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Abstract

Existing reference-free metrics have obvious
limitations for evaluating controlled text gen-
eration models. Unsupervised metrics can
only provide a task-agnostic evaluation result
which correlates weakly with human judg-
ments, whereas supervised ones may over-
fit task-specific data with poor generalization
ability to other datasets. In this paper, we
propose an unsupervised reference-free metric
called CTRLEval, which evaluates controlled
text generation from different aspects by for-
mulating each aspect into multiple text infill-
ing tasks. On top of these tasks, the metric
assembles the generation probabilities from a
pre-trained language model without any model
training. Experimental results show that our
metric has higher correlations with human
judgments than other baselines, while obtain-
ing better generalization of evaluating gener-
ated texts from different models and with dif-
ferent qualities1.

1 Introduction

Controlled text generation aims to generate texts
under some control variables, including pre-
specified content prefixes and attribute labels (such
as sentiments and topics). Controlled text genera-
tion has been significantly advanced by large-scale
pre-trained models with respect to generation qual-
ity and various control variables (Keskar et al.,
2019; Dathathri et al., 2020; Yang and Klein, 2021;
Liu et al., 2021a; Chan et al., 2021).

Despite the great success of these generation
models, it becomes critical to evaluate the qual-
ity of generated texts accurately. Most of the ex-
isting studies adopt unsupervised and supervised
metrics to measure the quality of generated texts

∗ Part of the work was done while Peng Li was working
at Tencent.

† Corresponding author
1The data and codes are available at https://github.

com/thu-coai/CTRLEval.

under different combinations of control variables
(Dathathri et al., 2020; Chan et al., 2021). The eval-
uation is commonly conducted in a reference-free
setting because it is challenging to collect sufficient
high-quality references for each input of control
variables in this open-ended text generation task
(Dathathri et al., 2020).

However, both unsupervised and supervised met-
rics have shown limitations in the evaluation of
controlled text generation: 1) Unsupervised met-
rics such as perplexity (Brown et al., 1992) can
only provide task-agnostic evaluation regarding
the overall quality of generated texts. However,
controlled text generation tasks typically involve
multiple evaluation aspects (Deng et al., 2021), in-
cluding the quality of generated texts themselves
and the relationship between generated texts and
control variables. It is thus not surprising that ex-
isting unsupervised metrics without multi-aspect
interpretability have low correlations with human
judgments (Hashimoto et al., 2019). 2) Supervised
metrics are commonly trained on the datasets of
specific tasks to measure the corresponding aspects
of generated texts (e.g., evaluating whether a gen-
erated text is accordant with the sentiment label)
(Dathathri et al., 2020; Chan et al., 2021). This
may cause over-fitting to task-specific data and
degrade the generalization ability of metrics (Gar-
bacea et al., 2019), thereby giving unstable evalu-
ation of generated texts from different models or
with different qualities (Guan and Huang, 2020).

To deal with the above issues, we propose an un-
supervised reference-free metric called CTRLEval
for evaluating controlled text generation models.
This metric performs evaluation from different as-
pects without any training on task-specific data.
Specifically, we formulate the evaluation of each
aspect into “fill-in-the-blank” tasks whose input
and output patterns can be designed based on the
definition of the aspect. Then, we utilize a pre-
trained model whose pre-training task is text in-

2306

https://github.com/thu-coai/CTRLEval
https://github.com/thu-coai/CTRLEval


filling (such as PEGASUS (Zhang et al., 2020a))
as our base model, and fuse the generation proba-
bilities from these “fill-in-the-blank” tasks as the
evaluation result. To alleviate the potential bias
caused by the task design (Zhao et al., 2021), we
devise multiple text infilling tasks for each aspect
and use the weighted sum of all the results as the
final score. In this paper, we consider three as-
pects which are commonly used to measure the
performance of controlled text generation models,
including coherence (Yuan et al., 2021), consis-
tency (Rashkin et al., 2020), and attribute relevance
(Dathathri et al., 2020). These evaluation aspects
cover both the quality of generated texts and the
relationship between generated texts and different
control variables, which can provide a comprehen-
sive evaluation result for controlled text generation.
Experimental results show that our metric can main-
tain the generalization ability and achieve stable
performance faced with model drift and quality
drift.

Our main contributions are as follows:

• We propose an unsupervised reference-free
metric called CTRLEval for evaluating con-
trolled text generation. This metric formulates
three evaluation aspects (i.e., coherence, con-
sistency, and attribute relevance) into multiple
text infilling tasks, and utilizes the ensemble
of generation probabilities from a pre-trained
language model as the evaluation results.

• We conduct experiments on two bench-
mark tasks including sentiment-controlled and
topic-controlled text generation based on our
collected evaluation set. Experimental results
show that our proposed metric has higher cor-
relations with human judgments, while obtain-
ing better generalization of evaluating gen-
erated texts from different models and with
different qualities.

