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Abstract

Current methods for few-shot fine-tuning of
pretrained masked language models (PLMs)
require carefully engineered prompts and
verbalizers for each new task to convert examples
into a cloze-format that the PLM can score. In
this work, we propose PERFECT, a simple and
efficient method for few-shot fine-tuning of
PLMs without relying on any such handcrafting,
which is highly effective given as few as 32
data points. PERFECT makes two key design
choices: First, we show that manually engineered
task prompts can be replaced with task-specific
adapters that enable sample-efficient fine-tuning
and reduce memory and storage costs by roughly
factors of 5 and 100, respectively. Second, instead
of using handcrafted verbalizers, we learn new
multi-token label embeddings during fine-tuning,
which are not tied to the model vocabulary and
which allow us to avoid complex auto-regressive
decoding. These embeddings are not only
learnable from limited data but also enable nearly
100x faster training and inference. Experiments
on a wide range of few shot NLP tasks demon-
strate that PERFECT, while being simple and
efficient, also outperforms existing state-of-the-
art few-shot learning methods. Our code is
publicly available at https://github.com/
facebookresearch/perfect.git.

1 Introduction

Recent methods for few-shot language model
tuning obtain impressive performance but require
careful engineering of prompts and verbalizers to
convert inputs to a cloze-format (Taylor, 1953) that
can be scored with pre-trained language models
(PLMs) (Radford et al., 2018; Radford et al.; Brown
et al., 2020; Schick and Schütze, 2021a,b). For
example, as Figure 1 shows, a sentiment classifier can
be designed by inserting the input text x in a prompt
template “x It was [MASK]” where verbalizers (e.g.,
‘great’ and ‘terrible’) are substituted for the [MASK]
to score target task labels (‘positive’ or ‘negative’).
In this paper, we show that such engineering is

[CLS] The restaurant had excellent foods. It was [MASK] [SEP]

Pretrained Language Model

Input Pattern

MLM Head
 terrible

great
Verbalizers
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Figure 1: Existing few-shot fine-tuning methods require
manual engineering to reduce new tasks to masked lan-
guage modeling. PERFECT does not rely on any handcraft-
ing, removing both patterns and verbalizers (see Figure 3).

not needed for few-shot learning and instead can
be replaced with simple methods for data-efficient
fine-tuning with as few as 32 end-task examples.

More specifically, we propose PERFECT, a
Prompt-free and Efficient paRadigm for FEw-shot
Cloze-based fine-Tuning. To remove handcrafted
patterns, PERFECT uses task-specific adapter layers
(Houlsby et al., 2019; Pfeiffer et al., 2020) (§3.1).
Freezing the underlying PLM with millions or billions
of parameters (Liu et al., 2019; Raffel et al., 2020),
and only tuning adapters with very few new param-
eters saves on memory and storage costs (§4.2), while
allowing very sample-efficient tuning (§4). It also
stabilizes the training by increasing the worst-case
performance and decreasing variance across the
choice of examples in the few shot training sets (§4.3).

To remove handcrafted verbalizers (with variable
token lengths), we introduce a new multi-token
fixed-length classifier scheme that learns task label
embeddings which are independent from the language
model vocabulary during fine-tuning (§3.2). We
show (§4) that this approach is sample efficient
and outperforms carefully engineered verbalizers
from random initialization (§4). It also allows us
to avoid previously used expensive auto-regressive
decoding schemes (Schick and Schütze, 2021b), by
leveraging prototypical networks (Snell et al., 2017)
over multiple tokens. Overall, these changes enable
up to 100x faster learning and inference (§4.2).
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PERFECT has several advantages: It avoids
engineering patterns and verbalizers for each new
task, which can be cumbersome. Recent work has
shown that even some intentionally irrelevant or
misleading prompts can perform as well as more
interpretable ones (Webson and Pavlick, 2021).
Unlike the zero-shot or extreme few-shot case, where
prompting might be essential, we argue in this paper
that all you need is tens of training examples to avoid
these challenges by adopting PERFECT or a similar
data-efficient learning method. Experiments on a
wide variety of NLP tasks demonstrate that PERFECT

outperforms state-of-the-art prompt-based methods
while being significantly more efficient in inference
and training time, storage, and memory usage (§4.2).
To the best of our knowledge, we are the first to
propose a few-shot learning method using the MLM
objective in PLMs that provide state-of-the-art results
while removing all per-task manual engineering.

2 Background

Problem formulation: We consider a general
problem of fine-tuning language models in a few-shot
setting, on a small training set with K unique classes
and N examples per class, such that the total number
of examples is |D|=N×K. Let D=∪K

k=1Dk be the
given training set, where Dk={(xi

k,y
i
k)}Ni=1 shows

the set of examples labeled with class k and yik ∈Y
is the corresponding label, where |Y| = K. We
additionally assume access to a development set with
the same size as the training data. Note that larger val-
idation sets can grant a substantial advantage (Perez
et al., 2021), and thus it is important to use a limited
validation size to be in line with the goal of few-shot
learning. Unless specified otherwise, in this work, we
use 16 training examples (N =16) and a validation
set with 16 examples, for a total of 32-shot learning.

2.1 Adapters

Recent work has shown that fine-tuning all param-
eters of PLMs with a large number of parameters
in low-resource datasets can lead to a sub-optimal
solution (Peters et al., 2019; Dodge et al., 2020). As
shown in Figure 2, Rebuffi et al. (2018) and Houlsby
et al. (2019) suggest an efficient alternative, by
inserting small task-specific modules called adapters
within layers of a PLMs. They then only train the
newly added adapters and layer normalization, while
fixing the remaining parameters of a PLM.

Each layer of a transformer model is composed
of two primary modules: a) an attention block,

Feed forward down
projection

Nonlinearity

Adapter Layer

Multi-head attention

Adapter

+

Transformer Layer

Layer norm

Feed forward

Adapter

+
Layer norm

Feed forward  
up projection

+

Figure 2: Left: Adapter integration in a PLM. Right: An
adapter architecture. Adapters are usually inserted after the
feed-forward and self-attention modules. During training,
we only optimize the green components

and b) a feed-forward block, where both modules
are followed by a skip connection. As depicted in
Figure 2, adapters are normally inserted after each
of these blocks before the skip connection.

