
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 3412 - 3425

May 22-27, 2022 c©2022 Association for Computational Linguistics

ILDAE: Instance-Level Difficulty Analysis of Evaluation Data

Neeraj Varshney, Swaroop Mishra, Chitta Baral
Arizona State University

{nvarshn2, srmishr1, cbaral}@asu.edu

Abstract

Knowledge of difficulty level of questions helps
a teacher in several ways, such as estimating
students’ potential quickly by asking carefully
selected questions and improving quality of ex-
amination by modifying trivial and hard ques-
tions. Can we extract such benefits of instance
difficulty in Natural Language Processing? To
this end, we conduct Instance-Level Difficulty
Analysis of Evaluation data (ILDAE) in a large-
scale setup of 23 datasets and demonstrate its
five novel applications: 1) conducting efficient-
yet-accurate evaluations with fewer instances
saving computational cost and time, 2) improv-
ing quality of existing evaluation datasets by
repairing erroneous and trivial instances, 3) se-
lecting the best model based on application re-
quirements, 4) analyzing dataset characteristics
for guiding future data creation, 5) estimating
Out-of-Domain performance reliably. Com-
prehensive experiments for these applications
lead to several interesting results, such as eval-
uation using just 5% instances (selected via
ILDAE) achieves as high as 0.93 Kendall cor-
relation with evaluation using complete dataset
and computing weighted accuracy using diffi-
culty scores leads to 5.2% higher correlation
with Out-of-Domain performance. We release
the difficulty scores1 and hope our work will
encourage research in this important yet under-
studied field of leveraging instance difficulty in
evaluations.

1 Introduction

Transformer-based language models (Devlin et al.,
2019; Liu et al., 2019; Clark et al., 2020) have im-
proved state-of-the-art performance on numerous
natural language processing benchmarks (Wang
et al., 2018, 2019; Talmor et al., 2019); however,
recent studies (Zhong et al., 2021; Sagawa et al.,
2020) have raised questions regarding whether
these models are uniformly better across all in-
stances. This has drawn attention towards instance-

1https://github.com/nrjvarshney/ILDAE

Figure 1: Illustrating five applications of Instance-Level
Difficulty Analysis of Evaluation data (ILDAE).

level analysis of evaluation data (Rodriguez et al.,
2021; Vania et al., 2021; Mishra and Arunkumar,
2021) which was previously limited to training data
(Swayamdipta et al., 2020; Xu et al., 2020; Mishra
and Sachdeva, 2020). Furthermore, it is intuitive
that not all instances in a dataset are equally dif-
ficult. However, instance-level difficulty analysis
of evaluation data (ILDAE) has remained underex-
plored in many different ways: what are the poten-
tial applications and broad impact associated with
ILDAE?

In this work, we address the above question by
first computing difficulty scores of evaluation in-
stances (section 2) and then demonstrating five
novel applications of ILDAE (Figure 1).
1. Efficient Evaluations: We propose an ap-

proach of conducting efficient-yet-accurate eval-
uations. Our approach uses as little as 5% eval-
uation instances (selected via ILDAE) to achieve
up to 0.93 Kendall correlation with evaluations
conducted using the complete dataset. Thus,
without considerably impacting the effective-
ness of evaluations, our approach saves compu-
tational cost and time.
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2. Improving Evaluation Datasets: We first
show that ‘trivial’ and ‘erroneous’ instances can
be identified using our difficulty scores and then
present a model-and-human-in-the-loop tech-
nique to modify/repair such instances resulting
in improved quality of the datasets. We instanti-
ate it with SNLI dataset (Bowman et al., 2015)
and show that on modifying the trivial instances,
the accuracy (averaged over 27 models) drops
from 77.58% to 26.49%, and on repairing the
erroneous instances, it increases from 13.65%
to 69.9%. Thus, improving the dataset quality.

3. Model Analysis: We divide evaluation in-
stances into different regions based on difficulty
scores and analyze models’ performance in each
region. We find that a single model does not
achieve the highest accuracy in all difficulty re-
gions. This implies that the model that achieves
best overall performance may not be the best
in each difficulty region. Such analyses could
benefit in model selection. For instance, in sce-
narios where a system is expected to encounter
hard instances, the model that performs well in
high difficulty regions could be selected.

4. Dataset Analysis: ILDAE reveals several
important characteristics of datasets that can
be leveraged in future data creation pro-
cesses. For instance, we find that in SNLI and
MNLI datasets, ‘contradiction’ instances re-
ceive lower average difficulty score than ‘en-
tailment’ and ‘neutral’ instances. Thus, more
difficult contradiction examples can be created
to develop high-quality task-specific datasets.

5. OOD Correlation: We compute weighted ac-
curacy leveraging the difficulty scores and show
that it leads to 5.2% higher Kendall correlation
with Out-of-Domain (OOD) performance than
the standard accuracy that treats all instances
equally. Thus, ILDAE helps in getting a more re-
liable estimation of models’ OOD performance.

