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Abstract

This paper demonstrates that multilingual pre-
training and multilingual fine-tuning are both
critical for facilitating cross-lingual transfer in
zero-shot translation, where the neural machine
translation (NMT) model is tested on source
languages unseen during supervised training.
Following this idea, we present SixT+, a strong
many-to-English NMT model that supports 100
source languages but is trained with a parallel
dataset in only six source languages. SixT+
initializes the decoder embedding and the full
encoder with XLM-R large and then trains the
encoder and decoder layers with a simple two-
stage training strategy. SixT+ achieves impres-
sive performance on many-to-English transla-
tion. It significantly outperforms CRISS and
m2m-100, two strong multilingual NMT sys-
tems, with an average gain of 7.2 and 5.0 BLEU
respectively. Additionally, SixT+ offers a set
of model parameters that can be further fine-
tuned to other unsupervised tasks. We demon-
strate that adding SixT+ initialization outper-
forms state-of-the-art explicitly designed unsu-
pervised NMT models on Si↔En and Ne↔En
by over 1.2 average BLEU. When applied to
zero-shot cross-lingual abstractive summariza-
tion, it produces an average performance gain
of 12.3 ROUGE-L over mBART-ft. We conduct
detailed analyses to understand the key ingredi-
ents of SixT+, including multilinguality of the
auxiliary parallel data, positional disentangled
encoder, and the cross-lingual transferability of
its encoder.

1 Introduction

Neural machine translation (NMT) sys-
tems (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017) have demonstrated superior
performance with large amounts of parallel data.
However, the performance of most existing NMT
systems will degrade when the labeled data is

∗Contribution during internship at Microsoft Research.
†Corresponding author.

limited (Koehn and Knowles, 2017; Goyal et al.,
2021). To address this problem, unsupervised
NMT, in which no parallel corpora are available, is
drawing increasing attention.

Some prior work (Johnson et al., 2017; Chen
et al., 2017; Gu et al., 2019; Zhang et al., 2020)
use pivot-based methods for zero-shot translation
between unseen language pairs. In this setting,
both source and target languages have parallel data
with a pivot language. However, these approaches
are infeasible for rare languages where a paral-
lel dataset of any kind is hard to collect. An-
other line of work (Guzmán et al., 2019; Ko et al.,
2021; Garcia et al., 2021) build unsupervised NMT
through back-translation and further enhance its
performance by cross-lingual transfer from auxil-
iary languages. These methods are usually compli-
cated with multiple iterations of back-translation
and a combination of various training objectives.
Moreover, their models can only support one or sev-
eral pre-specified translation directions. Recently,
Chen et al. (2021) propose SixT, a transferability-
enhanced fine-tuning method that better adapts
XLM-R (Conneau et al., 2020) for translating un-
seen source languages. SixT is trained once to
support all languages involved in the XLM-R pre-
training as the source language. However, they fo-
cus on exploring a proper fine-tuning approach and
build SixT with the parallel dataset from one aux-
iliary language, which heavily limits the model’s
zero-shot translation performance.

In this paper, we present SixT+, a strong many-
to-English NMT model that can support as many
as 100 source languages with parallel datasets from
only six language pairs. SixT+ is trained by ap-
plying SixT to multilingual fine-tuning with large-
scale data. We first initialize the encoder and em-
beddings of SixT+ with XLM-R and then train it
with a two-stage training method. At the first stage,
we only train the decoder layers, while at the sec-
ond stage, we disentangle the positional informa-
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tion of the encoder and jointly optimize all parame-
ters except the embeddings. SixT+ improves over
SixT by keeping the decoder embeddings frozen
during the whole training process, which speeds
up the model training while reducing the model
size. SixT+ is trained once to support all source
languages and can be further extended to many-to-
many NMT that can support multiple target lan-
guages. It is not only a strong multilingual NMT
model but can also be fine-tuned for other unsu-
pervised tasks, including unsupervised NMT, zero-
shot cross-lingual transfer for natural language un-
derstanding (NLU), and natural language genera-
tion (NLG) tasks.

Extensive experiments demonstrate that SixT+
works remarkably well. For translating to En-
glish, SixT+ significantly outperforms all base-
lines across 17 languages, including CRISS and
m2m-100, two strong unsupervised and supervised
multilingual NMT models trained with 1.8B and
7.5B sentence pairs. The many-to-many SixT+
gets better performance than m2m-100 in 6 out of
7 target languages on the Flores101 testset. When
serving as a pretrained model, SixT+ also per-
forms impressively well. For unsupervised NMT
of rare languages, SixT+ initialization achieves bet-
ter unsupervised performance than various explic-
itly designed unsupervised NMT models with an
average gain over 1.2 BLEU. For zero-shot cross-
lingual transfer for NLU, it significantly outper-
forms XLM-R on sentence retrieval tasks, while
maintaining the performance on most other tasks.
On the zero-shot cross-lingual abstractive summa-
rization task, SixT+ improves mBART-ft by 12.3
average ROUGE-L across 5 zero-shot directions.
Finally, we conduct detailed analyses to understand
the key ingredients of SixT+, including multilin-
guality of the auxiliary parallel data, positional
disentangled encoder, and the cross-lingual trans-
ferability of its encoder.1

2 SixT+

SixT+ aims at building a strong many-to-English
NMT model, especially for the zero-shot directions.
We argue that multilingual pretraining and multi-
lingual fine-tuning are both critical for this goal.
Therefore, we initialize SixT+ with XLM-R large
and fine-tune SixT+ on the multilingual parallel
dataset with a simple two-stage training method.

1The code and pretrained models are available at https:
//github.com/ghchen18/acl22-sixtp.

2.1 Data: AUX6 corpus

We utilize De, Es, Fi, Hi, Ru, and Zh as the aux-
iliary source languages, which are high-resource
languages from different language families. We
do not add more auxiliary languages to limit the
computation cost and the training data size. The
training data is from the WMT and CCAligned
dataset, consisting of 120 million sentence pairs.
We concatenate the validation sets of auxiliary lan-
guages for model selection. We denote this dataset
as AUX6. More dataset details are in the appendix.
Following Conneau and Lample (2019), sentences
of the ith language pair are sampled according to
the multinomial distribution calculated as follows:

qi =
pαi∑
j p

α
j

, (1)

where pj is the percentage of each language in the
training dataset and we set the hyper-parameter
α to be 0.2. In all experiments, all texts are tok-
enized with the same sentencepiece (Kudo, 2018)
tokenizer as XLM-R.

