) In sentences as
the following, it was proposed to replace “In
contrast with Peter,” with “Unlike Peter,”: “Pe-
ter is an architect who doesn’t like to swim.
In contrast with Peter, Cleopatra does like to
MASK.”

We have run all the experiments with both of
these variants, and the differences in performance
are given in table 4.

In general, it seems that slight variation in per-
formance between these variants is an indicator of
a more profound understanding of the sentences in
question (similar to a model’s robustness against
misprimes). A human evaluator would be able to
understand that predicting either swim, fish, or surf
in sentences such as the one quoted in proposal 1
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N-ACTs Negtype Conj Add. El. MorF Template

3 not contr-does None m MNAME is PROF who doesn’t like to ACT3, ACT2, or ACT1.
However, he does like to MASK.

3 not does None m MNAME is PROF who doesn’t like to ACT3, ACT2, or ACT1.
He does like to MASK.

3 not None None m MNAME is PROF who doesn’t like to ACT3, ACT2, or ACT1.
He likes to MASK.

3 None implic.-does None m MNAME is PROF who tries to ACT3, ACT2, and ACT1 as often
as possible. So, he really does like to MASK.

3 None None None m MNAME is PROF who tries to ACT3, ACT2, and ACT1 as often
as possible. He really likes to MASK.

2 not contr-does None m MNAME is PROF who doesn’t like to ACT2, nor does he like
to ACT1. However, he does like to MASK.

2 not does None m MNAME is PROF who doesn’t like to ACT2, nor does he like
to ACT1. He does like to MASK.

2 not None None m MNAME is PROF who doesn’t like to ACT2, nor does he like
to ACT1. He likes to MASK.

2 None implic.-does None m MNAME is PROF who tries to ACT2, and to ACT1 as often as
possible. So, he really does like to MASK.

2 None None None m MNAME is PROF who tries to ACT2, and to ACT1 as often as
possible. He really likes to MASK.

1 not contr None m MNAME is PROF who doesn’t like to ACT. However, he does
like to MASK.

1 not does None m MNAME is PROF who doesn’t like to ACT. He does like to
MASK.

1 not None None m MNAME is PROF who doesn’t like to ACT. He likes to MASK.
1 None implic.-does None m MNAME is PROF who tries to ACT as often as possible. So, he

really does like to MASK.
1 None None None m MNAME is PROF who tries to ACT as often as possible. He

really likes to MASK.
3 not contr-does None f FNAME is PROF who doesn’t like to ACT3, ACT2, or ACT1.

However, she does like to MASK.
3 not does None f FNAME is PROF who doesn’t like to ACT3, ACT2, or ACT1.

She does like to MASK.
3 not None None f FNAME is PROF who doesn’t like to ACT3, ACT2, or ACT1.

She likes to MASK.
3 None implic.-does None f FNAME is PROF who tries to ACT3, ACT2, and ACT1 as often

as possible. So, she really does like to MASK.
3 None None None f FNAME is PROF who tries to ACT3, ACT2, and ACT1 as often

as possible. She really likes to MASK.
2 not contr-does None f FNAME is PROF who doesn’t like to ACT2, nor does she like

to ACT1. However, she does like to MASK.
2 not does None f FNAME is PROF who doesn’t like to ACT2, nor does she like

to ACT1. She does like to MASK.
2 not None None f FNAME is PROF who doesn’t like to ACT2, nor does she like

to ACT1. She likes to MASK.
2 None implic.-does None f FNAME is PROF who tries to ACT2, and to ACT1 as often as

possible. So, she really does like to MASK.
2 None None None f FNAME is PROF who tries to ACT2, and to ACT1 as often as

possible. She really likes to MASK.
1 not contr None f FNAME is PROF who doesn’t like to ACT. However, she does

like to MASK.
1 not does None f FNAME is PROF who doesn’t like to ACT. She does like to

MASK.
1 not None None f FNAME is PROF who doesn’t like to ACT. She likes to MASK.
1 None implic.-does None f FNAME is PROF who tries to ACT as often as possible. So, she

really does like to MASK.
1 None None None f FNAME is PROF who tries to ACT as often as possible. She

really likes to MASK.