2 Difficulty Score Computation

2.1 Desiderata for Difficulty Scores

Interpretation: Human perception of difficulty
may not always correlate well with machine’s inter-
pretation. Thus, difficulty scores must be computed
via a model-in-the-loop technique so that they di-
rectly reflect machine’s interpretation.

Relationship with Predictive Correctness: Dif-
ficulty scores must be negatively correlated with

predictive correctness since a difficult instance is
less likely to be predicted correctly than a relatively
easier instance.

2.2 Method

Algorithm 1 Difficulty Score Computation
Input: T : Training Data, M : Model,

D: Evaluation Data E: Training Epochs
Output: Difficulty Score of each instance in D
Auxiliary Function: GET_CKPTS (tr , m, e) - Returns
checkpoints on training model m with data tr for e epochs
Initialization: Models ← ∅ : List to store ensemble of
models trained with different configurations

▷ Train with Partial Data
for each pct ∈ [100, 50, 25, 20, 10, 5] do

Tp = Sample(T, pct)
Models += GET_CKPTS(Tp, M, E)

end for each
▷ Train with Corrupted Data
for each pct ∈ [25, 20, 10, 5, 2] do

Tc = Corrupt(T, pct)
Models += GET_CKPTS(Tc, M, E)

end for each
▷ Infer D using all Models and compute difficulty score
di for each instance i ∈ D
for each i ∈ D do

di = 1−
∑

m∈Models cmi

|Models|
▷ where cmi is the confidence assigned to the ground truth
answer by model m
end for each
return d

We incorporate the above desiderata and con-
sider model’s prediction confidence in the ground
truth answer (indicated by softmax probability as-
signed to that answer) as the measure of its pre-
dictive correctness. Furthermore, we compile an
ensemble of models trained with varying configu-
rations and use their mean predictive correctness
to compute the difficulty scores. We do this be-
cause model’s predictions fluctuate greatly when
its training configuration is changed (Zhou et al.,
2020; McCoy et al., 2020) and relying on predic-
tive correctness of only one model could result in
difficulty scores that show poor generalization. To
this end, we use the following three training config-
urations to compile predictions from an ensemble
of models:

Data Size: Instances that can be answered cor-
rectly even with few training examples are inher-
ently easy and should receive lower difficulty score
than the ones that require a large training dataset.
To achieve this, we train a model each with 5, 10,
15, 20, 25, 50, and 100 % of the total training ex-
amples and include them in our ensemble.
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Data Corruption: Instances that can be an-
swered correctly even with some level of corrup-
tion/noise in the training dataset should receive low
difficulty score. To achieve this, we train a model
each with different levels of noise (2, 5, 10, 20,
25% of the examples) in the training data, and add
them to our ensemble. For creating noisy examples,
we randomly change the ground-truth label in case
of classification and multiple-choice datasets and
change the answer span for extractive QA datasets.

Training Steps: Instances that can be consis-
tently answered correctly from the early stages of
training should receive low difficulty score. Here,
we add a model checkpoint after every epoch dur-
ing training to our ensemble.

This results in a total of N = E ∗ (7+5) models
in our ensemble where E corresponds to the num-
ber of training epochs, and 7, 5 correspond to the
number of data size and data corruption configura-
tions respectively. We infer the evaluation dataset
using these N models and calculate the average
predictive correctness for each instance. Finally,
we compute the difficulty score by subtracting this
averaged correctness value from 1. This ensures
that an instance that is answered correctly with high
confidence under many training configurations gets
assigned a low difficulty score as it corresponds
to an easy instance. In contrast, an instance that
is often answered incorrectly gets assigned a high
difficulty score. Algorithm 1 summarizes this ap-
proach.

We use RoBERTa-large model (Liu et al., 2019)
for this procedure and train each model for E = 10
epochs, resulting in N = 120 predictions for each
evaluation instance. Our difficulty computation
method is general and can be used with any other
model or configurations; we use RoBERTa-large
as it has been shown to achieve high performance
across diverse NLP tasks (Liu et al., 2019). In
addition, we show that difficulty scores computed
using our procedure also generalize for other mod-
els (3.5.1).

We note that difficulty computation is not our
primary contribution. Prior work (Swayamdipta
et al., 2020; Xu et al., 2020) has explored different
ways to achieve this. However, our approach uses
120 predictions from models trained with differ-
ent configurations for its computation and hence
is more reliable. Equipped with difficulty scores
of evaluation instances, we now demonstrate five
applications of ILDAE in the following sections.

3 Efficient Evaluations

3.1 Problem Statement
Success of BERT (Devlin et al., 2019) has fostered
development of several other pre-trained language
models such as RoBERTa (Liu et al., 2019), XL-
Net (Yang et al., 2019b), DistilBERT (Sanh et al.,
2019), ALBERT (Lan et al., 2020). Though, it has
resulted in the availability of numerous model op-
tions for a task, comparing the performance of such
a large number of models has become computation-
ally expensive and time-consuming. For example,
in real-world applications like online competitions,
the naive approach that evaluates candidate models
on the entire test dataset would be too expensive
because they receive thousands of model submis-
sions and contain a sizable number of evaluation in-
stances. Moreover, some applications also require
additional evaluations to measure Out-of-Domain
generalization and robustness making it even more
expensive. Can we make the evaluations efficient?