2.2 Model

Architecture SixT+ is a Transformer-based
NMT model with ∼0.7B model parameters. To ini-
tialize the encoder with XLM-R large, our encoder
has the same configuration as XLM-R large, i.e.,
24 encoder layers, hidden state dimension of 1024,
feed-forward dimension of 4096, and head number
of 16. For the decoder, we follow the suggestion
in Chen et al. (2021), which has 12 decoder layers,
a hidden state dimension of 1024, feed-forward
dimension of 3072, and head number of 16. We
use the same vocabulary as XLM-R and tie the
encoder embeddings, decoder embeddings, and de-
coder output projection to reduce the model size.

Learning We first initialize the encoder and em-
beddings with XLM-R large and then fine-tune the
model on the auxiliary parallel dataset. Compared
with fine-tuning XLM-R for NLU tasks like text
classification, the prediction space for SixT+ is
much larger and it has to learn much more ran-
domly initialized parameters. Directly fine-tuning
all parameters may degrade the cross-lingual trans-
ferability which is learned in XLM-R. Therefore,
following Chen et al. (2021), we train SixT+ with
a two-stage training framework, as shown in Fig-
ure 1.
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Figure 1: Our proposed two-stage training framework (TransF) for building cross-lingual NLG model with XLM-R.
The blue icy blocks are initialized with XLM-R and frozen, while the red fiery blocks are initialized randomly
or from the first stage. ‘SA’ denotes the self-attention sublayer. We remove the residual connection at the 23th

(penultimate) encoder layer at the second stage, namely i = 23 in the figure.

Stage 1: Decoder Training. To preserve the
cross-lingual transferability of XLM-R, we first
train the decoder by keeping the encoder frozen:

Lθdec =
∑
Di∈D

∑
⟨x,y⟩∈Di

logP (y|x; ,θdec), (2)

where D = {D1; ...;DK} is a collection of par-
allel dataset in K auxiliary languages, ⟨x,y⟩ is a
parallel sentence pair with source language i and
θdec is the parameter set of the decoder layers.

Stage 2: Fine-tuning. Freezing the encoder pa-
rameters limits the NMT model capacity, especially
for the large-scale training data. Therefore, we
jointly train the full model in another stage:

Lθ =
∑
Di∈D

∑
⟨x,y⟩∈Di

logP (y|x;θ), (3)

where θ is the parameter set of both encoder and
decoder layers.

Different from SixT which fine-tunes the de-
coder embedding, we keep the embeddings fixed
during the whole training process (see Figure 1).
Our preliminary experiments find that this strategy
leads to higher computational efficiency without
degrading the performance.

Positional Disentangled Encoder Positional
Disentangled Encoder (PDE) is reported to improve
zero-shot NMT in the previous work (Liu et al.,
2021; Chen et al., 2021). The positional correspon-
dence between the input tokens and the encoder
representations is one of the factors that makes the
encoder representations language-specific. PDE
relaxes such correspondence by removing resid-
ual connections in an encoder layer. We refer the

readers to Liu et al. (2021); Chen et al. (2021) for
more details. In SixT+, we remove the residual con-
nection after the self-attention sublayer of the 23th

(penultimate) encoder layer at the second training
stage, as suggested by Chen et al. (2021). For sim-
plicity, we denote the two-stage training method
with PDE as TransF in the following sections.

3 Zero-Shot Neural Machine Translation

3.1 Experiment Settings

For the many-to-English translation task, we evalu-
ate the performance of SixT+ on the test sets of 23
language pairs from 9 various language groups2:
German group (De, Nl), Romance group (Es, Ro,
It), Uralic and Baltic group (Fi, Lv, Et), Slavic
group (Ru, Pl), Arabic group (Ar, Ps), Indo-Aryan
group (Hi, Ne, Si, Gu), Turkic group (Tr, Kk), East
Asian group (Zh, Ja, Ko) and Khmer group (My,
Km). The dataset details are in the appendix. For
decoding, we use beam-search with beam size 5
for all translation directions and do not tune length
penalty. We report detokenized BLEU for all direc-
tions using sacrebleu3.

We compare SixT+ with SixT and four other
baselines. Among the four baselines, XLM-R ft-
all and mBART-ft use the same training data as
SixT+, while CRISS and m2m-100 are trained on
1.8B and 7.5B sentence pairs. As SixT+, CRISS,
and m2m-100 have different model sizes, support
different numbers of languages and are trained with
different training datasets, the comparisons are not
completely fair, but the results can still demonstrate

2We refer to the language groups information in Table 1 of
Fan et al. (2020).

3BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.5.0
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Model # Sent Param.
German Romance Uralic Slavic Arabic
De Nl Es Ro It Fi Lv Et Ru Pl Ar Ps

CRISS 1.8B 0.6B 28.8 47.0 32.2 35.4 48.9 23.9 18.6 23.5 21.2 − 28.2 −
m2m-100 7.5B 1.2B 31.9 54.0 32.8 38.3 55.9 29.0 23.0 30.7 24.2 29.9 28.4 10.9
SixT 0.04B 0.7B 33.8 54.7 30.1 33.9 43.0 26.3 19.7 25.7 20.4 23.9 25.1 11.4
mBART-ft 0.12B 0.6B 32.2 50.6 33.0 34.0 53.3 28.7 17.9 22.0 21.7 15.0 19.2 0.9
XLM-R ft-all 0.12B 0.7B 32.8 37.7 34.4 32.5 37.2 29.5 17.9 23.7 23.4 19.6 22.3 8.5

SixT+ (1st) 0.12B 0.7B 33.7 52.5 34.1 36.8 49.4 30.0 21.4 27.4 22.3 25.7 27.3 12.2
SixT+ 0.12B 0.7B 35.3 58.5 35.2 38.6 60.9 32.1 23.3 30.5 24.2 28.1 30.5 14.9