Adapters are bottleneck architectures. By keeping
input and output dimensions the same, they introduce
no additional architectural changes. Each adapter,
A(.) ∈ RH , consists of a down-projection, D(.) ∈
RH×B, a non-linearity, such as GeLU (Hendrycks and
Gimpel, 2016), and an up-projection U(.)∈RB×H ,
where H is the dimension of input hidden states x,
and B is the bottleneck size. Formally defined as:

A(x)=U(GeLU(D(x)))+x, (1)

2.2 Prompt-based Fine-tuning

Standard Fine-tuning: In standard fine-tuning
with PLMs (Devlin et al., 2019), first a special [CLS]
token is appended to the input x, and then the PLM
maps it to a sequence of hidden representations
h = (h1, ... ,hS) with hi ∈ RH , where H is the
hidden dimension, and S is the maximum sequence
length. Then, a classifier, softmax(WTh[CLS]), using
the embedding of the classification token (h[CLS]),
is trained end-to-end for each downstream task. The
main drawback of this approach is the discrepancy
between the pre-training and fine-tuning phases since
PLMs have been trained to predict mask tokens in a
masked language modeling task (Devlin et al., 2019).

Prompt-based tuning: To address this discrepancy,
prompt-based fine-tuning (Schick and Schütze,
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2021a,b; Gao et al., 2021) formulates tasks in a cloze-
format (Taylor, 1953). This way, the model can predict
targets with a masked language modeling (MLM)
objective. For example, as shown in Figure 1, for a
sentiment classification task, inputs are converted to:

xprompt = [CLS] x . It was︸ ︷︷ ︸
pattern

[MASK] . [SEP]

Then, the PLM determines which verbalizer (e.g.,
‘great’ and ‘terrible’) is the most likely substitute for
the mask in the xprompt. This subsequently determines
the score of targets (‘positive’ or ‘negative’). In detail:

Training strategy: Let M :Y→V be a mapping
from target labels to individual words in a PLM’s
vocabulary. We refer to this mapping as verbalizers.
Then the input is converted to xprompt = T (x) by
appending a pattern and a mask token to x so that it
has the format of a masked language modeling input.
Then, the classification task is converted to a MLM
objective (Tam et al., 2021; Schick and Schütze,
2021a), and the PLM computes the probability of the
label y as:

p(y|x)=p([MASK]=M(y)|xprompt)

=
exp(W T

M(y)h[MASK])∑
v′∈Vexp(W

T
v′h[MASK])

, (2)

where h[MASK] is the last hidden representation of the
mask, and Wv shows the output embedding of the
PLM for each verbalizer v∈V. For many tasks, ver-
balizers have multiple tokens. Schick and Schütze
(2021b) extended (2) to multiple mask tokens by
adding the maximum number of mask tokens M
needed to express the outputs (verbalizers) for a task.
In that case, Schick and Schütze (2021b) computes
the probability of each class as the summation of the
log probabilities of each token in the corresponding
verbalizer, and then they add a hinge loss to ensure a
margin between the correct verbalizer and the incor-
rect ones.

Inference strategy: During inference, the model
needs to select which verbalizer to use in the given
context. Schick and Schütze (2021b) predicts the
verbalizer tokens in an autoregressive fashion. They
first trim the number of mask tokens from M to each
candidate verbalizer’s token length and compute the
probability of each mask token. They then choose
the predicted token with the highest probability and
replace the corresponding mask token. Conditioning
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Figure 3: We remove handcrafted patterns and verbalizers.
We replace patterns using task-specific adapters and design
label embeddings for the classes. We only train the green
blocks (the label embeddings, adapters, and layer norms).

on this new token, the probabilities of the remaining
mask positions are recomputed. They repeat this
autoregressive decoding until they fill all mask
positions. This inference strategy is very slow, as the
number of forward passes increases with the number
of classes and the number of verbalizer’s tokens.

This formulation obtained impressive few-shot
performance with PLMs. However, the success of this
approach heavily relies on engineering handcrafted
patterns and verbalizers. Coming up with suitable
verbalizers and patterns can be difficult (Mishra et al.,
2022b,a). Additionally, the performance is sensitive to
the wording of patterns (Zhao et al., 2021; Perez et al.,
2021; Schick and Schütze, 2021a; Jiang et al., 2020) or
to the chosen verbalizers (Webson and Pavlick, 2021).

In addition, handcrafted verbalizers cause problems
for efficient training: a) they require updating the
PLM embedding layer, causing large memory
overhead; b) fine-tuning PLMs also requires a very
small learning rate (usually 10−5), which slows
down tuning the parameters of the verbalizers;
c) modeling verbalizers as one of the tokens of
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the PLM vocabulary (perhaps unintentionally)
impacts the input representation during tuning; d)
verbalizers have variable token lengths, complicating
the implementation in a vectorized format, thereby
making it challenging to efficiently fine-tune PLMs.

3 Method

We propose PERFECT, a verbalizer and pattern free
few-shot learning method. We design PERFECT to
be close to the pre-training phase, similar to the PET
family of models (Schick and Schütze, 2021b; Gao
et al., 2021), while replacing handcrafted patterns and
verbalizers with new components that are designed
to describe the task and learn the labels. As shown
in Figure 3, we first convert each input xinput to its
masked language modeling (MLM) input containing
M mask tokens [MASK]1 with no added patterns,
denoted as xmasked = T ′

(xinput).2 PERFECT then
trains a classifier per-token and optimizes the average
multi-class hinge loss over each mask position.

Three main components play a role in the success
of PERFECT: a) a pattern-free task description, where
we use task-specific adapters to efficiently tell the
model about the given task, replacing previously
manually engineered patterns (§3.1), b) multi-token
label-embedding as an efficient mechanism to learn
the label representations, removing manually designed
verbalizers (§3.2). c) an efficient inference strategy
building on top of the idea of prototypical networks
(Snell et al., 2017) (§3.4), which replaces prior
iterative autoregressive decoding methods (Schick
and Schütze, 2021b).

As shown in Figure 3, we fix the underlying PLM
model and only optimize the new parameters that
we add (green boxes). This includes the task-specific
adapters to adapt the representations for a given task
and the multi-token label representations. We detail
each of these components below.