3.2 Solution
We address the above question and explore if the
performance of candidate models can be accurately
compared with a carefully selected smaller subset
of the evaluation dataset. Reducing the number of
instances would save computational cost and make
the evaluations efficient. To this end, we propose an
approach that selects evaluation instances based on
their difficulty scores. We compare performance of
candidate models only on these selected instances
and show that without considerably impacting the
result of evaluations, our approach saves computa-
tional cost and time.

Instance Selection: We argue that the instances
with extreme difficulty scores (very low and very
high scores) would not be very effective in distin-
guishing between the candidate models. This is
because the former instances are trivial and would
be answered correctly by many/all candidate mod-
els, while the latter ones are hard and would be
answered correctly by only a few/none models.
Therefore, given a budget on the number of evalu-
ation instances, we select a majority of them with
moderate difficulty scores. However, to distinguish
amongst very weak and amongst very strong candi-
dates, we also include a small number of instances
with extreme difficulty scores. Figure 2 illustrates
our approach.

Note that our approach does not add any com-
putational overhead during evaluations as the dif-
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Figure 2: Comparing standard evaluation approach
(top) with our proposed ‘efficient’ approach (bot-
tom). We leverage difficulty scores to select a small
subset of evaluation instances on which the performance
of models can be efficiently compared. Our selected sub-
set contains a majority of the instances with moderate
difficulty scores and only a few with extreme difficulty
scores. We use Kendall correlation between the perfor-
mance scores to measure the efficacy of our approach.

ficulty scores are pre-computed. Furthermore, we
do not compute separate difficulty scores for each
candidate model as it would defy the sole purpose
of ‘efficient’ evaluations. Instead, we compute dif-
ficulty scores using only one model (RoBERTa-
large) and exclude it from the list of candidate
models for a fair evaluation of our approach. For
our instance selection approach to work in this
setting, the difficulty scores should generalize for
other models. We empirically prove this general-
ization capability and demonstrate the efficacy of
our efficient evaluations approach in 3.5.

3.3 Experimental Details

Performance Metric: We measure the efficacy
of an instance selection technique by computing
accuracies of candidate models on the selected in-
stances and calculating their Kendall’s correlation
(Kendall, 1938) with accuracies obtained on the full
evaluation dataset. High correlation implies that
the performance scores obtained using the selected
instances display the same behavior as the perfor-
mance scores obtained using the complete dataset.
Hence, high correlations values are preferred.

Figure 3: Demonstrating difficulty score generaliza-
tion. Difficulty scores computed using RoBERTa-large
show negative correlation with accuracy averaged over
27 other models, hence satisfying the desiderata men-
tioned in Section 2.1. Note that we depict this trend
for a few datasets only to avoid cluttering the image.
Similar trend is observed for other dataset also2.

Datasets: We experiment with a total of 23
datasets across Natural Language Inference, Du-
plicate Detection, Sentiment Analysis, Question
Answering, Commonsense Reasoning, and several
other tasks. Refer to Appendix section B for an
exhaustive list of datasets for each task.

Candidate Models: We use BERT (Devlin et al.,
2019), DistilBERT (Sanh et al., 2019), ConvBERT
(Jiang et al., 2020) , XLNET (Yang et al., 2019a),
SqueezeBERT (Iandola et al., 2020), ELECTRA
(Clark et al., 2020) in our experiments. We also
use different variants of ConvBert (small, medium-
small, base) and ELECTRA (small, base) models.
For comprehensive experiments, we train each of
the above models with training data of three dif-
ferent sizes (2k, 5k, and 10k examples) resulting
in 27 candidate models for each dataset. We inten-
tionally exclude RoBERTa from this list as we use
it for computing the difficulty scores.

Instance Selection Baselines: We compare the
proposed instance selection approach with the fol-
lowing baselines:

Random Selection: Select a random subset of
instances from the evaluation dataset.

Heuristic Selection: Select instances based on
the length heuristic (number of characters in the
instance text) instead of the difficulty scores.

3.4 Related Work

Adaptive evaluation (Weiss, 1982) is used in edu-
cational settings for evaluating performance of stu-
dents. It uses Item Response Theory (IRT) (Baker
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% Instances → 0.5% 1% 2% 5% 10% 20%
Dataset ↓ Random Heuristic Proposed Random Heuristic Proposed Proposed Proposed Proposed Proposed