Model
Indo-Aryan Turkic East Asian Khmer

Avg.
Hi Ne Si Gu Tr Kk Zh Ja Ko My Km

CRISS 23.1 14.7 14.4 19.0 20.6 10.1 13.4 7.9 24.8 6.7 − − 23.1†

m2m-100 24.5 5.2 15.3 0.5 25.5 2.1 23.8 13.9 36.1 2.0 6.7 23.7 24.9†

SixT 17.5 14.4 12.2 17.3 21.7 19.0 13.4 10.7 31.2 5.4 9.8 22.6 23.8†

mBART-ft 25.7 18.0 8.8 15.4 21.2 19.6 19.3 10.0 30.7 3.6 0.1 21.8 24.2†

XLM-R ft-all 27.6 19.9 10.4 18.2 20.1 20.7 19.3 9.5 16.6 4.1 8.4 21.5 22.9†

SixT+ (1st) 27.3 20.4 14.7 23.9 23.3 23.3 19.3 10.8 24.8 10.4 10.3 25.3 26.7†

SixT+ 29.8 23.7 17.5 27.5 27.5 27.3 21.6 13.1 33.3 15.3 12.5 28.7 30.3†

Table 1: BLEU comparison with baselines on many-to-English test sets. ‘# Sent’ is the training data size. ‘Param.’
is the model size. ‘−’ indicates the language is not supported by CRISS. † is the average BLEU across the source
languages supported by CRISS. SixT+ (1st) is the SixT+ after the first training stage. The best BLEU is bold
and underlined. The last three utilize the same multilingual pretrained language model (XLM-R large) but with a
different fine-tuning method.

the strong performance of SixT+.
• CRISS (Tran et al., 2020). This model is the state-
of-the-art unsupervised many-to-many multilingual
NMT model. It is initialized with mBART and fine-
tuned on 180 translation directions from CCMatrix.
It only supports 25 input languages.
• m2m-100 (Fan et al., 2020). This model is
a strong supervised many-to-many multilingual
NMT model. It is a large Transformer trained on
huge parallel data across 2200 translation direc-
tions and with 7.5B parallel sentences from CC-
Matrix and CCAligned as well as additional back-
translations. The official 1.2B model is evaluated.
• SixT (Chen et al., 2021). This model motivates
SixT+. The SixT model trained with XLM-R large
on WMT19 De-En is evaluated and compared.
• mBART-ft (Liu et al., 2020; Tang et al.,
2020). mBART4 is a strong pretrained multilin-
gual seq2seq model. We follow their setting and di-
rectly fine-tune all model parameters on the AUX6
corpus.
• XLM-R ft-all (Conneau and Lample, 2019). This
method is the same as SixT+ but utilizes a differ-
ent fine-tuning method that directly optimizes all
model parameters.

4We use mBART50 from Tang et al. (2020).

3.2 Main Results

As shown in Table 1, SixT+ outperforms all base-
lines with an average gain of 5.0-7.2 BLEU. The
performance of SixT+ is impressive given that
it does not use any other monolingual or paral-
lel texts except the 0.12B parallel sentence pairs.
First, the significant improvement over mBART-ft
demonstrates that the multilingual pretrained en-
coder XLM-R can also build a strong zero-shot
many-to-one translation model if fine-tuned prop-
erly. Second, SixT+ is significantly better than
XLM-R ft-all and SixT+ (1st), proving that a proper
fine-tuning method is important for zero-shot trans-
lation. Finally, the gain of SixT+ over SixT shows
that adding more auxiliary languages and more par-
allel data benefits the performance.

SixT+ achieves new state-of-the-art performance
on unsupervised many-to-English translation. It
is significantly better than CRISS in all 14 unsu-
pervised directions. When comparing with super-
vised models, SixT+ improves over m2m-100 on 17
out of 23 translation directions. Although CRISS
and m2m-100 are many-to-many NMT models that
may face the insufficient modeling capacity prob-
lem (Zhang et al., 2020), they are strong many-to-
English baselines trained with much more data (1.8
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Target Lang. En De Es Fi Hi Ru Zh Avg.

m2m-100 23.6 15.9 15.2 11.3 14.1 14.3 19.9 16.3
SixT+ m2m 29.8 17.4 15.3 10.2 15.5 14.6 25.2 18.3

Table 2: Averaged BLEU comparison of SixT+ m2m and m2m-100 on zero-shot translations. The detailed results
are in the Table 12 of the appendix.

billion for CRISS and 7.5 billion for m2m-100)
and computation cost. Moreover, the model size of
m2m-100 is much larger than SixT+.

Different from previous unsupervised NMT
models built with back-translation on monolingual
data (Lample et al., 2018a,b) or parallel data min-
ing (Tran et al., 2020), SixT+ illustrates that bet-
ter unsupervised NMT can be achieved by cross-
lingual transfer from auxiliary languages. It im-
proves on the test sets whose languages are in the
same family as the auxiliary languages. For lan-
guages that are not in the same family of auxiliary
languages, SixT+ also works well. For instance, it
improves My→En from 6.7 to 15.3 BLEU, Ps→En
from 10.9 to 14.9 BLEU, and Kk→En from 20.7
to 27.3 BLEU.

3.3 Analysis

Many-to-Many SixT+ The SixT+ can be ex-
tended to support other or multiple target languages.
Following Zhang et al. (2020), we build a many-
to-many SixT+ (SixT+ m2m) model and switch
between different target languages by a target-
language-aware linear projection layer between the
encoder and the decoder. The linear layers are
randomly initialized and trained in both training
stages. The model is also trained on AUX6, but ad-
ditionally includes the En→{De,Es,Fi,Hi,Ru,Zh}
translation directions during supervised training
and validation. All the other training details are
the same. We evaluate the performance of SixT+
m2m on the Flores 101 testset (Goyal et al., 2021),
which is a multilingual aligned benchmark that
covers 101 different languages. Following previ-
ous work (Fan et al., 2020), we report tokenized
BLEU when Hindi5 and Chinese6 are the target
language and the detokenized BLEU for other tar-
get languages. We compare it with the m2m-100
(1.2B) model, as shown in Table 2. Detailed re-
sults on each source language are in Table 12 of
the appendix.

5https://github.com/anoopkunchukuttan/
indic_nlp_library

6We use the default Chinese tokenizer of sacrebleu.

Data Size Hi Ne Si Gu Avg.

De-En 8M 17.3 13.7 11.9 16.0 14.7
4 Aux. Langs 8M 20.9 16.6 15.1 20.9 18.4

Table 3: BLEU comparison of SixT+ trained with the
same size of training data that consists of different num-
ber of auxiliary languages. ‘4 Aux. Langs’ is a combi-
nation of {De,Es,Fi,Ru}-En parallel datasets.

Data
Europarl WMT19 AUX6
(1.9M) (41M) (120M)

SixT+ 21.5 26.3 32.9
SixT+ w/o PDE 20.5 26.1 32.9

Table 4: The average BLEU of SixT+ with and without
positional disentangled encoder (PDE). Note that AUX6
includes more source languages. The detailed scores
are in the Table 13 of the appendix.