Table 1: Templates used in experiment 1.
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N-ACTs Negtype Conj Add. El. MorF Template

1 not contr-does MP-but m MNAME is PROF who doesn’t like to ACT. Many people, but
not MNAME, like to ACT. MNAME, in contrast, likes to MASK.

1 not none MP-but m MNAME is PROF who doesn’t like to ACT. Many people, but
not MNAME, like to ACT. MNAME likes to MASK.

1 not contr-does MP m MNAME is PROF who doesn’t like to ACT. Of course, many
people like to ACT. MNAME, in contrast, likes to MASK.

1 not none MP m MNAME is PROF who doesn’t like to ACT. Of course, many
people like to ACT. MNAME likes to MASK.

1 not contr-does 1rand m MNAME is PROF who doesn’t like to ACT. Today is Tuesday
and the Sun is shining. MNAME likes to MASK.

1 not contr-does MP-but f FNAME is PROF who doesn’t like to ACT. Many people, but
not FNAME, like to ACT. FNAME, in contrast, likes to MASK.

1 not none MP-but f FNAME is PROF who doesn’t like to ACT. Many people, but
not FNAME, like to ACT. FNAME likes to MASK.

1 not contr-does MP f FNAME is PROF who doesn’t like to ACT. Of course, many
people like to ACT. FNAME, in contrast, likes to MASK.

1 not none MP f FNAME is PROF who doesn’t like to ACT. Of course, many
people like to ACT. FNAME likes to MASK.

1 not contr-does 1rand f FNAME is PROF who doesn’t like to ACT. Today is Tuesday
and the Sun is shining. FNAME likes to MASK.

Table 2: Templates used in experiment 2.

N-ACTs Negtype Conj Add. El. MorF Template

1 not contr Cleo m MNAME is PROF who doesn’t like to ACT. Unlike MNAME,
Cleopatra does like to MASK.

1 not does Cleo m MNAME is PROF who doesn’t like to ACT. Cleopatra does like
to MASK.

1 not None Cleo m MNAME is PROF who doesn’t like to ACT. Cleopatra likes to
MASK.

Table 3: Templates used in experiment 3.

Model Delta Prop. 1 Delta Prop. 2 Delta Prop. 3
(3 templ. aff.) (2 templ. aff.) (1 templ. aff.)

neg-roberta-large 1.40% 1.0% 14.14%
roberta-large 1.33% 1.3% 11.54%
neg-xlnet-large 5.19% -0.4% 0.86%
neg-bert-large 10.51% 4.1% 22.31%
bert-large-cased 15.21% 6.6% 7.23%
bert-base-cased 1.08% 5.0% 3.40%
distilbert-base-cased 3.61% 5.0% 4.00%

Table 4: Difference in percentage of ACT-repetition for the templates affected, depending on whether or not Dolby’s
proposals were adopted (positive value means higher repetition without adopting Dolby’s proposals). As usual,
the average of probability ranks 0 and 50 was used. For instance, adopting proposal 1 leads to a decrease of
ACT-repetition of 1.4% for neg-roberta-large with regard to the three templates affected.

4615



is inadmissible, regardless of whether the sentence
is phrased in the slightly clumsier phrasing before
adopting Dolby’s first proposal: The difference is
in style, not in logical form.

In the specific cases at hand, it must be noted that
only proposal 1 concerns templates that logically
exclude certain predictions, while proposals 2 and
3 concern templates where certain predictions are
suggested, e.g., swim, fish and surf in the example
listed in the description of proposal 2, or swim in
the example listed in the description of proposal
3. So, the substantial differences in performance
caused by proposal 3 do not indicate that the mod-
els performed substantially worse without adopting
the proposal. It merely means that they were less
inclined to repeat the ACT-token in the sentence.

Furthermore, the results have minor impact
on the results of the experiment as a whole,
as even for the largest variation, found with
bert-large-cased, the difference concerns
only 3 out of 18 negated templates in total, imply-
ing that overall performance of the model improves
by only 2.5%.