SNLI 0.550.09 0.380.17 0.680.13 0.680.05 0.580.08 0.780.08 0.830.04 0.880.04 0.910.01 0.930.02
PAWS Wiki 0.670.07 0.680.04 0.780.06 0.730.05 0.780.02 0.860.05 0.890.02 0.910.03 0.950.01 0.960.01
AgNews 0.120.26 0.140.27 0.470.05 0.250.34 0.410.14 0.520.1 0.650.07 0.750.06 0.80.04 0.890.03
QNLI 0.410.1 0.440.04 0.480.13 0.570.04 0.550.1 0.570.07 0.70.06 0.780.06 0.850.03 0.910.03
MRPC 0.040.09 −0.030.18 0.210.16 −0.020.09 0.050.2 0.290.21 0.360.15 0.450.08 0.580.12 0.650.14
SocialIQA 0.190.09 0.150.29 0.370.17 0.340.07 0.280.21 0.40.09 0.580.1 0.670.04 0.750.08 0.810.05
QQP 0.630.06 0.640.05 0.650.05 0.740.03 0.740.01 0.770.06 0.840.04 0.90.04 0.940.04 0.950.01
DNLI 0.580.05 0.590.1 0.580.11 0.680.1 0.710.04 0.760.07 0.840.04 0.920.05 0.940.03 0.960.01
COLA − − − −0.010.18 0.250.26 0.240.45 0.410.41 0.630.23 0.750.08 0.780.02
SWAG 0.720.04 0.660.02 0.750.06 0.790.03 0.770.03 0.780.05 0.860.03 0.890.02 0.930.01 0.950.01
PAWS QQP − − − 0.130.24 0.360.05 0.340.13 0.550.19 0.80.05 0.840.03 0.870.04
MNLI 0.70.04 0.710.03 0.730.07 0.80.02 0.80.04 0.820.08 0.890.03 0.930.02 0.950.02 0.960.01
Adv. NLI R1 0.00.08 −0.070.06 0.170.27 0.020.13 0.090.11 0.080.2 0.130.18 0.30.18 0.470.05 0.590.05
Adv. NLI R2 −0.080.04 -0.010.06 −0.080.16 −0.080.07 0.020.03 −0.030.21 0.00.12 0.170.03 0.260.11 0.420.15
Adv. NLI R3 −0.150.12 0.150.1 0.10.21 −0.030.06 0.070.1 0.10.11 0.180.16 0.120.17 0.310.15 0.580.05
SST-2 − − − 0.080.15 0.160.35 0.290.25 0.40.2 0.520.16 0.650.13 0.810.08
ARC Easy − − − 0.00.2 −0.030.12 0.420.19 0.470.19 0.590.13 0.60.14 0.740.11
ARC Diff − − − − − − 0.150.29 0.280.13 0.330.31 0.30.26
Abductive NLI 0.080.26 0.170.05 0.160.09 0.190.19 0.260.08 0.30.07 0.420.13 0.570.08 0.610.07 0.680.07
Winogrande −0.190.11 −0.030.06 0.00.17 −0.110.09 −0.050.12 0.110.15 0.090.14 0.030.1 0.140.1 0.210.14
CSQA 0.290.11 0.280.1 0.310.07 0.360.14 0.370.08 0.390.09 0.490.09 0.690.08 0.780.04 0.830.05
QuaRel − − − − − − 0.320.26 0.330.25 0.390.07 0.510.1
QuaRTz − − − − − − 0.340.19 0.360.04 0.340.12 0.370.08

Average 0.280.1 0.30.11 0.390.13 0.310.11 0.350.11 0.430.14 0.460.17 0.580.11 0.660.08 0.720.07

Table 1: Kendall correlation with full evaluation dataset achieved by various instance selection approaches for
different percentage of instances. Each cell shows the mean and standard deviation obtained from 5 different runs.
− cell indicates 0 selected instances. We show the expanded version of this table in supplementary.

and Kim, 2004) from psychometrics that requires
a large number of subjects and items to estimate
system parameters (Lalor et al., 2016, 2018). More-
over, adaptive evaluation is computationally very
expensive as it requires calculating performance af-
ter each response to select the next instance based
on the previous responses of the subject. Thus, it is
not fit for our setting as we intend to improve the
computational efficiency. In contrast, our approach
is much simpler and efficient as it does not incur
any additional cost during the evaluation.

3.5 Results

We first study generalization of our computed dif-
ficulty scores and then show the efficacy of the
proposed instance selection approach in conduct-
ing efficient evaluations.

3.5.1 Generalization of Difficulty Scores:
In Figure 3, we plot accuracy (averaged over all 27
candidate models) against difficulty scores (com-
puted using RoBERTa-large). We find that with
the increase in difficulty score, the accuracy consis-
tently decreases for all datasets. We also study this
behavior for each individual candidate model and
find results supporting the above observation2 (Fig-

2Further details are in appendix

ure 6). This proves that the difficulty scores follow
the desiderata mentioned in Section 2.1 for other
models also and our intuitions behind instance se-
lection for conducting efficient evaluations hold
true. Note that these difficulty scores are computed
using a specific model but our approach is general
and will replicate this generalization capability if
used with any other model.

3.5.2 Efficient Evaluations:
Table 1 shows Kendall correlation with full dataset
evaluation achieved by various instance selection
approaches for different percentages of instances.

Proposed Approach Outperforms Baselines:
Our proposed approach is consistently better than
the Random and Heuristic approaches. For in-
stance, with just 0.5% and 1% evaluation instances,
our approach outperforms the baseline methods by
∼ 30% and ∼ 22.8% respectively. We show the
expanded version of this table and performance of
other instance selection techniques in Appendix.