Overall, our model outperforms m2m-100 in 6
out of 7 target languages. This is impressive given
that our model is unsupervised. The SixT+ m2m
performs more evenly in different source languages
(see Table 12 in the appendix). In contrast, the per-
formance of m2m-100 varies across languages. Our
model learns to translate through effective cross-
lingual transfer, while m2m-100 relies heavily on
the scale and quality of the direct parallel dataset.
We also compare SixT+ m2En and SixT+ m2m
for translating to English on this testset and get an
average BLEU of 30.5 and 29.8, respectively (see
Table 12 in the appendix). The results demonstrate
that SixT+ m2m successfully supports seven target
languages while keeping most of the performance
of SixT+ m2En on the many-to-English testset.

Effect of the Multilinguality of Auxiliary Lan-
guages Previous studies report that adding more
parallel data and more auxiliary languages im-
proves performance for unsupervised NMT (García
et al., 2020; Bai et al., 2020; Garcia et al., 2021).
In this experiment, we examine whether increasing
multilinguality under a fixed data budget improves
the zero-shot performance of SixT+. We fix the
amount of auxiliary parallel sentence pairs to 8 mil-
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XNLI PAWS-X POS NER MLQA BUCC Tatoeba Avg.
Metric acc. acc. F1 F1 F1 / EM F1 acc. –
# langs. 15 7 33 40 7 5 37 –

Vanilla XLM-R 79.2 86.4 74.2 65.4 71.6 / 53.2 66.0 57.7 71.5
XLM-R FT-all 75.9 85.9 67.1 52.1 62.9 / 44.0 7.9 59.5 58.8
Ours (m2En) 78.5 88.0 76.1 62.2 68.7 / 48.9 85.9 81.4 77.3
Ours (m2m) 80.0 88.3 74.4 59.0 70.7 / 51.7 88.0 81.4 77.4

Phang et al. (2020) 80.0 87.9 74.4 64.0 72.4 / 53.7 71.9 81.2 76.0

Table 5: XTREME benchmark results of our models and baselines. The results for individual languages can be
found from Table 14 to Table 20 in the appendix.

lion and vary the number of auxiliary languages.
We report the results in Table 3. It is observed that
the model trained with four auxiliary languages
(De, Es, Fi, Ru, each has the same data size) out-
performs that of one auxiliary language (De), with
an average gain of 3.7 BLEU. Note that for both
cases, we use auxiliary languages which are not in
the Indo-Aryan group to remove the impact of lan-
guage similarity. This observation demonstrates the
necessity of utilizing multiple auxiliary languages
in the training dataset.

Effect of Positional Disentangled Encoder In
this part, we conduct a comprehensive study on
the effect of the positional disentangled encoder
(PDE) (Liu et al., 2021; Chen et al., 2021). Ta-
ble 4 presents the results. We find that on the
small-scale Europarl dataset, PDE improves the
zero-shot performance with an average gain of 1.0
BLEU. However, when the training data goes large
or/and becomes more multilingual, the gain de-
creases (see results on WMT19 and AUX6). To
confirm this, we also conduct experiments on SixT+
m2m (see Table 12 in the appendix). For translat-
ing to English, the models with and without PDE
perform comparably well. However, for translating
to other languages, PDE improves in 5 out of 6
directions, with an average gain of 0.4 BLEU. This
is expected as these directions include only one
source language (En) and much less training data
(7M∼41M) than translating to English (120M). In
summary, when large-scale multilingual training
data are available for all target languages, it is fine
to remove PDE. We suspect the model has already
learned language-agnostic encoder representations
in this case. Otherwise, PDE benefits zero-shot
performance.

Performance on Cross-lingual NLU Tasks To
better understand the encoder representation pro-
duced by SixT+, we evaluate the zero-shot cross-

lingual transfer performance of the SixT+ encoder
on the XTREME benchmark (Hu et al., 2020). The
XTREME includes 9 target tasks of natural lan-
guage understanding. We do not report results on
XQuAD and MLQA as they have no held-out test
data (Phang et al., 2020). For all other XTREME
tasks, we follow the training and evaluation proto-
col in Hu et al. (2020) and implement with the jiant
toolkit (Phang et al., 2020). As NMT training can
be regarded as an intermediate task (Pruksachatkun
et al., 2020), we include previous results on using
English intermediate NLU tasks to improve XLM-
R on XTREME as a reference (Phang et al., 2020).
Table 5 provides the average results for each task.
The detailed results are in the appendix.

Overall, SixT+ encoders achieve 8.3% and
31.6% performance gain over XLM-R and XLM-R
ft-all across the seven tasks, which verifies that
our model learns a more language-agnostic en-
coder representations. Our encoder may learn bet-
ter sentence-level representation and capture bet-
ter semantic alignments among parallel sentences
through multilingual NMT training, therefore it
generally performs better on sentence pair (XNLI
and PAWS-X) and sentence retrieval tasks (BUCC
and Tatoeba). The results show the potential of
leveraging NLG task as the intermediate task for
improving performance on XTREME. We leave a
more detailed exploration of why NMT training
as well as other NLG intermediate tasks could be
beneficial for a given NLU task as future work.

4 SixT+ as a Pretrained Model

SixT+ learns language-agnostic encoder representa-
tion and performs impressively well on translating
various source languages. In this part, we extend
SixT+ to two cross-lingual NLG tasks where the
direct labeled data is scarce, namely unsupervised
NMT for low-resource languages and zero-shot
cross-lingual abstractive summarization.

147



4.1 Unsupervised NMT for Low-resource
Language

Given a low-resource language pair where the par-
allel dataset is unavailable, early work on unsuper-
vised NMT build the translation model by training
denoising autoencoding and back-translation con-
currently (Lample et al., 2018b,a; Artetxe et al.,
2018). However, these methods may lack robust-
ness when languages are distant (Kim et al., 2020;
Marchisio et al., 2020). For example, Guzmán
et al. (2019) report BLEU scores of less than 1.0
on distant language pair Nepali-English using the
method in Lample et al. (2018b). Recent work
improves by better initializing the unsupervised
NMT model either with a multilingual pretrained
language model (Liu et al., 2020; Song et al., 2019;
Ko et al., 2021, MulPLM) or a multilingual NMT
model (Lin et al., 2020). In this part, we follow this
line and offer an alternative initialization option for
building strong unsupervised NMT models.