2 Related Work

2.1 Controlled Text Generation

Early studies on controlled text generation adopt
attribute label embeddings (Ficler and Goldberg,
2017; Zhou et al., 2018) or latent variables (Hu
et al., 2017; Ke et al., 2018; Zhou and Wang,
2018) to learn the complex relationship between
control variables and generated texts. With the
development of large-scale generative pre-trained

models, it is costly to re-train or fine-tune pre-
trained models on the corpora with attribute an-
notations (Keskar et al., 2019). Recent works re-
sort to decoding-time methods and directly make
pre-trained models generate texts towards de-
sired attributes during inference, including PPLM
(Dathathri et al., 2020), GeDi (Krause et al., 2020),
FUDGE (Yang and Klein, 2021) and DEXPERTS
(Liu et al., 2021a). These works rely heavily on hu-
man evaluation because existing reference-free met-
rics including unsupervised and supervised ones
are shown to have evident limitations for evaluating
controlled text generation (Dathathri et al., 2020).

2.2 Evaluation Metric for Text Generation

Automatic evaluation metrics are important for nat-
ural language generation tasks, which can be sim-
ply divided into referenced, reference-free (also
known as unreferenced) and hybrid metrics: 1)
Referenced metrics usually measure the relevance
between generated texts and reference texts via
lexicon overlap (such as BLEU (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005)
and ROUGE (Lin, 2004)) or embedding simi-
larity (such as MoverScore (Zhao et al., 2019),
BERTScore (Zhang et al., 2020b) and MARS (Liu
et al., 2021b)). 2) Reference-free metrics directly
evaluate the quality of generated texts without ref-
erences. Since unsupervised metrics like perplex-
ity (Brown et al., 1992) and distinct n-grams (Li
et al., 2016) can only provide a task-agnostic result
which correlates weakly with human judgments
(Hashimoto et al., 2019; Tevet and Berant, 2021),
most of the reference-free metrics resort to super-
vised models. Specifically, they are trained to fit
human-annotated ratings / labels (such as discrim-
inator scores (Shen et al., 2017)) or distinguish
human-written texts from negative samples (such
as UNION (Guan and Huang, 2020)). 3) Hybrid
metrics contain both referenced and reference-free
scores, such as RUBER (Tao et al., 2018; Ghaz-
arian et al., 2019), BLEURT (Sellam et al., 2020)
and BARTScore (Yuan et al., 2021).

Compared with existing reference-free metrics
which are unsupervised, our metric can support
the evaluation of generated texts from different as-
pects via the full utilization of pre-trained models
and the formulation of text infilling tasks, which
fits the evaluation protocol of controlled text gen-
eration well. Also, in contrast with supervised
reference-free metrics, our metric can avoid over-
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Figure 1: Overview of CTRLEval. Left: The three evaluation aspects measure the relationship among content
prefixes, attribute labels, and generated texts. Medium: The evaluation result S(I) is computed based on the
ensemble of the scores from pattern evaluators Ej(1 ≤ j ≤ NE). The score sj(I) of each pattern evaluator Ej is
obtained by the generation probability of the encoder-decoder pre-trained language model in the text infilling task,
with the input of fj(I) and the output of gj(I). Right: The evaluation results for three aspects Scoh(I) / Scons(I)
/ SAR(I) are acquired by the corresponding pattern evaluators, respectively.

fitting task-specific data and maintain better gen-
eralization ability to evaluate generated texts from
different models and with different qualities.

3 Method

3.1 Task Definition and Method Overview
Given the input I = (X, a, Y ) which consists of a
content prefix X , an attribute label a, and a gener-
ated text Y , our goal is to acquire three evaluation
results for coherence, consistency and attribute rel-
evance, respectively.

As shown in Figure 1, our main idea is to for-
mulate each evaluation aspect into multiple text
infilling tasks and utilize the ensemble of the scores
from each task as the final evaluation results. We
denote each text infilling task as a pattern evalua-
tor , which means evaluation with different input
and output patterns. Inspired by the recent works
on pattern-exploiting training (Schick and Schütze,
2021a,b) and prompt tuning (Gu et al., 2021), we
define each pattern evaluator as E = (f, g), which
consists of two pattern functions to build the in-
put and output sequence of text infilling tasks,
respectively. The score of each pattern evalua-
tor is acquired from the generation probability of
the encoder-decoder pre-trained language model
whose pre-training task is to generate the masked
part from the remaining texts of the input. For each
aspect, we devise multiple pattern evaluators to

alleviate the potential bias caused by the pattern
design (Zhao et al., 2021), and weight the scores of
all the evaluators to obtain the final result:

S(I) =

NE∑
j=1

βj(I) · sj(I) (1)

whereNE is the number of pattern evaluators, S(I)
denotes the overall score for each aspect, βj(I)
is a factor to weight the pattern evaluators of the
corresponding aspect and sj(I) indicates the score
of each pattern evaluator based on the generation
probability of the pre-trained model.