Correlation Change with % of Instances: As
expected, Kendall correlation consistently in-
creases as a higher percentage of instances are se-
lected for evaluation. In case of SNLI, PAWS Wiki,
QQP, DNLI, SWAG, and MNLI, just 2% instances
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are sufficient to achieve correlation of > 0.8. For
most datasets, with just 20% of the evaluation in-
stances, our approach achieves Kendall correlation
of > 0.8. This suggests that the evaluations can
be conducted with fewer instances without signifi-
cantly compromising the accuracy of comparison.
We further analyze performance of our approach
for higher percentage of instances in Table 7.

Thus, for practical settings where candidate mod-
els can’t be compared on the entire dataset due to
computational and time constraints, evaluating only
on the selected instances can result in fairly accu-
rate performance comparison.

Performance on Multiple-Choice QA datasets:
Though, we perform better than the baselines ap-
proaches on almost all datasets, we achieve a lower
correlation value for multiple-choice question an-
swering datasets such as QuaRel, QuaRTz, and
Winogrande. We attribute this behavior to the close
scores (accuracies) achieved by many candidate
models even in case of full dataset evaluation. Thus,
it is difficult to differentiate such models as they
achieve nearly the same performance. Furthermore,
in some difficult datasets such as Adversarial NLI
(R1, R2, and R3), ARC Difficult, and Winogrande,
many candidate models achieve accuracies very
close to the random baseline (33% for NLI, 50%
for Winogrande). So, comparing their performance
even with full dataset does not provide any signifi-
cant insights.

4 Improving Evaluation Datasets

4.1 Problem Statement

Recent years have seen a rapid increase in the num-
ber and size of NLP datasets. Crowd-sourcing is a
prominent way of collecting these datasets. Prior
work (Gururangan et al., 2018; Tan et al., 2019;
Mishra et al., 2020) has shown that crowd-sourced
datasets can contain: (a) erroneous instances that
have annotation mistakes or ambiguity, (b) too
many trivial instances that are very easy to answer.
This hampers the quality of the dataset and makes it
less reliable for drawing conclusions. Can difficulty
scores aid in improving the quality of evaluation
datasets?

4.2 Solution

We first show that erroneous and trivial instances
can be identified using the difficulty scores and
then present a human-and-model-in-the-loop tech-

Dataset Instance

SNLI
(72%)

Premise: Trucks racing. Hypothesis: Four trucks are
racing against each other in the relay.
Label: Entailment, Neutral

CSQA
(50%)

Why would a band be performing when there are no
people nearby? O1: record album, O2: play music, O3:
hold concert, O4: blaring, O5: practice

WG
(36%)

Maria was able to keep their weight off long term, unlike
Felicia, because _ followed a healthy diet.
O1: Maria, O2: Felicia

aNLI
(x%)

O1: Ella was taking her final exam. O2: Ella was able
to finish her exam on time. H1: Ella got to class early
and was in no hurry. H2: Ella broke her pencil.

Table 2: Examples of erroneous instances from SNLI,
CSQA, Winogrande, and Abductive NLI. Orange (am-
biguous) and red (mislabeled) correspond to the origi-
nally annotated answer while blue corresponds to the
correct/equally probable answer.

Figure 4: Comparing accuracy (averaged over 27 mod-
els) before and after modifying the SNLI instances
using our model-and-human-in-the-loop technique. The
accuracy on trivial instances decreases as we make them
more difficult while the accuracy on erroneous instances
increases as we repair them.

nique to modify/repair such instances resulting in
improved quality of the datasets.

Identifying Erroneous and Trivial Instances:
We inspect 50 instances each with very high and
very low difficulty scores and find that a significant
percentage of the former are either mislabeled or
contain ambiguity and the latter are too easy to be
answered.

Table 2 shows examples of erroneous instances
from SNLI, Winogrande, CSQA, and Abductive
NLI. We find 72% of the inspected SNLI instances
to be erroneous. Furthermore, we find that some
high difficulty score instances are actually difficult
even for humans because they require abilities such
as commonsense reasoning. Table 4 (appendix)
shows such instances. We also provide examples
of trivial instances (Table 6) and note that such
instances are trivial from model’s perspective as
they can be answered correctly (with high confi-
dence) by simply latching on to some statistical
cues present in the training data.
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Technique: Since the trivial instances are too
easy to be answered, we propose to modify them in
an adversarial way such that they no longer remain
trivial. Specifically, we include a human-in-the-
loop who needs to modify a trivial instance in a
label-preserving manner such that the modified ver-
sion fools the model into making an incorrect pre-
diction. For adversarial attack, we use the strongest
model from our ensemble of 120 models. It has two
key differences with the standard adversarial data
creation approach presented in (Nie et al., 2020;
Kiela et al., 2021): (a) it requires modifying an
already existing instance instead of creating a new
instance from scratch. (b) it does not increase the
size of the evaluation dataset as we replace an al-
ready saturated instance (trivial) with its improved
not-trivial version. We use a human instead of
leveraging automated ways to modify the trivial
instances because our objective is to improve the
quality of instances and prior work has shown that
these automated techniques often result in unnatu-
ral and noisy instances. Therefore, such techniques
could be cost-efficient but might not solve the sole
purpose of improving quality.