We first initialize the LLR→En model with
SixT+. As SixT+ only supports En as the tar-
get language, we initialize the En→LLR model
with XLM-R following how SixT+ is initialized.
Then we iteratively improve these two models with
back-translation. For simplicity, we do not update
the LLR→En model and only train the reverse
model once. We train it with a synthetic back-
translation dataset from LLR monolingual data us-
ing the two-stage training method7. We do not
apply other unsupervised NMT techniques, such
as iterative back-translation (Lample et al., 2018b),
cross-translation (Garcia et al., 2021) or iterative
mining of sentence pairs (Tran et al., 2020). These
methods could be complementary to our method.
We leave the in-depth exploration as future work.

Experimental Settings We evaluate our method
on Ne and Si, two commonly used benchmark lan-
guages for evaluating low-resource language trans-
lation. The monolingual dataset of Ne and Si con-
sists of 7 million sentences that are sampled from
CC100 and CCNet dataset. The test sets are from
the Flores dataset (Guzmán et al., 2019). We set the
beam size to 5 during the offline back-translation
and select the model with unsupervised criterion
in Lample et al. (2018a). We compared with state-
of-the-art supervised and unsupervised baselines.
Please refer to the appendix for more details.

7We do not use PDE here as PDE may harm the supervised
performance of the reverse model.

ID Method
Ne-En Si-En
→ ← → ←

Supervised approach
(1) m2m-100 5.2 0.4 15.3 4.6
(2) Guzmán et al. (2019)† 21.5 8.8 15.1 6.5
(3) Liu et al. (2020)† 21.3 9.6 20.2 9.3

Unsupervised approach
(4) CRISS 14.7 5.5 14.4 6.0
(5) Guzmán et al. (2019) † 18.8 8.3 − −
(6) Ko et al. (2021) † 18.8 9.2 − −
(7) Garcia et al. (2021) † 21.7 8.9 16.2 7.9
(8) Ours (SixT+) 23.7 10.1 17.5 8.2

Table 6: BLEU comparison of different models on the
low-resource language translation. Results with ‘†’ are
quoted from the original paper. The best unsupervised
method for each translation direction is bold, while the
best supervised method is underlined.

Results The results are illustrated in Table 6. Our
model outperforms all unsupervised baselines for
all translation directions, improving the best per-
forming unsupervised baseline with an average
gain of 1.2 BLEU. In addition, it even outperforms
all supervised baselines and achieves new state-
of-the-art performance on Ne→En and En→Ne
translations. It is impressive given that the super-
vised baselines Guzmán et al. (2019) and Liu et al.
(2020) are very strong. Both methods are trained
on around 600k parallel corpus and more than 70M
monolingual corpora with supervised translation
and iterative back-translation. Our method is also
computationally efficient and easy to implement.
As SixT+ offers a ready-to-use LLR →En NMT
model, we only run back-translation once for build-
ing the reverse model. However, for the baselines
(ID 2-3, 5-7), they run iterative back-translation
for no less than two rounds and involve cross-
translation, denoising autoencoding, or adversarial
loss. They are much more complex and computa-
tional costly compared with our method.

4.2 Zero-shot Cross-lingual Generation
In zero-shot generation with the source-side trans-
fer, the NLG model is directly tested on unseen
source languages during supervised training. As
cross-lingual labeled data are scarce, such zero-
shot generation is useful in the cross-lingual gen-
eration where the languages of input and output
text are different. In this experiment, we focus
on utilizing SixT+ for zero-shot cross-lingual ab-
stractive summarization (ZS-XSUM). We believe
such a framework can be easily extended to other
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Model Metric En Hi Zh Cs Nl Tr Avg.

mBART-ft
ROUGE-1 41.5 16.4 19.8 29.8 35.2 32.2 26.7
ROUGE-2 18.9 4.1 5.7 10.3 13.8 12.8 9.3
ROUGE-L 35.5 15.0 17.7 26.1 30.5 28.2 23.5

Ours w/o NMT
pretraining

ROUGE-1 40.5 35.8 32.7 33.7 37.2 40.6 36.0
ROUGE-2 19.0 16.0 13.4 13.9 16.6 20.5 16.1
ROUGE-L 35.2 31.4 28.6 29.7 32.5 35.9 31.6

Ours
ROUGE-1 43.7 40.6 37.2 37.9 41.3 45.6 40.5
ROUGE-2 21.5 20.1 16.4 17.4 20.1 25.3 19.9
ROUGE-L 37.9 35.9 32.6 33.6 36.3 40.7 35.8

Table 7: ROUGE results for zero-shot cross-lingual abstractive summarization. For ROUGE score, higher value is
better. The ‘Avg’ is the average score of all zero-shot directions.

zero-shot cross-lingual generation tasks.
The ZS-XSUM task is challenging, as we re-

quire the model to summarize (from document to
abstract), translate (from input language to output
language) and transfer (from auxiliary input lan-
guage to target input language) at the same time.
SixT+ already has the ability to translate and trans-
fer, thus it offers a set of initialization parameters
that can ease the learning of the ZS-XSUM model.
Specifically, we initialize the ZS-XSUM model
with SixT+ (1st)8 and then train on labeled data of
abstractive summarization with the TransF method.
The trained model is tested on the cross-lingual
summarization in a zero-shot manner where the
source language is unseen during training.

Experiment Settings To build a strong ZS-
XSUM model, we collect 1.2 million public
document-summary pairs to form the training
dataset, where the document is in the languages
among En/De/Es/Fr/It/Pt/Ru and the summary is in
En. We evaluate the performance on the Wikilingua
dataset with Hi/Zh/Cs/Nl/Tr as source languages
and English as the target language. All the test
languages are unseen during training and valida-
tion. The dataset details are in the appendix. We
compare the proposed method with the mBART-
ft method which directly fine-tunes all mBART
parameters and our proposed method in building
SixT+ which is denoted as ‘Ours w/o NMT pre-
training’.

Results As shown in Table 7, both of our meth-
ods outperform mBART-ft on all zero-shot direc-
tions by an average gain of 8.1 and 12.3 ROUGE-L.
This is impressive given that mBART is a widely
used MulPLM for the cross-lingual generation. We

8Preliminary experiments show that this setting leads to
slightly better performance than initialization with SixT+.

also observe that initializing with SixT+ is much
better than XLM-R with the same TranF training
method, demonstrating that the NMT pretraining
is beneficial for the ZS-XSUM task. To build
a cross-lingual generation model without labeled
data, previous works usually resort to the translate-
and-train or translate-and-test approaches or their
extensions (Shen et al., 2018; Duan et al., 2019).
For these approaches, an NMT system is required
to translate either at the training or testing time.
However, translate-and-train can only develop mod-
els for a few pre-specified source languages, while
the decoding speed of translate-and-test is slow,
especially for summarization where the input text
is long. Besides, both approaches rely heavily on
the performance of the NMT system. SixT+ shows
that it is possible to build a strong universal cross-
lingual NLG model that can support 100 source
languages. This is promising, especially for low-
resource languages which the NMT system trans-
lates poorly. Our model can also serve as a start
point which can be further improved by fine-tuning
on genuine or synthesized (produced by an NMT
system) cross-lingual corpus. We leave more in-
depth exploration as future work.