Finally, the figures fit with the findings from
experiment 2 (see figure 3): the RoBERTas, in par-
ticular the fine-tuned version, show almost no sus-
ceptibility to these surface phenomena, whereas
bert-large-cased reacts strongly, suggest-
ing a shallower processing and less understanding
of logical structure.

D Details on Fine-Tuning
To fine-tune the models to sentences involving
negation, we use a regular expression to extract sen-
tences containing a negation token together with a
contrastive conjunction from English Wikipedia5;
the goal was to filter for sentences that, in addition
to containing a negation, also contain parts that can
only be predicted correctly if the negation is taken
into account. For instance, in sentence (13), taken
from the fine-tuning corpus, a model that has no un-
derstanding whatsoever of negation is not going to
predict a sensible token in the penultimate position
(“play”, right before “.”).

(13) He was also selected by Zimbabwe for the
2014 African Nations Championship but
didn’t play.

By filtering for such patterns, we extract 351k sen-
tences from English Wikipedia.

5See this Wikipedia entry for details.

Based on some initial exploratory
tests, we fine-tuned roberta-large,
xlnet-large-cased as well as
bert-large-cased. In view of the fine-
tuning corpora used, we label the resulting
models neg-roberta-large, neg-bert-large and
neg-xlnet-large respectively. For fine-tuning,
the scripts provided by Huggingface (Wolf et al.,
2019) were adapted. Fine-tuning took place on 4
GPUs of a DGX-2. The fine-tuned models where
then tested together with the vanilla ones in the
experiments.

The python regular expression used to extract
the sentences is the following (note that we are
filtering out sentences with character length less
than 65, as they are usually not full sentences):

re.search(’( no )|( none* )|(n’t)’,sentence) and
re.search(’rather|even|but’,sentence) and len(sentence) >64

Fine-tuning occurred with the following settings
(again taken from Huggingface):

• num_train_epochs=1,

• per_gpu_train_batch_size=64,

E Details on Experiments

The experiments were conducted on four GPUs
of a DGX-2, processing time of one template (i.e.
9.1k sentences) per model varied widely depending
on the model, from about 300 seconds for distilbert
to 1500 seconds for the fine-tuned version of xlnet.
The script used for these experiments as well as
all necessary input-files is available on github.6

The script builds on the standard scripts provided
by Huggingface, see Wolf et al. (2019). For an
illustration of the algorithm used, see algorithm 1.

F Results of Experiment 1 by Gender

Table 4 shows the results of experiments 1 and 2,
restricted to negated templates, by gender. The
RoBERTas perform slightly worse with male gen-
der than with female, as they wrongly predict an
ACT-token more often with male than with female
templates. For the remaining models, there is no
clear trend.

G Detailed Results of all models

In figures 5-12, we are giving all the re-
sults of all models, including vanilla
xlnet-large-cased, which has been

6https://github.com/retoj/transnegpaper_acl2022pub
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for MODEL in model-array do
for TEMPLATE in template-array do

for NAME in name-Array do
for PROF in prof-array do

Obtain ACT1-3 by letting
MODEL predict [MASK]
in sentences like (5)

Let MODEL predict the
[MASK] in the sentence
built from TEMPLATE,
NAME, PROF, ACT1-3.

end
end

end
end

Algorithm 1: The method used to evaluate the
models.

Figure 4: Performance in experiment 1 and 2, only
negated templates and probability ranks 0 and 50, by
gender.

excluded from the results in section 6 due to its
extremely poor performance. As the final chart
shows, the model repeats an ACT-token between
2% and 57% of cases. As a look at the prediction
shows, this is because xlnet-large-cased
often predicts ungrammatical and nonsensical
tokens such as “that” or “.” to fill the MASK both
in (5), which is used to extract the ACT-tokens of
suitable rank, and in fully specified templates such
as (6). Listing these nonsensical predictions on a
par with the grammatical predictions by the other
models would have given a false impression of
equivalence.

To increase readability, we have replaced
“contr_does” with “contr” and “implic._does” with
“implic”.
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