To further improve the quality, we provide in-
stances with very high difficulty score (potentially
erroneous) and ask a human to repair them such
that the repaired versions follow the task definition.
The human can either change the instance text or its
answer to achieve the goal. Note that this scenario
is model-independent.

4.3 Results

Table 3 shows original and modified instances from
SNLI. Top two examples correspond to the trivial
instances where the human modified the hypothe-
sis in a label-preserving manner such that it fooled
the model into making incorrect prediction. The
bottom two correspond to the mislabeled instances
where the human rectified the label. Figure 4 com-
pares the performance of models on the original
instances and the their modified/repaired versions.
As expected, the performance drops on the previ-
ously trivial instances as they are no longer trivial
and improves on the previously erroneous instances.
We release the improved version of the dataset com-
piled via our technique.

5 Other Applications of ILDAE

We now briefly discuss other ILDAE applications.

Original Instance Modification

P: A man standing in front of a
chalkboard points at a drawing.
H: A kid washes a chalkboard
L: Contradiction

H’: A 4 year old male standing
in front of a chalkboard points
at a drawing.
Predicted L: Neutral

P: A man is performing tricks
with his superbike. H: A bike is
in the garage. L: Contradiction

H’: He is performing stunts on
a four wheeler.
Predicted L: Neutral

P: A skateboarder does a trick
at a skate park. H: The skate-
boarder is performing a heelie
kick flip. L: Entailment

L’: Neutral

P: A little blond girl is running
near a little blond boy. H: A
sister and brother are playing in
their yard. L: Entailment

L’: Neutral

Table 3: Illustrative examples from SNLI dataset mod-
ified using our technique. Top two correspond to trivial
instances for which a human modified the hypothesis
in a label-preserving manner such that the model’s pre-
diction changed. Bottom two correspond to mislabeled
instances where the human rectified the label.

Figure 5: Comparing average difficulty of NLI labels
for various datasets.

5.1 Dataset Analysis

ILDAE reveals several useful characteristics of
datasets such as which class label has the easiest
instances. We study this for NLI datasets: SNLI,
MNLI, DNLI, and Adversarial NLI (Figure 5). For
SNLI and MNLI, we find that the contradiction in-
stances receive lower average difficulty score than
entailment and neutral instances. For Adversarial
NLI, the order is reversed. For DNLI, all the la-
bels get assigned nearly the same average difficulty.
Such analysis can serve as a guide for future data
creation as it indicates for which type of instances
more data collection effort needs to be invested.
It can also be used to compare average difficulty
at dataset level. Furthermore, a new harder task-
specific benchmark can be created by combining
high difficulty instances from all the datasets of
that task.
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Figure 6: Comparing accuracy of various models in
different difficulty regions for SNLI dataset. Each line
corresponds to a candidate model (27 in total). It shows
that a single model does not achieve the highest ac-
curacy in all difficulty regions.

5.2 Model Analysis

We divide the evaluation instances into different
regions based on the difficulty scores and analyze
models’ performance in each region. We find that
a single model does not achieve the highest accu-
racy across all regions. Figure 6 illustrates this pat-
tern for SNLI dataset. This implies that the model
that achieves the highest performance on easy in-
stances may not necessarily achieve the highest
performance on difficult instances. The similar pat-
tern is observed for other datasets (refer appendix).
Such analysis would benefit in model selection. For
instance, in scenarios where a system is expected to
encounter hard instances, we can select the model
that has the highest accuracy on instances of dif-
ficult regions. Whereas, for scenarios containing
easy instances, the model that has the highest accu-
racy on instances of easy regions.

5.3 Correlation with OOD Performance

Large pre-trained language models can achieve
high In-Domain performance on numerous tasks.
However, it does not correlate well with OOD
performance (Hendrycks and Dietterich, 2019;
Hendrycks et al., 2020). To this end, we present
an approach to compute a weighted accuracy that
shifts away from treating all the evaluations in-
stances equally and assigns weight based on their
difficulty scores. We define the weight wi of an

Figure 7: Comparing Kendall correlation of standard
unweighted accuracy and weighted accuracy with OOD
accuracy. Weighted accuracy achieves 5.2% higher
correlation on average.

instance i with difficulty score di as:

wi =
1 + µ ∗ di

N + µ ∗
∑N

j=1 dj

where N corresponds to the total number of eval-
uation instances, and µ is a hyper-parameter that
controls influence of difficulty score on the weight.
Then, weighted accuracy W is simply:

W =
N∑
i=1

wi ∗ vi

where vi is 1 when the model’s prediction is
correct else 0. This implies that high accuracy may
not always translate to high weighted accuracy.