3.2 Evaluation Aspect
3.2.1 Coherence
Coherence aims to measure whether the sentences
in the generated text are semantically relevant
to compose a coherent body (Vakulenko et al.,
2018; Yuan et al., 2021), which reflects the qual-
ity of the generated text itself. Assume that the
generated text Y consists of M sentences, i.e.,
Y = (Y1, Y2, · · · , YM ), we devise M pattern eval-
uators Ej = (fj , gj)(1 ≤ j ≤ M) to measure
the relevance between each sentence and all the
remaining sentences:

fj(I) = Y\j = Y1 · · ·Yj−1[M]Yj+1 · · ·YM (2)

gj(I) = Yj (3)
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where Y\j indicates the generated text Y with the
j-th sentence replaced by a mask token [M]. The
score of each pattern evaluatorEj can be computed
via the log probability of the pre-trained model Pθ:

sj(I) = logPθ(gj(I)|fj(I)) = logPθ(Yj |Y\j)
(4)

Since specific and informative sentences are
more likely to impact the quality of the whole text,
we adopt normalized inverse sentence frequency
(NISF) (Zhang et al., 2018) of the output sentence
which can reflect its specificity to weight each pat-
tern evaluator:

βj(I) = NISF(Yj) =
ISF(Yj)∑M
k=1 ISF(Yk)

(5)

ISF(Yj) = max
w∈Yj

IWF(w) (6)

where the inverse sentence frequency (ISF) of Yj is
computed by the maximum inverse word frequency
(IWF) of the words in Yj . We estimate IWF on
a general corpus BookCorpus (Zhu et al., 2015),
which is commonly adopted as the pre-training
dataset in the existing works (Devlin et al., 2019):

IWF(w) =
log(1 + |C|)

fw
(7)

where |C| indicates the total number of sentences
in BookCorpus and fw denotes the number of sen-
tences containing the word w. Thus, the evaluation
result of coherence can be obtained by the ensem-
ble of the scores from all the pattern evaluators:

Scoh(I) =
M∑
j=1

NISF(Yj) · logPθ(Yj |Y\j) (8)

3.2.2 Consistency
Consistency aims to evaluate whether the generated
text is consistent to the content prefix (Celikyilmaz
et al., 2020; Rashkin et al., 2020). We devise two
symmetric pattern evaluatorsEX→Y andEY→X to
evaluate the consistency between the content prefix
and the generated text as follows:

fX→Y (I) = X[M], gX→Y (I) = Y\X (9)

fY→X(I) = [M]Y\X , gY→X(I) = X (10)

where Y\X denotes the remaining part of the gener-
ated text without the prefix. Similar to coherence,
we still adopt the log probability of the pre-trained
model as the pattern evaluator’s score and weight

them with normalized inverse sentence frequency
to obtain the final result of consistency:

Scons(I) = NISF(Y\X) · logPθ(Y\X |X[M])
+ NISF(X) · logPθ(X|[M]Y\X) (11)

3.2.3 Attribute Relevance
Attribute relevance aims to measure whether the
generated text satisfies the attribute label (Dathathri
et al., 2020). To probe the relevance between gen-
erated texts and attribute labels, we first introduce
a verbalizer v(·) which maps all the attribute labels
a in the attribute set A to the corresponding words
(Schick and Schütze, 2021a). Then, we design the
pattern evaluators Ej = (fj , gj)(1 ≤ j ≤ NAR)
where fj(·) adds prompts and a mask token to the
generated text, and gj(·) is set to be a verbalizer:

fj(I) = Concat(Promptj ,[M], Y ) (12)

gj(I) = vj(a) (13)

where Concat(·) indicates the concatenation of the
prompt, the mask token, and the generated text in
some order. We give an example for the pattern
design of attribute relevance which is also shown in
Figure 1. In this example, the attribute is set to be
the sentiment A = {Positive,Negative}, while the
patterns are designed as f(I) = “Y It was [M].”
and g(I) = v(Positive/Negative) = good/bad.

Inspired by the existing works (Schick and
Schütze, 2021a), we use the generation probability
of the corresponding label word over all the label
words as the score of the pattern evaluator:

sj(I) =
Pθ(vj(a)|fj(I))∑

a′∈A Pθ(vj(a
′)|fj(I))

(14)

Based on the assumption that the pattern evalu-
ator is adequate to measure the data sample if the
words of all the attribute labels are easily generated,
we devise the unnormalized weighted score of each
evaluator as the sum of generation probabilities
over all the attribute labels:

wj(I) =
∑
a′∈A

Pθ(vj(a
′
)|fj(I)) (15)

βj(I) =
wj(I)∑NAR
k=1 wk(I)

(16)

Similarly, the evaluation result of attribute rele-
vance can be acquired by the weighted sum of all
the pattern evaluators’ scores:

SAR(I) =

NAR∑
j=1

βj(I) · sj(I) (17)
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Task #Prefixes #Labels #Models #Samples #Ratings (per sample) Length Krippendorff’s α

Sentiment 15 2 4 360 5 54.2 0.626
Topic 20 4 4 960 5 55.7 0.622

Table 1: Statistics of the evaluation set, including the number of the prefixes / attribute labels / generation models /
samples / ratings (per sample), the average length of each sample and Krippendorff’s α.