5 Related Work

5.1 Multilingual Neural Machine Translation

Early works on multilingual NMT show its zero-
shot translation capability, where the tested trans-
lation direction is unseen during supervised train-
ing (Johnson et al., 2017; Ha et al., 2016). To fur-
ther improve the zero-shot performance, one direc-
tion is to learn language-agnostic encoder represen-
tations and make the most of cross-lingual transfer.
Some approaches modify the encoder architecture
to facilitate language-independent representations.
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Lu et al. (2018) incorporate an explicit neural in-
terlingua after the encoder. Liu et al. (2021); Chen
et al. (2021) remove the residual connection at an
encoder layers to relax the positional correspon-
dence. Some other works introduce auxiliary train-
ing objectives to encourage similarity between the
representations of different languages (Arivazha-
gan et al., 2019; Al-Shedivat and Parikh, 2019;
Pham et al., 2019; Pan et al., 2021). For example,
Pan et al. (2021) utilize contrastive loss to explic-
itly align representations of a bilingual sentence
pair. Recently, multilingual pretraining has demon-
strated to implicitly learn language-agnostic repre-
sentation (Liu et al., 2020; Conneau et al., 2020;
Hu et al., 2020). Inspired by this, some studies
initialize multilingual NMT with the MulPLM or
introducing the training objectives of MulPLM to
multilingual NMT (Gu et al., 2019; Ji et al., 2020;
Liu et al., 2020; Chen et al., 2021; Garcia et al.,
2021). Our work follows the last line but improves
over them by making the most of MulPLM with a
simple yet effective fine-tuning method and large-
scale multilingual parallel dataset.

5.2 Zero-shot Translation with Multilingual
Pretrained Language Model

For NLG tasks like neural machine translation,
most work leverage multilingual pretrained seq2seq
language models such as mBART (Liu et al., 2020),
mT5 (Xue et al., 2021) and ProphetNet-X (Qi et al.,
2021) for cross-lingual transfer. For example, Liu
et al. (2020) fine-tune mBART with the parallel
dataset of one language pair and test on unseen
source languages. Considering the great success of
the multilingual pretrained encoder (MulPE) such
as XLM-R (Conneau et al., 2020) and mBART (Wu
and Dredze, 2019) in zero-shot cross-lingual trans-
fer for NLU tasks (Hu et al., 2020), their use for
cross-lingual transfer in NLG tasks is still under-
explored. Wei et al. (2021) fine-tunes their pro-
posed MulPE to conduct zero-shot translation but
use the [CLS] representation as the encoder out-
put.

Our work is most similar to SixT (Chen et al.,
2021), as indicated by the name itself. However,
since SixT focuses on designing a novel fine-tuning
method, it conducts experiments with one auxiliary
language, which heavily limits the model’s perfor-
mance. In addition, SixT only works on NMT,
while SixT+ can not only perform translation but
also serve as a pretrained model for various zero-

shot cross-lingual generation tasks, such as low-
resource NMT and cross-lingual abstractive sum-
marization.

6 Conclusion

In this paper, we introduce SixT+, a strong many-
to-English NMT model that supports 100 source
languages but is trained once with the parallel
dataset from only six source languages. Our model
makes the most of cross-lingual transfer by initial-
izing with XLM-R and conducting multilingual
fine-tuning on the large-scale dataset with a simple
yet effective two-stage training method. Extensive
experiments demonstrate that SixT+ outperforms
all baselines on many-to-English translation. When
serving as a pretrained model, adding SixT+ initial-
ization achieves new state-of-the-art performance
for unsupervised NMT of low-resource and sig-
nificantly outperforms mBART and XLM-R on
zero-shot cross-lingual summarization.
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A Dataset

A.1 Machine Translation Dataset

The AUX6 dataset is from WMT translation task
and CCAligned corpus9. The validation and test
sets are from newstest, WAT21 translation task10,
IWSLT17 testset11, Flores Testset12 and Tatoeba
test sets13. We use the first 20M sentence pairs of
the CCAligned corpus for Es-En and Ru-En lan-
guage pairs as training data. The Europarl De-En
dataset is only used in the experiment of Table 4.
All texts are tokenized by the same XLM-R senten-
cepiece (Kudo, 2018) model. The source sentence
length is limited to 512, which is the maximum
source sentence length supported by XLM-R. More
details are shown in Table 8 and Table 9.

A.2 Unsupervised NMT dataset

The monolingual dataset of Ne and Si consists of
7 million sentences that are sampled from CC100
(Conneau et al., 2020) and CCNet (Wenzek et al.,
2020) datasets. We select the best model with an
unsupervised criterion based on the BLEU score of
a ‘round-trip’ translation following (Lample et al.,
2018a) by using 3000 monolingual Ne/Si sentences
sampled from CC100 and CCNet datasets. The test-
sets of Ne and Si are from Flores testset (Guzmán
et al., 2019) 14.

9http://www.statmt.org/cc-aligned/
10http://lotus.kuee.kyoto-u.ac.jp/WAT/

indic-multilingual/indic_wat_2021.tar.gz
11https://wit3.fbk.eu/2017-01-d
12https://github.com/facebookresearch/

flores/tree/main/floresv1
13https://object.pouta.csc.fi/

Tatoeba-Challenge/test-v2020-07-28.tar
14https://github.com/facebookresearch/

flores/tree/main/floresv1

Type Lang Source # Sent

Training set De-En Europarl v7 1.9M
Training set De-En WMT19 41M
Training set Es-En CCAligned 20M
Training set Fi-En CCAligned 9.2M
Training set Hi-En CCAligned 7.4M
Training set Ru-En CCAligned 20M
Training set Zh-En WMT18 22.6M

Valid set De-En Newstest 16 2999
Valid set Es-En Newstest 10 2489
Valid set Fi-En Newstest 19 1996
Valid set Hi-En Newsdev 14 520
Valid set Ru-En Newstest 16 2998
Valid set Zh-En Newstest 17 2001

Table 8: Training and valid set for many-to-English
translation. ‘# Sent’ is the number of parallel sentences
in the dataset.