We take SNLI as the in-domain dataset and
MNLI, DNLI, and HANS (McCoy et al., 2019)
(Constituent, Lexical Overlap, Subsequence) as
OOD datasets. We calculate unweighted and
weighted accuracy of the 27 models (described
in Section 3.3) and compare their Kendall correla-
tion with the accuracy on OOD datasets. Figure
7 shows this comparison. It can be observed that
weighted accuracy shows 5.2% higher correlation
with OOD performance that the standard accuracy.
Most improvement is observed in hard datasets i.e.
HANS. Thus, weighting instances based on their
difficulty score is more informative than the stan-
dard accuracy that treats all instances equally.

6 Conclusion

We conducted Instance-Level Difficulty Analysis
of Evaluation data (ILDAE) in a large-scale setup
of 23 datasets and presented its five novel applica-
tions. With these applications, we demonstrated
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ILDAE’s impact in several important areas, such
as conducting efficient evaluations with fewer in-
stances, improving dataset quality, and estimating
out-of-domain performance reliably. We release
our computed difficulty scores and hope that our en-
courage research in this important yet understudied
field of leveraging instance difficulty in evaluations.

Ethical Considerations

We use existing public-domain text datasets, such
as SNLI, Winogrande, and ARC, and follow the
protocol to use and adapt research data to compute
instance-level difficulty scores. We will release the
computed difficulty scores, but will not share the
original source data. We recommend readers to
refer to the original source research papers. Any
bias observed in difficulty scores computed using
our methods can be attributed to the source data
and our computation functions. However, no partic-
ular socio-political bias is emphasized or reduced
specifically by our methods.
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Appendix

A Difficulty Score Generalization

Figure 8 shows the trend of accuracy with difficulty
scores. With the increase in difficulty score, the
accuracy consistently decreases for all datasets.

Figure 8: Demonstrating difficulty score generaliza-
tion. It shows the variation of accuracy (averaged
over 27 models) with difficulty scores (computed using
RoBERTa-large only). The accuracy usually decreases
with the increase in difficulty proving the generalization
capability of our difficulty scores.

B Datasets

We experiment with the following datasets: SNLI
(Bowman et al., 2015), Multi-NLI (Williams et al.,
2018), Dialogue NLI (Welleck et al., 2019), Adver-
sarial NLI (R1, R2, R3) (Nie et al., 2020), QNLI
(Wang et al., 2018), QQP (Iyer et al., 2017), MRPC
(Dolan and Brockett, 2005), PAWS-QQP, PAWS-
Wiki (Zhang et al., 2019), SST-2 (Socher et al.,
2013), COLA (Warstadt et al., 2019) AG’s News
(Zhang et al., 2015), ARC-Easy, ARC-Challenge
(Clark et al., 2018), SWAG (Zellers et al., 2018),
Abductive-NLI (Bhagavatula et al., 2020), Wino-
grande (Sakaguchi et al., 2020), CommonsenseQA
(Talmor et al., 2019), QuaRel (Tafjord et al., 2019a),
QuaRTz (Tafjord et al., 2019b), and SocialIQA
(Sap et al., 2019).

Difficult Instance

Premise: Dog standing with 1 foot up in a large field. Hyp.:
The dog is standing on one leg. Label: Contradiction.

Premise: A salt-and-pepper-haired man with beard and glasses
wearing black sits on the grass. Hyp.: An elderly bearded man
sitting on the grass. Label: Entailment.

Premise: A man is standing in front of a building holding heart
shaped balloons and a woman is crossing the street. Hyp.: Some-
one is holding something heavy outside. Label: Contradiction.

Premise: A group of people plays a game on the floor of a living
room while a TV plays in the background. Hyp.: A group of
friends are playing the xbox while other friends wait for their
turn. Label: Contradiction.

Table 4: Illustrative examples of instances that receive
high difficulty score but are not erroneous. Such in-
stances are difficult even for humans as they require
reasoning ability.

C Actually Difficult Instances

Table 4 shows examples of instances that get as-
signed very high difficulty score but are actually
difficult even for humans because they require rea-
soning abilities such as commonsense knowledge.

D Difficulty Score Vs Accuracy

Figure 9 shows the trend of accuracy against diffi-
culty scores for each individual model for MRPC
and SocialIQA datasets. Accuracy consistently de-
creases with the difficulty score for both datasets.

E Erroneous Instances

Table 5 shows examples of erroneous instances in
SNLI, CSQA, Winogrande, and Abductive NLI.
Orange (ambiguous) and red (mislabeled) indicate
the originally annotated answer while blue indi-
cates the True/equally probable answer. These
dataset have a non-trivial number of such questions.
Specifically, SNLI has 72% of such erroneous in-
stances.

F Trivial Instances

Table 6 shows examples of trivial instances in SNLI
and CSQA datasets.

G Efficient Evaluations

Table 7 shows the Kendall correlation with full
dataset evaluation achieved by our instance selec-
tion approach for different percentages of instances.
Our approach achieves high correlation values even
for low percentage values.
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(a) MRPC (b) SocialIQA

Figure 9: Variation of accuracy with difficulty score for MRPC and SocialIQA datasets. Each line corresponds to a
candidate model (27 in total).