4 Experiment

4.1 Datasets
Since there is no standard benchmark dataset for
evaluating controlled text generation, we construct
an evaluation set to measure the correlation be-
tween automatic metrics and human judgments.
Task: We choose sentiment-controlled and topic-
controlled text generation as the benchmark tasks,
which are widely used in the existing works
(Dathathri et al., 2020; Chan et al., 2021). These
two tasks require the models to generate texts
conditioned on the given prefixes and sentiment
/ topic labels, respectively. In the task of
sentiment-controlled text generation, we follow
PPLM (Dathathri et al., 2020) and CoCon (Chan
et al., 2021) to adopt 15 prefixes and 2 sentiment
labels (i.e., positive and negative). As for topic-
controlled text generation, we follow CoCon (Chan
et al., 2021) to adopt 20 prefixes and 4 topic labels
(i.e., computers, politics, religion, and science).
Generation Models: We consider various genera-
tion models including CTRL (Keskar et al., 2019),
PPLM (Dathathri et al., 2020), GeDi (Krause et al.,
2020), and CoCon (Chan et al., 2021). These
representative models support both the sentiment-
controlled and topic-controlled text generation
tasks, and cover different levels of generation abil-
ities. We make these models generate 3 different
samples for each unique pair of prefixes and at-
tribute labels. We set the maximum length of gen-
erated texts to be 80 and remove the last sentence
if it is not complete. We directly use the generation
results if they have been released by the original
papers. Otherwise, we run the original codes to
obtain the generation results.
Human Annotation: We collect human ratings on
the generated texts from Amazon Mechanical Turk
(AMT). Each survey of AMT contains a prefix, an
attribute label, and five generated texts including
(a) four generated texts from the above four models
respectively, and (b) one negative sample which is
constructed by perturbing (e.g. sentence shuffling
and dropping) another sample from the evaluation
set (Guan et al., 2021). We ask annotators to rate

Task #Seed Prompts #Prompts #Verbalizers #Evaluators

Sentiment 3 24 3 72
Topic 4 32 1 32

Table 2: Statistics of the pattern evaluators in attribute
relevance. The number of evaluators is obtained by
multiplying the number of prompts and verbalizers.

these texts with a 1-5 Likert scale for each aspect.
To control the annotation quality, we discard the
submissions if the annotator assigns a higher rating
to the negative sample than other texts. We ensure
that each generated text contains 5 valid ratings
for each aspect, where the average value of valid
ratings is used as the human judgments. We also
calculate Krippendorff’s α (Krippendorff, 2018)
to show the agreement of human ratings, which
is 0.626 / 0.622 for sentiment-controlled / topic-
controlled text generation tasks, respectively.

The statistics of the evaluation set are shown in
Table 1.

4.2 Implementation Details

We choose PEGASUS (Zhang et al., 2020a) as
our base model in the overall result and also ex-
plore other pre-trained models in §4.8. The hyper-
parameters of Transformer blocks are the same as
PEGASUS-large with 568M parameters. As for the
pattern evaluators in attribute relevance involving
prompts and verbalizers which need to be addition-
ally designed, we follow BARTScore (Yuan et al.,
2021) to first adopt manually devised seed prompts
and verbalizers in the existing works (Schick and
Schütze, 2021a,b), and then collect paraphrases to
automatically expand our evaluator set. The statis-
tics of pattern evaluators in attribute relevance are
presented in Table 2. More details about the spe-
cific design of prompts and verbalizers are included
in Appendix A.

4.3 Baselines

We choose several state-of-the-art reference-free
metrics as our baselines:
Perplexity (PPL) (Brown et al., 1992): This
method calculates the perplexity of generated texts
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Task Sentiment Topic

Aspect Coherence Consistency Coherence Consistency

Metric r ρ τ r ρ τ r ρ τ r ρ τ

DisScore 0.2938 0.2329 0.1664 0.2010 0.1662 0.1178 0.1526 0.1315 0.0937 0.0053 0.0072 0.0051
UNION 0.2317 0.2571 0.1836 0.1925 0.1422 0.1009 0.1628 0.1300 0.0924 0.0664 0.0777 0.0553
BLEURT 0.2585 0.2606 0.1850 0.2382 0.2012 0.1445 0.1631 0.1428 0.1016 0.0433 0.0607 0.0443

PPL-GPT 0.3376 0.3310 0.2350 0.1881 0.1672 0.1203 0.1459 0.1316 0.0940 0.1013 0.0841 0.0595
PPL-PEGASUS 0.3901 0.3860 0.2743 0.2728 0.2513 0.1808 0.1420 0.1313 0.0929 0.1883 0.1771 0.1235
BARTScore 0.3880 0.3848 0.2736 0.2682 0.2533 0.1804 0.1599 0.1325 0.0939 0.1528 0.1408 0.0978
BARTScore-PEGASUS 0.3853 0.3712 0.2653 0.2480 0.2267 0.1630 0.1638 0.1493 0.1048 0.1539 0.1362 0.0953

CTRLEval (Ours) 0.4395 0.4208 0.3044 0.3226 0.3096 0.2235 0.2403 0.2245 0.1582 0.2342 0.2281 0.1595

Table 3: Pearson (r), Spearman (ρ), and Kendall (τ ) correlations of coherence and consistency in sentiment-
controlled and topic-controlled text generation.