3.1 Pattern-Free Task Description

We use task-specific adapter layers to provide
the model with learned, implicit task descriptions.
Adapters additionally bring multiple other benefits:
a) fine-tuning all weights of PLMs with millions or
billions of parameters is sample-inefficient, and can
be unstable in low-resource settings (Dodge et al.,

1We discuss the general case with inserting multiple masks;
for some datasets this improves performance (§4.3.1).

2We insert mask tokens after the input string in single-
sentence benchmarks, and after the first sentence in the case
of sentence-pair datasets and encode both sentences as a single
input, which we found to perform the best (Appendix C).

2020); adapters allow sample-efficient fine-tuning, by
keeping the underlying PLM fixed, b) adapters reduce
the storage and memory footprints (§4.2), c) they
also increase stability and performance (§4), making
them an excellent choice for few-shot fine-tuning.
To our knowledge, this is the first approach for using
task-specific adapters to effectively and efficiently
remove patterns in few-shot learning. Experimental
results in §4 show its effectiveness compared to
handcrafted patterns and soft prompts (Li and Liang,
2021; Lester et al., 2021).

3.2 Multi-Token Label Embeddings

We freeze the weights of the PLM’s embedding
layer and introduce a separate label embedding
L∈RK×M×H , which is a multi-token label represen-
tation where M is the number of tokens representing
each label, K indicates the number of classes, H is
the input hidden dimension. Using a fixed number of
tokens M for each label, versus variable-token length
verbalizers used in prior work (Schick and Schütze,
2021a,b) substantially simplifies the implementation
and accelerates the training (§4.2).

3.3 Training PERFECT

As shown in Figure 3, we optimize label embeddings
so that the PLM predicts the correct label, and
optimize adapters to adapt the PLM for the given task.
For label embeddings, PERFECT trains a classifier
per token and optimizes the average multi-class
hinge loss over all mask positions. Given xmasked,
let h[MASK]i be the embedding of its i-th mask token
from the last layer of the PLM encoder. Additionally,
let f(.) : RH → RK be a per-token classifier that
computes the predictions by multiplying the mask
token embedding with its corresponding label
embedding. Formally defined as:

ti=f(h[MASK]i)=LT
i h[MASK]i,

where Li ∈ RK×H shows the label embedding for
the i-th mask position. Then, for each mask position,
we optimize a multi-class hinge loss between their
scores ti and labels. Formally defined as:

L(x,y,i)=
∑K

k=1,k≠ymax(0,m−tiy+tik)

K
,

where tik shows the k-th element of ti, representing
the score corresponding to class k, and m is the
margin, which we fix to the default value of m=1.
Then, the final loss is computed by averaging the loss
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over all mask tokens and training samples:

L=
1

M |D|
∑

(x,y)∈D

M∑
i=1

L(x,y,i) (3)

3.4 Inference with PERFECT

During evaluation, instead of relying on the prior
iterative autoregressive decoding schemes (Schick
and Schütze, 2021b), we classify a query point by
finding the nearest class prototype to the mask token
embeddings:

y=argmax
y∈Y

max
i∈{1,...,M}

(
exp−d(hq

i ,ciy)
)
, (4)

where d is squared euclidean distance,3 hq
i indicates

the embedding of the i-th mask position for the
query sample q, and ciy ∈ RD is the prototype
representation of the i-th mask token with class label
y, i.e., the mean embedding of i-th mask position in
all training samples with label y:

ciy=
1

|Dy|
∑
b∈Dy

hb
i , (5)

where hb
i shows the embedding of i-th mask position

for training sample b, and Dy is the training instances
with class y. This strategy closely follows prototypical
networks (Snell et al., 2017), but applied across
multiple tokens. We choose this form of inference
because prototypical networks are known to be
sample efficient and robust (Snell et al., 2017),
and because it substantially speeds up evaluation
compared to prior methods (§4.2).

4 Experiments

We conduct extensive experiments on a variety of
NLP datasets to evaluate the performance of PERFECT

and compare it with state-of-the-art few-shot learning.

Datasets: We consider 7 tasks and 12 datasets: 1)
the sentiment analysis datasets SST-2 (Socher et al.,
2013), SST-5 (Socher et al., 2013), MR (Pang and
Lee, 2005), and CR (Hu and Liu, 2004), 2) the
subjectivity classification dataset SUBJ (Pang and
Lee, 2004), 3) the question classification dataset
TREC (Voorhees and Tice, 2000), 4) the natural
language inference datasets CB (De Marneffe et al.,
2019) and RTE (Wang et al., 2019a), 5) the question
answering dataset QNLI (Rajpurkar et al., 2016), 6)
the word sense disambiguation dataset WiC (Pilehvar

3We also tried with cosine similarity but found a slight
improvement with squared Euclidean distance (Snell et al., 2017).

and Camacho-Collados, 2019), 7) the paraphrase
detection datasets MRPC (Dolan and Brockett, 2005)
and QQP.4 See datasets statistics in Appendix A.

For MR, CR, SST-5, SUBJ, and TREC, we test on
the original test sets, while for other datasets, since test
sets are not publicly available, we test on the original
validation set. We sample 16 instances per label from
the training set to form training and validation sets.

Baselines We compare with the state-of-the-art
few-shot learning of PET and fine-tuning:

PET (Schick and Schütze, 2021a,b) is the state-
of-the-art few-shot learning method that employs
carefully crafted verbalizers and patterns. We report
the best (PET-best) and average (PET-average) results
among all patterns and verbalizers.5

FINETUNE The standard fine-tuning (Devlin et al.,
2019), with adding a classifier on top of the [CLS]
token and fine-tuning all parameters.

Our method We study the performance of
PERFECT and perform an extensive ablation study
to show the effectiveness of our design choices:

PERFECT-rand We randomly initialize the label
embeddingL from a normal distributionN (0,σ)with
σ=10−4 (chosen based on validation performance,
see Appendix D) without relying on any handcrafted
patterns and verbalizers. As an ablation, we study
the following two variants:

PERFECT-init We initialize the label embedding
with the token embeddings of manually designed
verbalizers in the PLM’s vocabulary to study the
impact of engineered verbalizers.

prompt+mte To compare the impact of adapters
versus soft prompt-tuning for few-shot learning, we
append trainable continuous prompt embeddings to
the input (Lester et al., 2021). Then we only tune the
soft prompt and multi-token label embeddings (mte).

bitfit+mte Following Cai et al. (2020) and Rav-
fogel et al. (2021), we tune biases as an alternative
to adapters. We additionally tune multi-token label
embeddings.