Dataset Instance

SNLI Premise: Trucks racing. Hyp.: Four trucks are racing
against each other in the relay. Entailment, Neutral

(72%) Premise: Two elderly men having a conversation. Hyp.:
Two elderly woman having a conversation with their
children. Neutral, Contradiction

CSQA Why would a band be performing when there are no
people nearby? O1: record album, O2: play music, O3:
hold concert, O4: blaring, O5: practice

(50%) What do audiences clap for? O1: cinema, O2: theatre,
O3: movies, O4: show, O5: hockey game

WG Maria was able to keep their weight off long term, unlike
Felicia, because _ followed a healthy diet. O1: Maria,
O2: Felicia

(36%) When Derrick told Christopher about quitting school
to provide for their family, _ started panicking. O1:
Derrick, O2: Christopher

aNLI O1: Ella was taking her final exam. O2: Ella was able
to finish her exam on time. H1: Ella got to class early
and was in no hurry. H2: Ella broke her pencil.

(x%) O1: Cathy was happy that she finally had some time to
sew. O2: Cathy tapped her metal fingertips on the table
in frustration. H1: Cathy put the thimbles on. H2: Cathy
could not get the thread into the fabric.

Table 5: Illustrative examples of erroneous instances in
SNLI, CSQA, Winogrande, and Abductive NLI. Orange
(ambiguous) and red (mislabeled) indicate the originally
annotated answer while blue indicates the True/equally
probable answer.

Dataset Instance

SNLI Premise: A woman playing with her cats while taking
pictures. Hyp.: A woman is playing with her dolls.
Contradiction

CSQA What will a person going for a jog likely be wearing? O1:
grope, O2: acknowledgment, O3: comfortable clothes,
O4: ipod, O5: passionate kisses

WG Katrina did not value the antique pictures as much as
Lindsey because _ was a history buff. O1: Katrina, O2:
Lindsey

aNLI O1: I bought a house with an ugly yard. O2: He carved
the rock into a lion head and kept it. H1: There was a
large rock in the yard. H2: I decided to tear the whole
notebook up.

Table 6: Illustrative examples of trivial instances in
SNLI, CSQA, Winogrande, and Abductive NLI. Text in
blue corresponds to the ground-truth answer.
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25% 30% 40% 50% 60% 75%
Dataset P P P P P P

SNLI 0.950.0 0.950.01 0.960.01 0.960.01 0.960.01 0.970.01
PAWS Wiki 0.980.01 0.980.02 0.980.01 0.980.01 0.980.01 0.990.01
AgNews 0.930.01 0.930.02 0.930.01 0.960.01 0.960.01 0.970.01
QNLI 0.920.02 0.920.03 0.930.02 0.960.01 0.960.01 0.970.01
MRPC 0.670.13 0.70.11 0.750.08 0.840.05 0.840.03 0.880.03
SocialIQA 0.840.04 0.870.02 0.890.02 0.910.01 0.930.02 0.940.03
QQP 0.960.01 0.960.01 0.960.01 0.970.01 0.980.0 0.990.01
DNLI 0.960.02 0.970.02 0.970.02 0.980.01 0.980.01 0.980.01
COLA 0.80.05 0.820.07 0.890.06 0.910.02 0.920.04 0.960.02
SWAG 0.970.01 0.960.01 0.970.01 0.980.01 0.990.0 0.990.01
PAWS QQP 0.890.02 0.920.02 0.920.02 0.930.02 0.940.01 0.940.02
MNLI 0.950.01 0.970.01 0.970.01 0.980.0 0.970.01 0.980.01
Adv. NLI R1 0.620.06 0.640.08 0.670.06 0.730.06 0.790.05 0.840.07
Adv. NLI R2 0.420.08 0.460.1 0.540.14 0.630.05 0.710.05 0.770.03
Adv. NLI R3 0.610.05 0.590.06 0.660.1 0.750.06 0.790.06 0.850.04
SST-2 0.830.05 0.860.04 0.870.02 0.870.04 0.910.03 0.920.01
ARC Easy 0.760.07 0.780.08 0.840.08 0.850.05 0.890.03 0.940.02
ARC Diff 0.410.36 0.490.32 0.620.28 0.590.18 0.750.1 0.860.06
Abductive NLI 0.720.03 0.770.03 0.790.06 0.820.03 0.860.02 0.880.04
Winogrande 0.240.13 0.30.16 0.390.17 0.440.16 0.530.09 0.630.07
CSQA 0.850.04 0.860.03 0.890.03 0.910.02 0.940.02 0.950.01
QuaRel 0.570.12 0.580.16 0.730.1 0.80.15 0.790.07 0.810.07
QuaRTz 0.370.12 0.440.07 0.510.12 0.570.09 0.620.11 0.640.08

Table 7: Kendall correlation with full dataset evaluation achieved by our proposed instance selection approach for
different percentage of instances. Each cell shows the mean and standard deviation obtained from 5 different runs.
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