Task Sentiment Topic

Aspect Attr. Rel. Attr. Rel.

Metric r ρ τ r ρ τ

DisScore 0.2213 0.2914 0.2068 0.3624 0.2777 0.1969
UNION -0.0133 -0.0324 -0.0219 -0.0483 -0.0635 -0.0455
BLEURT 0.0801 0.0652 0.0467 0.1040 0.0841 0.0604

PPL-GPT -0.0197 -0.0472 -0.0338 0.0853 0.1084 0.0769
PPL-PEGASUS 0.0356 -0.0070 -0.0083 0.0611 0.0662 0.0480
BARTScore -0.0006 -0.0488 -0.0372 0.0776 0.0853 0.0603
BARTScore-PEGASUS 0.0336 -0.0271 -0.0221 0.0605 0.0567 0.0402

CTRLEval (Ours) 0.2861 0.3008 0.2111 0.5189 0.4006 0.2865

Table 4: Pearson (r), Spearman (ρ), and Kendall
(τ ) correlations of attribute relevance in sentiment-
controlled and topic-controlled text generation. Note
that the baselines which are not trained on attribute-
annotated corpora can hardly measure the relevance be-
tween generated texts and attribute labels, thereby caus-
ing low correlations.

with a language model. We use GPT (Radford
et al., 2018) and PEGASUS (Zhang et al., 2020a)
as the base models since GPT is commonly used
in the existing works (Dathathri et al., 2020) and
PEGASUS is our base model. They are denoted as
PPL-GPT and PPL-PEGASUS, respectively.
Discriminator Score (DisScore) (Kannan and
Vinyals, 2017; Chan et al., 2021): This method
trains a discriminator with different objectives.
We adopt the IMDB movie review dataset (Maas
et al., 2011) / HuffPost News category dataset2 for
sentiment-controlled / topic-controlled text genera-
tion tasks, respectively. For coherence and consis-
tency, the discriminator is trained to distinguish
human-written texts from manually constructed
negative samples, where the ratio of positive and
negative samples is 1:1. For attribute relevance, it

2https://www.kaggle.com/rmisra/
news-category-dataset

is trained based on the sentiment / topic classifi-
cation task, respectively (Chan et al., 2021). Both
the sentiment and topic discriminators are imple-
mented based on BERT (Devlin et al., 2019) and
they achieve 94.15% / 91.54% on the correspond-
ing test set, respectively.
UNION (Guan and Huang, 2020): This method is
a self-supervised metric which is trained to distin-
guish human-written texts from the automatically
perturbed negative samples with well-designed neg-
ative sampling strategies and multi-task learning.
We use the same datasets as the discriminator score
to train UNION.
BLEURT (Sellam et al., 2020): This method is a
supervised metric which is pre-trained on synthetic
examples and then fine-tuned to fit human ratings.
We used the same instruction in §4.1 to additionally
annotate the generated texts to construct the train-
ing set for BLEURT, whose amount is the same
as the evaluation set. There is no overlap between
BLEURT’s training set and the evaluation set.
BARTScore (Yuan et al., 2021): This method uti-
lizes the generation probabilities of BART (Lewis
et al., 2020) to measure the relationship among
sources, hypotheses, and references. Since this
metric simultaneously contains referenced and
reference-free parts, we only use the reference-
free score in our experiments. We also use PEGA-
SUS (Zhang et al., 2020a) as the base model for a
fair comparison, which is denoted as BARTScore-
PEGASUS.

4.4 Overall Result

We follow the existing work (Guan and Huang,
2020; Yuan et al., 2021) to adopt Pearson (r), Spear-
man (ρ), and Kendall (τ ) correlation coefficients
between automatic metrics and human judgments
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to measure the performance of different metrics.
The overall results on sentiment-controlled and

topic-controlled text generation are shown in Table
3 and 4. We can observe that CTRLEval outper-
forms other baselines with a large margin, indi-
cating the effectiveness of our metric on different
evaluation aspects. In Table 4, unsupervised base-
lines can hardly measure the relevance between
generated texts and attribute labels because they
only provide a task-agnostic score which is weakly
relevant to this specific aspect. For comparison, our
metric, which supports the evaluation for different
aspects of generated texts via the design of text
infilling tasks, can obtain much better performance
and even outperform the supervised baselines.