Lang Source Lang Source

Ar-En IWSLT 17 Lv-En Newstest 17
De-En Newstest 14 My-En WAT21
Es-En Newstest 13 Ne-En Flores v1
Et-En Newstest 18 Nl-En Tatoeba
Fi-En Newstest 16 Pl-En Newstest 20
Gu-En Newstest 19 Ps-En Newstest 20
Hi-En Newstest 14 Ro-En Newstest 16
It-En Tatoeba Ru-En Newstest 20
Ja-En Newstest 20 Si-En Flores v1
Kk-En Newtest 19 Tr-En Newstest 16
Km-En Newstest 20 Zh-En Newstest 18
Ko-En Tatoeba

Table 9: Test sets for many-to-English translation.

A.3 Abstractive Summarization Dataset
The training data of abstractive summarization task
is from CNN/DailyMail,15 XSum,16 Wikihow17

and WikiLingua18 dataset. In total, the training
set contains 1189k document-summary pairs. The
average context length after performing sentence-
piece is 669 tokens. We randomly sample 2000
Fr-En pairs and 3000 pairs for each test language
from the WikiLingua dataset as the validation and
test sets. As the maximum length of input tokens
for XLM-R is 512, we just keep the first 512 to-

15https://github.com/abisee/
cnn-dailymail

16https://github.com/EdinburghNLP/XSum/
tree/master/XSum-Dataset

17https://github.com/mahnazkoupaee/
WikiHow-Dataset

18https://github.com/esdurmus/
Wikilingua
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kens of context input if it is longer than 512. The
model is evaluated on many-to-English abstractive
summarization, where we summarize documents
of various languages to English abstracts. More
details are shown in Table 10.

Dataset Lang pair Source # Sent

Train En-En CNN/DailyMail 280K
Train En-En XSum 204k
Train En-En WikiHow 180K
Train En-En WikiLingua 136K
Train De-En WikiLingua 53K
Train Es-En WikiLingua 106K
Train Fr-En WikiLingua 59K
Train It-En WikiLingua 46K
Train Pt-En WikiLingua 77K
Train Ru-En WikiLingua 48K

Valid Fr-En WikiLingua 2K

Test En-En WikiLingua 3K
Test Cs-En WikiLingua 3K
Test Hi-En WikiLingua 3K
Test Nl-En WikiLingua 3K
Test Tr-En WikiLingua 2.9K
Test Zh-En WikiLingua 3K

Table 10: Dataset for many-to-English abstractive sum-
marization task.

ISO Language Family ISO Language Family

ar Arabic Arabic ko Korean Koreanic
cs Czech Slavic lv Latvian Baltic
de German Germanic my Burmese Sino-Tibetan
en English Germanic ne Nepali Indo-Aryan
es Spanish Romance nl Dutch Germanic
et Estonian Uralic pl Polish Slavic
fi Finnish Uralic ps Pashto Iranian
fr French Romance ro Romanian Romance
gu Gujarati Indo-Aryan ru Russian Slavic
hi Hindi Indo-Aryan si Sinhala Indo-Aryan
it Italian Romance tr Turkish Turkic
ja Japanese Japonic vi Vietnamese Vietic
kk Kazakh Turkic zh Chinese Chinese
km Khmer Khmer

Table 11: Languages used in this paper.

B Language Code

We refer to the language information in Table 1 of
Fan et al. (2020). The languages used in this paper
are shown in Table 11.

C Model and Training Details

Since the SixT+ embeddings are initialized with
XLM-R, all texts are tokenized with the same sen-
tencepiece (Kudo, 2018, SPM) tokenizer as XLM-
R. The tokenizer is learned on the full Common

Crawl data that includes 250k sentencepiece tokens.
We do not apply additional preprocessing, such as
true-casing or normalizing punctuation/characters.
Following XLM-R, we add the [BOS] and [EOS]
tokens at the head and tail of the input sentence,
respectively.

SixT+ is trained on 128 Nvidia V100 GPUs
(32GB) with 100k and 10k steps for the first and
second training stage. The batch size is 4096 for
each GPU. We use the Adam optimizer (Kingma
and Ba, 2015) with β1 = 0.9 and β2 = 0.98. At
the first stage, the learning rate is 0.0005 and the
warmup step is 4000, while at the second stage,
we set the learning rate as 0.0001 and do not use
warmup. The dropout probabilities are set to be
0.1. All experiments are done with the fairseq
toolkit (Ott et al., 2019).

D Comparison on the Many-to-many
Translation

The many-to-many SixT+ model is trained with
AUX6 dataset using supervision from 12 transla-
tion directions. The m2m-100 model is the official
1.2B model19 from Fan et al. (2020). The results
are shown in Table 12.

E Effect of Positional Disentangled
Encoder

We compare the SixT+ with and without (w/o) po-
sitional disentangled encoder (PDE) on different
training datasets: Europarl (1.9M), WMT19 (41M),
and AUX6 (120M). The results are shown in Ta-
ble 13. We also conduct experiments on SixT+
m2m, as shown in Table 12.

F Unsupervised NMT with SixT+

In addition to CRISS and m2m-100, we compare
with the state-of-the-art unsupervised and super-
vised baselines from the literature on these two
languages. Most of these additional baselines are
not multilingual and are explicitly designed for
low-resource language translation.
• Unsupervised baselines. We include the results
of three unsupervised methods. Guzmán et al.
(2019) utilize Hi as auxiliary language and train
with auxiliary supervised translation and iterative
back-translation. Garcia et al. (2021) utilize six
languages as auxiliary languages and present a

19https://github.com/pytorch/fairseq/
tree/main/examples/m2m_100
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Tgt
Src

Model Nl Ro Sr Lv Pl Ne Gu Ja Mr Kk Km Tr Avg

→ En

m2m-100 29.7 40.7 39.6 33.1 27.1 13.2 1.7 23 22.3 5.2 14.0 33.0 23.6
Ours (m2En) 29.6 39.1 37.9 31.3 26.1 35.3 33.5 21.3 29.9 27.2 21.4 33.1 30.5
Ours (m2m) 29.0 37.9 37.0 30.6 25.3 34.5 32.1 20.2 29.4 27.0 21.7 32.3 29.8
Ours (m2m w/o PDE) 29 38.2 37.4 30.3 25.5 34.2 32.4 20.6 29.5 26.8 21.4 32.4 29.8

→ De
m2m-100 21.8 28.1 27.7 14.8 20.9 8.3 1.0 16.5 14.0 4.9 9.2 23.1 15.9
Ours (m2m) 20.1 24.5 24.1 19.8 17.5 16.0 15.1 11.9 14.5 14.8 11.8 18.7 17.4
Ours (m2m w/o PDE) 19.3 24.4 23.4 19.1 17.4 15.3 14.1 11.1 13.6 13.6 11.6 17 16.7