Logan IV et al. (2021) Following Logan IV et al.
(2021), we remove patterns and tune the biases in the
PET.

Experimental details: We use the RoBERTa large
model (Liu et al., 2019) (355M parameters) as the un-
derlying PLM for all methods. We use the Hugging-
Face PyTorch implementation (Wolf et al., 2020). For

4https://quoradata.quora.com/
5For a controlled study, we use the MLM variant shown in

(2), which has been shown to perform the best (Tam et al., 2021).
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Method SST-2 CR MR SST-5 Subj TREC Avg

Single-Sentence Benchmarks

FINETUNE 81.4/70.0/4.0 80.1/72.9/4.1 77.7/66.8/4.6 39.2/34.3/2.5 90.2/84.1/1.8 87.6/75.8/3.7 76.0/67.3/3.4

PET-Average 89.7/81.0/2.4 88.4/68.8/3.0 85.9/79.0/2.1 45.9/40.3/2.4 88.1/79.6/2.4 85.0/70.6/4.5 80.5/69.9/2.8

PET-Best 89.1/81.0/2.6 88.8/85.8/1.9 86.4/82.0/1.6 46.0/41.2/2.4 88.7/84.6/1.8 85.8/70.6/4.4 80.8/74.2/2.4

Logan IV et al. (2021) 89.8/84.1/1.7 89.9/87.2/1.1 84.9/76.2/3.2 45.7/41.6/2.3 81.8/73.5/4.0 84.7/81.8/1.6 79.5/74.1/2.3

PERFECT-rand 90.7/88.2/1.2 90.0/85.5/1.4 86.3/81.4/1.6 42.7/35.1/2.9 89.1/82.8/2.1 90.6/81.6/3.2 81.6/75.8/2.1

Ablation

PERFECT-init 90.9/87.6/1.5 89.7/87.4/1.2 85.4/75.8/3.3 42.8/35.9/3.5 87.6/81.6/2.8 90.4/86.6/1.8 81.1/75.8/2.4

prompt+mte 70.6/56.0/8.3 71.0/55.8/8.2 66.6/49.6/7.3 32.2/26.5/3.2 82.7/69.6/3.9 79.6/66.8/6.5 67.1/54.0/6.2

bitfit+mte 89.5/81.7/3.0 90.1/87.8/1.0 85.6/80.5/1.9 42.3/36.8/3.3 89.1/82.4/2.4 90.4/85.0/1.4 81.2/75.7/2.2

Method CB RTE QNLI MRPC QQP WiC Avg

Sentence-Pair Benchmarks

FINETUNE 72.9/67.9/2.5 56.8/50.2/3.5 62.7/51.4/7.0 70.1/62.7/4.7 65.0/59.8/3.6 52.4/46.1/3.7 63.3/56.4/4.2

PET-Average 86.9/73.2/5.1 60.1/49.5/4.7 66.5/55.7/6.2 62.1/38.2/6.8 63.4/44.7/7.9 51.0/46.1/2.6 65.0/51.2/5.6

PET-Best 90.0/78.6/3.9 62.3/51.3/4.5 70.5/57.9/6.4 63.4/49.3/6.5 70.7/55.2/5.8 51.6/47.2/2.3 68.1/56.6/4.9

Logan IV et al. (2021) 91.0/87.5/2.7 64.4/58.5/3.9 71.2/66.5/2.6 63.9/53.7/5.3 70.4/62.7/3.4 52.4/48.4/1.8 68.9/62.9/3.3

PERFECT-rand 90.3/83.9/3.5 60.4/53.1/4.7 74.1/60.3/4.6 67.8/54.7/5.7 71.2/64.2/3.5 53.8/47.0/3.0 69.6/60.5/4.2

Ablation

PERFECT-init 87.9/75.0/4.9 60.7/52.7/4.5 72.8/56.7/6.8 65.9/56.6/6.0 71.1/65.6/3.5 51.7/46.6/2.8 68.4/58.9/4.8

prompt+mte 73.0/62.5/6.1 56.9/50.7/4.1 55.4/50.2/4.6 60.0/51.5/5.8 54.3/46.2/5.6 51.3/46.7/2.8 58.5/51.3/4.8

bitfit+mte 89.6/82.1/4.3 61.3/53.8/5.2 70.6/51.9/5.9 68.5/57.4/5.1 69.4/63.0/3.9 52.9/47.8/2.7 68.7/59.3/4.5

Table 1: Performance of all methods on single-sentence and sentence-pair benchmarks. We report average/worst-case
accuracy/standard deviation. PERFECT obtains the state-of-the-art results. Bold fonts indicate the best results.

the baselines, we used the carefully manually designed
patterns and verbalizers in Gao et al. (2021), Min et al.
(2021), and Schick and Schütze (2021b) (usually 5
different options per datasets; see Appendix B).

We evaluate all methods using 5 different random
samples to create the training/validation sets and 4
different random seeds for training. Therefore, for
PET-average, we report the results on 20 x 5 (number
of patterns and verbalizers) = 100 runs, while for
PET-best and our method, we report the results over
20 runs. The variance in few-shot learning methods is
usually high (Perez et al., 2021; Zhao et al., 2021; Lu
et al., 2021). Therefore, we report average, worst-case
performance, and standard deviation across all runs,
where the last two values can be important for
risk-sensitive applications (Asri et al., 2016).

4.1 Experimental Results

Table 1 shows the performance of all methods.
PERFECT obtains state-of-the-art results, improving
the performance compared to PET-average by +1.1

and +4.6 points for single-sentence and sentence-pair
datasets respectively. It even outperforms PET-best,
where we report the best performance of PET across
multiple manually engineered patterns and verbalizers.
Moreover, PERFECT generally improves the mini-
mum performance and reduces standard deviation
substantially. Finally, PERFECT is also significantly
more efficient: reducing the training and inference
time, memory usage, and storage costs (see §4.2).