4.5 Ablation Study

Metric Aspect

Coherence Consistency Attr. Rel.

CTRLEval (Ours) 0.2403 0.2342 0.5189

Weight of Pattern Evaluators (w/o β)

w/ mean(·) 0.2295 0.1927 0.5091
w/ max(·) 0.2323 0.1772 0.5170
w/ min(·) 0.1518 0.1559 0.4153

Pattern Function (w/o f&g)

w/ PPL-GPT-PF 0.2041 0.2169 0.4376
w/ BARTScore-PF 0.1236 0.1843 0.3972

Table 5: Pearson correlation of ablation models in
topic-controlled text generation.

To further investigate the effect of each module,
we conduct ablation studies on the weight of pat-
tern evaluators and the design of pattern functions.
For the weight of evaluators, we use the mean, max-
imum and minimum values of all the evaluators as
the final result rather than the weighted sum based
on the factor β. As for the design of pattern func-
tions, we fix the base model and replace our input
and output patterns (f&g) with those of PPL-GPT
(Radford et al., 2018) and BARTScore (Yuan et al.,
2021). The pattern functions of these ablation mod-
els are not designed for text infilling tasks. Both of
them remove the mask token in the input pattern,
and PPL-GPT additionally places the input pattern
at the beginning of the output pattern.

The results in Table 5 show that each module in
our metric contributes to the final performance. As
for the weight of evaluators, we can observe that
our weight factor performs better than common ag-
gregation functions especially in consistency, indi-

cating the necessity of the well-designed ensemble
method when the number of pattern evaluators is
small. Also, our pattern functions outperform those
of other baselines, thereby showing the effective-
ness of text infilling tasks which can fully utilize
pre-trained models in an unsupervised setting.

4.6 Analysis on Generalization Ability

Generalization ability is essential for automatic
metrics to evaluate open-ended text generation
models. In this section, we will test whether our
metric can be generalizable to measure the gener-
ated texts faced with model drift and quality drift.

4.6.1 Model Drift
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Figure 2: Pearson correlation on the generated re-
sults from four generation models in the task of topic-
controlled text generation.

To measure whether CTRLEval is reliable to as-
sess the generated results of different models, we
split the evaluation set into four subsets based on
the generation model and calculate Pearson corre-
lation between each metric and human judgments.

The results in Figure 2 show that our metric
can outperform other baselines on the generated
texts of all the generation models. Simultaneously,
CTRLEval can achieve stable performance with
smaller variances when evaluating different gener-
ation models, indicating that our metric can gener-
alize to the model drift better.

4.6.2 Quality Drift
To evaluate the generalization ability of CTRLEval
on the generated texts with different qualities, we
follow the existing work (Sellam et al., 2020; Guan
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Figure 3: Top: The number of samples with different
coherence scores in the four biased evaluation subsets.
Bottom: Pearson correlation of different metrics on the
biased evaluation subsets.

and Huang, 2020) to construct four biased subsets
based on the coherence score of topic-controlled
text generation. We first sort all the samples in the
evaluation set and use the quartiles to split them
into four subsets with the index from 0 to 3. Then,
we create four biased subsets. For the jth subset,
we sampled the generated texts which belong to
the original ith subset with a probability of 1

|j−i|+1
where i, j = 0, 1, 2, 3. Thus, the four biased sub-
sets have different distributions of generated texts
with different qualities, as shown in Figure 3.

We then calculate the Pearson correlation be-
tween each metric and human judgments. The
results in Figure 3 show that CTRLEval has higher
correlations than the baselines on the evaluation
subsets with different qualities. Also, our metric
can achieve more stable performance on different
subsets, which shows our better generalization abil-
ity to deal with quality drift.

4.7 Analysis on the Number of Evaluators
To investigate how the number of pattern evalua-
tors affects the performance, we randomly sample
the evaluators 20 times when evaluating attribute
relevance in topic-controlled text generation, and
illustrate mean values and standard deviations of
each number of evaluators in Figure 4.

Figure 4 shows that as the number of evaluators
increases, the mean value of our performance can
be persistently improved while the standard devi-
ation is gradually reduced. This demonstrates the
necessity of devising multiple pattern evaluators for
each aspect, which can alleviate the bias brought
by the pattern design. The comparison between
the pattern functions of CTRLEval and other base-
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Figure 4: Pearson correlation of the models with differ-
ent numbers of evaluators.

lines indicates our superior performance on all the
numbers of evaluators.

4.8 Analysis on Base Model

Base Model #Param Aspect

Coherence Consistency Attr. Rel.

PEGASUS 568M 0.3044 0.2235 0.2111
BART 400M 0.3123 0.1650 0.1951
T5 770M 0.2930 0.2350 0.2075

Table 6: Kendall correlation of CTRLEval with differ-
ent base models in sentiment-controlled text generation.
#Param means the number of parameters.

Since our method can adapt to different pre-
trained models whose pre-training task is text in-
filling, we additionally choose BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020) as our base
model, and present the results in Table 6.

Table 6 shows that PEGASUS and T5 obtain
comparable performance on all the evaluation as-
pects, which indicates that our well-designed text
infilling tasks can be transferable to T5 without
considerable modification. As for BART which
performs worse on consistency and attribute rel-
evance, we conjecture that the fewer parameters
and the form of pre-training tasks may limit the
performance. Since the pre-training task of BART
is to generate the complete text rather than only the
masked part of the input text, it may not be good at
the evaluation involving a short span of texts, such
as the prefix in the evaluation of consistency and
the label word in attribute relevance.

We also provide the analysis on the number of
parameters in Appendix B and the case study in
Appendix C.
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5 Discussion

Extension to More Control Variables: In this pa-
per, we evaluate the relationship between generated
texts and two control variables (including content
prefixes and attribute labels) via consistency and at-
tribute relevance, respectively. We can also extend
our metric to other control variables by designing
additional pattern evaluators to measure the rela-
tionship between generated texts and each variable,
respectively. We will further investigate the exten-
sibility of our metric in the future work.
Design of Pattern Evaluators: With the rapid de-
velopment of prompt tuning, recent works have pro-
posed new methods on the design of prompts and
verbalizers (Gao et al., 2021; Lester et al., 2021),
which provide alternatives to our metric in attribute
relevance. Also, the weight factor of each evaluator
can be set as diversity metrics (Hashimoto et al.,
2019) besides NISF in coherence and consistency.
We will leave the exploration of more settings on
pattern evaluators as the future work.

6 Conclusion

We present an unsupervised reference-free metric
called CTRLEval for evaluating controlled text gen-
eration. This metric formulates the evaluation of
different aspects into multiple text infilling tasks,
and utilizes the ensemble of generation probabili-
ties from a pre-trained model in different tasks as
the evaluation result. Experimental results indicate
that CTRLEval obtains higher correlations with
human judgments and shows better generalization
ability for addressing model drift and quality drift.
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A Pattern Evaluator for Attribute
Relevance

We first choose the prompts and verbalizers which
have been shown to work well in the existing works
on few-shot text classification (Schick and Schütze,
2021a; Gao et al., 2021) and generation (Schick
and Schütze, 2021b) as the seed prompts and ver-
balizers. Then, we expand our prompt set with the
following rules: 1) Switching the order of gener-
ated texts, prompts, and mask tokens; 2) Collecting
the paraphrases of seed prompts just as BARTScore
(Yuan et al., 2021) does. All the prompts and ver-
balizers which are used in our experiments are
shown in Table 8.

B Analysis on the Number of Parameters

Base Model #Param Aspect

Coherence Consistency Attr. Rel.

T5-small 60M 0.2389 0.1495 0.1765
T5-base 220M 0.2847 0.2053 0.1867
T5-large 770M 0.2930 0.2350 0.2075

Table 7: Kendall correlation of CTRLEval with T5-
small, T5-base, and T5-large in sentiment-controlled
text generation. #Param means the number of param-
eters.

We further conduct experiments on the base
model with different numbers of parameters. Since
the authors of PEGASUS (Zhang et al., 2020a) do
not release the model checkpoint of PEGASUS-
base, we choose T5-small, T5-base and T5-large
(Raffel et al., 2020) as our base models respectively,
and present the results in Table 7. The results show
that larger numbers of parameters can benefit the
model performance while degrading the computa-
tion efficiency.

C Case Study

To intuitively show how our metric works in the
evaluation of controlled text generation, we pro-
vide some cases on the three evaluation aspects,
including coherence (Figure 6), consistency (Fig-
ure 6), and attribute relevance (Figure 7). Since
the range of various metrics is always different, it
may be less meaningful to directly compare the
absolute value of each metric. Thus, we follow
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Figure 5: The score and weight of each evaluator for
evaluating attribute relevance of the second sample in
Figure 7.

the existing works (Guan and Huang, 2020; Liu
et al., 2021b) to conduct a pairwise comparison on
different samples.

The results in Figure 6 and 7 show that our
metric can give accordant preferences with human
judgments, indicating the effectiveness of our met-
ric on all three evaluation aspects. To further show
how each pattern evaluator works in the overall
evaluation result, we take the second sample in Fig-
ure 7 as an example and visualize the weight β(I)
and score s(I) in Figure 5. We can observe that
most of the pattern evaluators assign high scores to
this sample which agree with the human judgment.
Simultaneously, the weight factor automatically re-
duces the effect of low-quality evaluators which
also plays an important role in the final evaluation
result.
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Task Sentiment

f(I)

Seed Prompt Expanded Prompt

Y In summary, it was [M].
In summary, it was [M]. Y Y To sum up, it was [M]. To sum up, it was [M]. Y
Y All in all, it was [M]. All in all, it was [M]. Y Y In brief, it was [M].
In brief, it was [M]. Y

Y It was [M]. It was [M]. Y Y It seems [M]. It seems [M]. Y Y It appears [M].
It appears [M]. Y Y It becomes [M]. It becomes [M]. Y