PET-best improves the results over PET-average
showing that PET is unstable to the choice of patterns
and verbalizers; this difference is more severe for
sentence-pair benchmarks. This might be because the
position of the mask highly impacts the results, and
the patterns used for sentence-pair datasets in Schick
and Schütze (2021b) exploits this variation by putting
the mask in multiple locations (see Appendix B).

Removing patterns and tuning biases in Logan IV
et al. (2021) is not expressive enough and performs
substantially worse than PERFECT on average.

As an ablation, even if we initialize the label

3643



Metric PET PERFECT ∆%

Trained params (M) 355.41 3.28 -99.08%
Peak memory (GB) 20.93 16.34 -21.93%
Training time (min) 23.42 0.65 -97.22%

+ PET in batch 0.94 0.65 -30.85%
Inference time (min) 9.57 0.31 -96.76%

Table 2: Percentage of trained parameters, average peak
memory, training, and inference time. ∆% is the relative
difference with respect to PET. Lower is better.

embedding with handcrafted verbalizers in PER-
FECT-init, it consistently obtains lower performance,
demonstrating that PERFECT is able to obtain state-of-
the-art performance with learning from pure random
initialization. We argue that initializing randomly
close to zero (with low variance σ=10−4), as done
in our case, slightly improves performance, which
perhaps is not satisfied when initializing from the
manually engineered verbalizers (see Appendix D).

As a second ablation, when learning patterns with
optimizing soft prompts in prompt+mte, we observe
high sensitivity to learning rate, as also confirmed
in Li and Liang (2021) and Mahabadi et al. (2021a).
We experimented with multiple learning rates but
performance consistently lags behind PERFECT-rand.
This can be explained by the low flexibility of such
methods as all the information regarding specifying
patterns needs to be contained in the prefixes. As a
result, the method only allows limited interaction with
the rest of the model parameters, and obtaining good
performance requires very large models (Lester et al.,
2021). In addition, increasing the sequence length
leads to memory overhead (Mahabadi et al., 2021a),
and the number of prompt tokens is capped by the
number of tokens that can fit in the maximum input
length, which can be a limitation for tasks requiring
large contexts.

As a third ablation, tuning biases with optimizing
soft prompts in bitfit+mte obtains lower performance
compared to PERFECT, showing that adapters are a
better alternative compared to tuning biases to learn
task descriptions for few-shot learning.

We include more ablation results on design choices
of PERFECT in Appendix E.

4.2 Efficiency Evaluation

In this section, we compare the efficiency of PERFECT

with the state-of-the-art few-shot learning method,
PET. To this end, we train all methods for ten epochs
on the 500-sampled QNLI dataset. We select the

largest batch size for each method that fits a fixed
budget of the GPU memory (40 GB).

Due to the auto-regressive inference strategy of
PET (Schick and Schütze, 2021b), all prior work
implemented it with a batch size of 1 (Perez et al.,
2021; Schick and Schütze, 2021b; Tam et al., 2021).
Additionally, since PET deals with verbalizers of
variable lengths, it is hard to implement their training
phase in batch mode. We specifically choose QNLI
to have verbalizers of the same length and enable
batching for comparison purposes (referred to as
PET in batch). However, verbalizers are still not of
fixed-length for most other tasks, and this speed-up
does not apply generally to PET.

In Table 2, for each method we report the
percentage of trained parameters, memory usage,
training time, and inference time. PERFECT reduces
the number of trained parameters, and therefore the
storage requirement, by 99.08%. It additionally re-
duces the memory requirement by 21.93% compared
to PET. PERFECT speeds up training substantially, by
97.22% relative to the original PET’s implementation,
and 30.85% to our implementation of PET. This is
because adapter-based tuning saves on memory and
allows training with larger batch sizes. In addition,
PERFECT is significantly faster during inference time
(96.76% less inference time relative to PET).

Note that although prompt+mte and bitfit+mte can
also reduce the storage costs, by having 0.02M and
0.32 M trainable parameters respectively, they are not
expressive enough to learn task descriptions, and their
performance substantially lags behind PERFECT (see
Table 1).

Overall, given the size of PLMs with millions
and billions of parameters (Liu et al., 2019; Raffel
et al., 2020), efficient few-shot learning methods are
of paramount importance for practical applications.
PERFECT not only outperforms the state-of-the-art in
terms of accuracy and generally improves the stability
(Table 1), but also is significantly more efficient in
runtime, storage, and memory.

4.3 Analysis

Can task-specific adapters replace manually
engineered patterns? PERFECT is a pattern-free
approach and employs adapters to provide the PLMs
with task descriptions implicitly. In this section, we
study the contribution of replacing manual patterns
with adapters in isolation without considering our
other contributions in representing labels, training,
and inference. In PET (Schick and Schütze, 2021a,b),
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Dataset PET-Average Pattern-Free

SST-2 89.7/81.0/2.4 90.5/87.8/1.2
CR 88.4/68.8/3.0 89.8/87.0/1.4
MR 85.9/79.0/2.1 86.4/83.0/1.8
SST-5 45.9/40.3/2.4 44.8/40.0/2.4
SUBJ 88.1/79.6/2.4 85.3/74.7/3.8
TREC 85.0/70.6/4.5 87.9/84.6/1.8
CB 86.9/73.2/5.1 93.0/89.3/1.9
RTE 60.1/49.5/4.7 63.7/56.3/4.1
QNLI 66.5/55.7/6.2 71.3/65.8/2.5
MRPC 62.1/38.2/6.8 66.0/54.4/5.6
QQP 63.4/44.7/7.9 71.8/64.3/3.7
WiC 51.0/46.1/2.6 53.7/50.3/2.0

Avg 72.8/60.6/4.2 75.4/69.8/2.7

Table 3: Average performance of PET with five different
patterns vs. Pattern-Free that replaces handcrafted patterns
with task-specific adapters. We report the average/worst-
case performance/and the standard deviation.

we replace the handcrafted patterns with task-specific
adapters (Pattern-Free) while keeping the verbalizers
and the training and inference intact6 and train it
with a similar setup as in §4. Table 3 shows the
results. While PET is very sensitive to the choice of
prompts, adapters provide an efficient alternative to
learn patterns robustly by improving the performance
(average and worst-case) and reducing the standard
deviation. This finding demonstrates that task-specific
adapters can effectively replace manually engineered
prompts. Additionally, they also save on the training
budget by at least 1/number of patterns (normally
1/5) by not requiring running the method for different
choices of patterns, and by freezing most parameters,
this saves on memory and offers additional speed-up.

4.3.1 Ablation Study
Impact of Removing Adapters To study the
impact of adapters in learning patterns, we remove
adapters, while keeping the label embedding.
Handcrafted patterns are not included and we
tune all parameters of the model. Table 4 shows
the results. Adding adapters for learning patterns
contributes to the performance by improving the
average performance, and making the model robust by
improving the minimum performance and reducing
the standard deviation. This is because training PLMs
with millions of parameters is sample-inefficient
and unstable on resource-limited datasets (Dodge

6Since we don’t have patterns, in the case of multiple sets of
verbalizers, we use the first set of verbalizers as a random choice.

Dataset PERFECT -Adapters

SST-2 90.7/88.2/1.2 88.2/81.9/2.3
CR 90.0/85.5/1.4 89.2/83.1/1.7
MR 86.3/81.4/1.6 82.5/78.2/2.5
SST-5 42.7/35.1/2.9 40.6/33.6/3.3
SUBJ 89.1/82.8/2.1 89.7/85.0/1.9
TREC 90.6/81.6/3.2 89.8/74.2/4.3
CB 90.3/83.9/3.5 89.6/83.9/2.8
RTE 60.4/53.1/4.7 61.7/53.8/5.1
QNLI 74.1/60.3/4.6 73.2/56.3/5.8
MRPC 67.8/54.7/5.7 68.0/54.2/6.1
QQP 71.2/64.2/3.5 71.0/62.0/3.7
WiC 53.8/47.0/3.0 52.5/46.9/3.0

Avg 75.6/68.1/3.1 74.7/66.1/3.5

Table 4: Performance of PERFECT w/o adapters, -Adapters.
We report the average performance/worst-case perfor-
mance/and the standard deviation.

et al., 2020; Zhang et al., 2020; Mosbach et al., 2021).
However, by using adapters, we substantially reduce
the number of trainable parameters, allowing the
model to be better tuned in a few-shot setting.

Impact of the number of masks In Table 1, to
compare our design with PET in isolation, we fixed
the number of mask tokens as the maximum number
inserted by PET. In table 5, we study the impact of
varying the number of inserted mask tokens for a
random selection of six tasks. For most tasks, having
two mask tokens performs the best, while for MR and
RTE, having one, and for MRPC, inserting ten masks
improves the results substantially. The number of
required masks might be correlated with the difficulty
of the task. PERFECT is designed to be general,
enabling having multiple mask tokens.

5 Related Work

Adapter Layers: Mahabadi et al. (2021b) and
Üstün et al. (2020) proposed to generate adapters’
weights using hypernetworks (Ha et al., 2017), where
Mahabadi et al. (2021b) proposed to share a small
hypernetwork to generate conditional adapter weights
efficiently for each transformer layer and task. Ma-
habadi et al. (2021a) proposed compacter layers by
building on top of ideas of parameterized hyper-
complex layers (Zhang et al., 2021) and low-rank
methods (Li et al., 2018; Aghajanyan et al., 2021), as
an efficient fine-tuning method for PLMs. We are
the first to employ adapters to replace handcrafted
patterns for few-shot learning.
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Datasets 1 2 5 10
CR 90.1 90.2 89.0 87.8
MR 86.9 86.1 85.4 85.6
MRPC 67.4 68.2 70.1 72.3
QNLI 73.7 73.9 73.0 65.1
RTE 60.0 57.3 56.2 56.0
TREC 90.0 90.9 88.9 88.8

Avg 78.0 77.8 77.1 75.9

Table 5: Test performance for the varying number of mask
tokens. Bold fonts indicate the best results in each row.

Few-shot Learning with PLMs: Le Scao and Rush
(2021) showed that prompting provides substantial im-
provements compared to fine-tuning, especially in
low-resource settings. Subsequently, researchers con-
tinuously tried to address the challenges of manually
engineered patterns and verbalizers: a) Learning the
patterns in a continuous space (Li and Liang, 2021;
Qin and Eisner, 2021; Lester et al., 2021), while freez-
ing PLM for efficiency, has the problem that, in most
cases, such an approach only works with very large
scale PLMs (Lester et al., 2021), and lags behind full
fine-tuning in a general setting, while being ineffi-
cient and not as effective compared to adapters (Ma-
habadi et al., 2021a). b) Optimizing patterns in a
discrete space (Shin et al., 2020; Jiang et al., 2020;
Gao et al., 2021) has the problem that such methods
are computationally costly. c) Automatically find-
ing verbalizers in a discrete way (Schick et al., 2020;
Schick and Schütze, 2021a) is computationally ex-
pensive and does not perform as well as manually
designed ones. d) Removing manually designed pat-
terns (Logan IV et al., 2021) substantially lags behind
the expert-designed ones. Our proposed method, PER-
FECT, does not rely on any handcrafted patterns and
verbalizers.

6 Conclusion

We proposed PERFECT, a simple and efficient method
for few-shot learning with pre-trained language
models without relying on handcrafted patterns
and verbalizers. PERFECT employs task-specific
adapters to learn task descriptions implicitly, replacing
previous handcrafted patterns, and a continuous
multi-token label embedding to represent the output
classes. Through extensive experiments over 12 NLP
benchmarks, we demonstrate that PERFECT, despite
being far simpler and more efficient than recent
few-shot learning methods, produces state-of-the-art

results. Overall, the simplicity and effectiveness of
PERFECT make it a promising approach for few-shot
learning with PLMs.
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Dataset Task #Train #Test K

Single-Sentence Benchmarks

MR Sentiment analysis 8662 2000 2
CR Sentiment analysis 1774 2000 2
SST-2 Sentiment analysis 6920 872 2
SST-5 Sentiment analysis 8544 2210 5
SUBJ Subjectivity classification 8000 2000 2
TREC Question classification 5452 500 6

Sentence-Pair Benchmarks

CB Natural language inference 250 56 3
RTE Natural language inference 2490 277 2
WiC Word sense disambiguation 5428 638 2
MRPC Paraphrase detection 3668 408 2
QNLI Question answering 104743 5463 2
QQP Paraphrase detection 363846 40430 2

Table 6: Statistics of datasets used in this work. We sample
N×|Y| instances (with multiple seeds) from the original
training set to form the few-shot training and validation
sets. The test column shows the size of the test set.