Y Really [M]! Really [M]! Y Y Just [M]! Just [M]! Y Y Actually [M]!
Actually [M]! Y Y So [M]! So [M]! Y

g(I)
Verbalizer

v(Positive,Negative) = {(good, bad), (positive, negative), (great, terrible)}

Task Topic

f(I)

Seed Prompt Expanded Prompt

Y News: [M] News: [M] Y Y Article: [M] Article: [M] Y Y Summary: [M]
Summary: [M] Y Y Report: [M] Report: [M] Y

Y It was about [M]
. It was about [M]. Y Y It was around [M]. It was around [M]. Y

Y It was related to [M]. It was related to [M]. Y Y It was towards [M].
It was towards [M]. Y

Y It was a piece of [M] news.
It was a piece of [M] news. Y Y It was a [M] article. It was a [M] article. Y
Y It was a [M] summary. It was a [M] summary. Y Y It was a [M] report.
It was a [M] report. Y

Y What [M] news!
What [M] news! Y Y What a [M] article! What a [M] article! Y
Y What a [M] summary! What a [M] summary! Y Y What a [M] report!
What a [M] report! Y

g(I)
Verbalizer

v(Computers, Politics,Religion, Science) = {(computers, politics, religion, science)}

Table 8: Prompts and verbalizers used in the evaluation of attribute relevance, where I = (X, a, Y ) indicates the
prefix, the attribute label, and the generated text, respectively.

Aspect Coherence

ID Generated Text (𝑌) PPL-PEGASUS 
(↓)

BARTScore
(↑)

CTRLEval 
(↑)

Human 
Rating

1 (1) The book is an excellent introduction to the subject of macroeconomics.
(2) It provides a great overview and introduces you to many important concepts such as
inflation, interest rates, capital flows, etc.
(3) This book should be read by anyone interested in economics or financial markets.
(4) I would recommend it for both students who are just starting out with their studies on
finance and also seasoned professionals looking for some new perspectives on finance.

2.6089
(29)

-3.2914
(84)

-1.4495
(3)

4.8
(55)

2 (1) The book is a wonderful, beautifully designed and beautiful book, and a must-read
for anyone interested in the history of the American revolution.
(2) It is an excellent introduction to the subject, and has been highly recommended to all
of the students I have taught.
(3) The author is also a superb speaker, and his lectures are extremely engaging.

2.6052
(28)

-2.9722
(22)

-2.1080
(42)

4.6
(127)

Aspect Consistency

ID Prefix (𝑋) Generated Text (𝑌) PPL-PEGASUS 
(↓)

BARTScore
(↑)

CTRLEval
(↑)

Human 
Rating

1 The painting The painting is very nice and I am happy with my purchase. It looks great 
in our living room as a decorative piece rather than an actual picture of 
the painting. However, it was not packaged well at all. When we received 
it, there were several pieces broken off from each other on one side so 
that when you hang it up, they are all hanging crooked.

3.3785
(181)

-3.7656
(185)

-3.2493
(123)

3.8
(38)

2 The painting The painting is way too short! But, that's all I can do in this short bit of a 
post. But for those who don't know I'm a high school art teacher, and I 
like to teach art, craft, or anything creative to kids at all ages. So I've tried 
to write a little about the process in the first post.

3.0690
(122)

-3.5702
(139)

-4.1035
(259)

2.8
(234)

Figure 6: Evaluation cases on coherence and consistency in sentiment-controlled text generation. The result of each
metric is provided by the absolute value of the evaluation score and the rank of this score over all the evaluation
results of the corresponding metric. To improve readability, we label each sentence with its order in the evaluation
of coherence and highlight the prefix in bold when evaluating consistency.
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Aspect Attribute Relevance

ID Sentiment 
Label (𝑎)

Generated Text (𝑌) DisScore
(↑)

CTRLEval
(↑)

Human 
Rating

1 Positive The book is a collection of stories about the lives and experiences of two young girls 
who are in love with each other. It starts out with one girl named Jenny and ends up 
with another girl, Jane. They both have their own problems to deal with, but they end up 
finding that together they can overcome anything life throws at them. I liked this book, 
because it was very realistic and had me laughing throughout most of it.

0.9982
(10)

0.9326
(97)

3.8
(96)

2 Positive The book is a great read. I was so inspired by the stories and characters and the 
amazing writing by Kaitlyn (the author) that I decided to write a book. The book is an 
adventure story set during the time period and is a must read for any fantasy reader. 
The writing is amazing, I highly recommend reading it!

0.9978
(48)

0.9858
(38)

4.6
(4)

(a) Comparison between CTRLEval and other baselines on attribute relevance in sentiment-controlled text generation

Figure 7: Evaluation cases on attribute relevance in sentiment-controlled text generation. The result of each metric
is provided by the absolute value of the evaluation score and the rank of this score over all the evaluation results of
the corresponding metric.
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