A Experimental Details

Datasets Table 6 shows the stastistics of the
datasets used. We download SST-2, MR, CR, SST-5,
and SUBJ from Gao et al. (2021), while the rest of
the datasets are downloaded from the HuggingFace
Datasets library (Lhoest et al., 2021b,a). RTE, CB,
WiC datasets are from SuperGLUE benchmark (Wang
et al., 2019a), while QQP, MRPC and QNLI are from
GLUE benchmark (Wang et al., 2019b) with Creative
Commons license (CC BY 4.0). RTE (Wang et al.,
2019a) is a combination of data from RTE1 (Dagan
et al., 2005), RTE2 (Bar-Haim et al., 2006), RTE3 (Gi-
ampiccolo et al., 2007), and RTE5 (Bentivogli et al.,
2009). For WiC (Pilehvar and Camacho-Collados,
2019) sentences are selected from VerbNet (Schuler,
2005), WordNet (Miller, 1995), and Wiktionary.

Computing infrastructure We run all the exper-
iments on one NVIDIA A100 with 40G of memory.

Training hyper-parameters We set the maximum
sequence length based on the recommended values
in the HuggingFace repository (Wolf et al., 2020)
and prior work (Min et al., 2021; Schick and Schütze,
2021b), i.e., we set it to 256 for SUBJ, CR, CB, RTE,
and WiC, and 128 for other datasets. For all methods,
we use a batch size of 32. For FINETUNE and PET,
we use the default learning rate of 10−5, while for
our method, as required by adapter-based methods
(Mahabadi et al., 2021a), we set the learning rate to

a higher value of 10−4.7 Through all experiments,
we fix the adapter bottleneck size to 64. Following
Pfeiffer et al. (2021), we experimented with keeping
one of the adapters in each layer for better training
efficiency and found keeping the adapter after the
feed-forward module in each layer to perform the best.
For tuning label embedding, we use the learning rate
of {10−1,10−2,10−3,10−4,10−5} and choose the
one obtaining the highest validation performance. For
PERFECT-prompt, we tune the continuous prompt
for learning rate of {10−1,10−2,10−3}.8Following
Lester et al. (2021), for PERFECT-prompt, we set
the number of prompt tokens to 20, and initialize
them with a random subset of the top 5000 token’s
embedding of the PLM. We train all methods for
6000 steps. Based on our results, this is sufficient to
allow the models to converge. We save a checkpoint
every 100 steps for all methods and report the results
for the hyper-parameters performing the best on the
validation set for each task.

B Choice of Patterns and Verbalizers

For SST-2, MR, CR, SST-5, and TREC, we used
4 different patterns and verbalizers from Gao et al.
(2021). For CB, WiC, RTE datasets, we used the
designed patterns and verbalizers in Schick and
Schütze (2021b). For QQP, MRPC, and QNLI, we
wrote the patterns and verbalizers inspired by the ones
in Schick and Schütze (2021b). The used patterns
and verbalizers are as follows:

• For sentiment analysis tasks (MR, CR, SST-2,
SST-5), given a sentence s:

s A <MASK> one.

s It was <MASK>.

s All in all <MASK>.

s A <MASK> piece.

with "great" as a verbalizer for positive, "terrible"
for negative. In case of SST-5 with five labels,
we expand it to "great", "good", "okay", "bad",
and "terrible".

7We have also tried to tune the baselines with the learning
rate of 10−4 but it performed worst.

8We also tried tuning prompts with learning rates of
{10−4,10−5} but it performed worst, as also observed in prior
work (Mahabadi et al., 2021a; Min et al., 2021).
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• For SUBJ, given a sentence s:

s This is <MASK>.

s It’s all <MASK>.

s It’s <MASK>.

s Is it <MASK>?

with "subjective" and "objective" as verbalizers.

• For TREC, given a question q, the task is to
classify the type of it:

q <MASK>:

q Q:<MASK>:

q why<MASK>?

q Answer: <MASK>.

with "Description", "Entity", "Expression",
"Human", "Location", "Number" as verbalizers
for question types of "Description", "Entity",
"Abbreviation", "Human", "Location", and
"Numeric".

• For entailment task (RTE) given a premise p
and hypothesis h:

"h" ? | <MASK>, "p"

h? | <MASK>, p

"h" ? | <MASK>. p

with "Yes" as a verbalizer for entailment, "No"
for contradiction.

p question: h True or False? answer: <MASK>

with "true" as a verbalizer for entailment, "false"
for contradiction.

• For entailment task (CB) given a premise p and
a hypothesis h:

"h" ? | <MASK>, "p"

h? | <MASK>, p

"h" ? | <MASK>. p

with "Yes" as a verbalizer for entailment, "No"
for contradiction, "Maybe" for neutral.

p question: h true, false or neither? answer:
<MASK>

with "true" as a verbalizer for entailment, "false"
for contradiction, "neither" for neutral.

• For QNLI, given a sentence s and question q:

s. Question: q? Answer: <MASK>.

with "Yes" or "true" as verbalizers for entailment
and "No" or "false" for not entailment.

s. Based on the previous sentence, q? <MASK>.

with "Yes" or "true" as verbalizers for entailment
and "No" or "false" for not entailment.

Based on the following sentence, q?<MASK>.s

with "Yes" and "No" as verbalizers for
entailment and not entailment respectively.

• For QQP, given two questions q1 and q2:

Do q1 and q2 have the same meaning?<MASK>.

with "Yes" or "true" as verbalizers for duplicate
and "No" or "false" for not duplicate.

q1. Based on the previous question, q2?
<MASK>.

with "Yes" or "true" as verbalizers for duplicate
and "No" or "false" for not duplicate.

Based on the following question, q1?<MASK>.q2

with "Yes" and "No" as verbalizers for duplicate
and not duplicate respectively.
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• For MRPC, given two sentences s1 and s2:

Do s1 and s2 have the same meaning?<MASK>.

with "Yes" or "true" as verbalizers for equivalent
and "No" or "false" for not equivalent.

s1. Based on the previous sentence, s2?
<MASK>.

with "Yes" or "true" as verbalizers for equivalent
and "No" or "false" for not equivalent.

Based on the following sentence,
s1?<MASK>.s2

with "Yes" and "No" as verbalizers for equivalent
and not equivalent respectively.

• For WiC, given two sentences s1 and s2 and a
word w, the task is to classify whether w is used
in the same sense.

"s1" / "s2". Similar sense of "w"? <MASK>.

s1 s2 Does w have the same meaning in both
sentences? <MASK>

With "No" and "Yes" as verbalizers for False,
and True.

w . Sense (1) (a) "s1" (<MASK>) "s2"

With "2" and "b" as verbalizers for False, and
True.

C Impact of the Position
of Masks in Sentence-pair Datasets

We evaluate the impact of the position of mask tokens
in sentence-pair benchmarks. Given two sentences s1
and s2, we consider the following four locations for
inserting mask tokens, where in the case of encoding
as two sentences, input parts to the encoder are
separated with |:

1. s1 s2 <MASK>

2. s1 <MASK> s2

3. s1 | <MASK> s2

4. s1 | s2<MASK>

Datasets 1 2 3 4
CB 89.8 91.6 88.9 86.5
RTE 69.1 69.1 64.5 65.3
QNLI 72.0 83.3 77.7 73.1
MRPC 71.6 69.5 66.4 72.0
QQP 79.2 82.8 72.5 70.2
WiC 60.3 59.5 60.2 59.5

Avg 73.7 76.0 71.7 71.1

Table 7: Validation performance for sentence-pair
benchmarks for different locations of mask tokens. Bold
fonts indicate the best results in each row.

Datasets 10−2 10−3 10−4 10−5

CB 90.0/82.5 92.2/85.0 91.6/87.5 91.6/87.5

MRPC 69.8/56.2 70.8/56.2 69.5/56.2 70.8/56.2

QNLI 83.3/71.9 82.7/71.9 83.3/71.9 83.1/68.8

QQP 82.8/78.1 82.7/75.0 82.8/75.0 83.0/75.0

RTE 69.8/62.5 69.2/59.4 69.1/62.5 68.3/62.5

WiC 62.2/50.0 59.7/46.9 59.5/53.1 58.9/50.0

Avg 76.3/66.9 76.2/65.7 76.0/67.7 76.0/66.7

Total Avg 71.6 71.0 71.8 71.3

Table 8: Validation performance for different values of
σ. We show mean performance/worst-case performance
across 20 runs. The last row shows the average of mean
performance/worst-case performance.

Table 7 shows how the position of masks impact
the results. As demonstrated, pattern 2, inserting
mask tokens between the two sentences and encoding
both as a single sentence obtains the highest
validation performance. We use this choice in all the
experiments when removing handcrafted patterns.

D Impact of Initialization

We initialize the label embedding matrix with random
initialization from a normal distribution N (0,σ). In
table 8, we show the development results for different
values of σ. We choose the σ obtaining the highest
performance on average over average and worst case
performance, i.e., σ=10−4.

E Ablation Results

To study the impact of different design choices in
PERFECT, we considered the following experiments:

• -Hinge Loss: In this variant, we replace the
hinge loss with multi-class cross entropy loss.
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Dataset PERFECT -Hinge Loss +Label Emb -Prototypical

SST-2 90.7/88.2/1.2 90.0/85.9/1.7 90.6/87.6/1.1 90.4/85.2/1.6

CR 90.0/85.5/1.4 90.1/88.6/0.9 89.7/86.6/1.4 89.9/86.8/1.4

MR 86.3/81.4/1.6 85.2/78.6/2.4 85.8/82.4/1.4 85.7/78.0/2.0

SST-5 42.7/35.1/2.9 43.3/36.8/3.1 41.8/37.1/2.5 41.2/35.9/2.4
SUBJ 89.1/82.8/2.1 89.4/83.1/2.2 90.0/86.0/1.8 89.7/86.0/1.8
TREC 90.6/81.6/3.2 89.9/76.8/4.2 89.7/71.6/6.1 89.6/76.2/4.9

CB 90.3/83.9/3.5 89.2/80.4/4.8 89.6/82.1/3.6 89.3/80.4/3.9

RTE 60.4/53.1/4.7 60.7/54.5/4.0 58.6/50.9/4.0 58.5/50.9/4.5

QNLI 74.1/60.3/4.6 72.9/64.4/3.9 74.9/66.7/3.6 74.7/67.5/3.5
MRPC 67.8/54.7/5.7 67.0/49.8/5.5 68.1/56.9/4.8 68.1/56.9/4.8
QQP 71.2/64.2/3.5 69.9/63.0/4.1 70.3/62.2/4.0 70.2/62.2/4.0

WiC 53.8/47.0/3.0 53.7/46.7/3.3 53.6/50.2/2.4 53.6/50.0/2.6

Avg 75.6/68.1/3.1 75.1/67.4/3.3 75.2/68.4/3.1 75.1/68.0/3.1

Table 9: Ablation results on the impact of different design choices in PERFECT. We report the average performance/worst-
case performance/and the standard deviation.

• +Label Emb: We use the trained label em-
beddings during the inference, substituting the
computed prototypes in (5).

• -Prototypical: Instead of using prototypical
networks, during inference, we use the same
objective as training, i.e., (4).

Results are shown in Table 9. Experimental results
demonstrate that PERFECT obtains the best results
on average. Using multi-class cross-entropy instead
of hinge loss, obtains substantially lower minimum
performance (67.4 versus 68.1), demonstrating that
training with hinge loss makes the model more
stable. Using the trained label embeddings (+Label
Emb) obtains very close results to PERFECT (slightly
worse on average and slightly better on the minimum
performance). Using the similar objective as training
with replacing prototypical networks (-Prototypical),
obtains lower performance on average (75.1 versus
75.6). These results confirm the design choices for
PERFECT.
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