→ Es
m2m-100 18.9 24.1 22.6 20.7 19.8 8.6 1.8 15.8 13.0 6.3 10.4 19.8 15.2
Ours (m2m) 16.5 21.7 19.3 16.3 16.6 14.4 12.5 12.2 13.1 14.1 10.4 16.2 15.3
Ours (m2m w/o PDE) 16.7 21.8 19.1 15.9 16.4 14 11.7 11.2 12.2 13.5 10.3 15.6 14.9

→ Fi
m2m-100 14.4 18.0 17.6 17.4 14.6 6.2 1.1 11.5 9.1 4.4 7.0 14.3 11.3
Ours m2m 11.6 13.8 12.7 12.4 11.1 10.0 8.7 7.4 8.3 9.0 7.3 10.0 10.2
Ours (m2m w/o PDE) 11.5 13.2 12.2 12.3 10.8 9.5 7.9 6.5 7.8 8.5 6.9 9.6 9.7

→ Hi
m2m-100 16.1 20.7 20.6 18.8 16.1 11.1 1.4 14.8 18.2 3.7 8.0 19.1 14.1
Ours (m2m) 14.5 18.2 18.3 15.3 13.4 20.0 20.0 10.8 17.7 13.3 10.7 14.2 15.5
Ours (m2m w/o PDE) 14.9 18.4 18.3 15.2 13.6 21.1 20.4 11.1 18.3 13.8 9.8 14.5 15.8

→ Ru
m2m-100 17.2 24.4 25.0 19.1 18.6 7.4 1.0 14.4 12.5 4.8 8.5 18.5 14.3
Ours (m2m) 13.9 19.4 20.6 19.4 16.0 13.0 12.7 9.9 12.0 14.5 9.8 14.5 14.6
Ours (m2m w/o PDE) 14.2 19.2 20 18.9 15.6 12.6 11.9 9.2 11.1 13.7 9.4 13.7 14.1

→ Zh
m2m-100 25.7 29.4 29.2 22.6 25.5 12.8 0.7 26.9 19.5 7.3 12.4 26.7 19.9
Ours (m2m) 26.3 29.6 28.7 27.1 25.2 24.6 22.5 24.7 23.1 23.9 20.3 26.0 25.2
Ours (m2m w/o PDE) 26.3 29.4 28.6 26.9 25 23.8 21.9 24.5 22.6 23.5 19.5 25.9 24.8

Table 12: BLEU comparison of our many-to-many NMT model (SixT+ m2m) with m2m-100 on zero-shot
translations. We use a target-language-aware linear projection layer to generate different target languages for the
SixT+ m2m model. Ours (m2En) is the many-to-English SixT+ model trained with the AUX6 dataset. We include
the result of SixT+ m2m w/o PDE to help study the effect of PDE. The best average BLEU for each target language
is bold and underlined.

three-stage method with various loss functions, in-
cluding auxiliary supervised translation, iterative
back-translation, denoising autoencoding and cross
translation. Ko et al. (2021) fine-tune mBART on
the parallel dataset from Hi and monolingual data
in an iterative manner with auxiliary supervised
translation, back-translation, denoising autoencod-
ing and adversarial objective. Note that these meth-
ods utilize much more monolingual data than ours.

• Supervised baselines. We report the supervised
results in mBART (Liu et al., 2020) and the FLoRes
dataset benchmarks (Guzmán et al., 2019) for ref-
erence. These two methods are very strong. Both
methods are trained on around 600k parallel corpus
and more than 70M monolingual corpora with su-
pervised translation and iterative back-translation.
Liu et al. (2020) initialize the model with mBART
while Guzmán et al. (2019) use auxiliary paral-
lel corpus from related language for the Ne↔En
translations.

G XTREME benchmark results

All models are evaluated on the XTREME bench-
mark (Hu et al., 2020) with jiant toolkit20. We
follow the same settings with Phang et al. (2020)
for fine-tuning and testing. The detailed results for
each languages on each task are shown in Table 14
to Table 20.

20https://github.com/nyu-mll/jiant
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#Sent Config. De Nl Ro It Lv Et Ne Si Gu Ja Ko Avg.

1.9M
Ours 28.7 44.7 28.3 39.2 16.0 21.4 11.0 10.0 12.8 8.0 23.5 21.5

w/o PDE 29.1 44.2 27.2 39.0 15.3 20.5 10.1 8.8 12.6 7.1 20.1 20.5

41M
Ours 33.8 54.7 33.9 43.0 19.7 25.7 14.4 12.2 17.3 10.7 31.2 26.3

w/o PDE 34.1 54.9 33.5 43.5 19.7 25.5 14.1 12.0 17.0 10.3 30.2 26.1

120M
Ours 35.3 58.5 38.6 60.9 23.3 30.5 23.7 17.5 27.5 13.1 33.3 32.9

w/o PDE 35.2 58.5 39.0 61.1 23.2 30.1 23.6 17.4 27.2 13.7 32.5 32.9

Table 13: The BLEU comparison between SixT+ with and without positional disentangled encoder (PDE). The best
average BLEU for each training dataset is bold and underlined.

ar bg de el en es fr hi ru sw th tr ur vi zh Avg

XLM-R 77.2 83 82.5 80.8 88.7 83.7 82.2 75.6 79.1 71.2 77.4 78 71.7 79.3 78.2 79.2
XLM-R ft-all 72.3 81.3 81.6 76.3 86.7 81.9 80.3 74.0 78.5 58.0 72.7 73.1 67.0 77.4 77.9 75.9
Ours (m2En) 77.2 81.9 82.3 80.1 87.5 83.0 82.0 75.1 78.5 69.8 75.0 77.8 70.2 78.6 78.4 78.5
Ours (m2m) 79.1 83.3 83.4 82.3 88.6 84.2 83.4 76.9 80.2 71.3 77.2 78.5 72.1 80.0 79.5 80.0

Table 14: Full XNLI Results (accuracy)

de en es fr ja ko zh Avg

XLM-R 89.7 94.7 90.1 90.4 78.7 79.0 82.3 86.4
XLM-R ft-all 89.1 95.3 90.0 89.9 77.9 76.6 82.8 85.9
Ours (m2En) 91.0 95.9 90.9 91.2 81.2 81.5 84.6 88.0
Ours (m2m) 90.8 95.0 91.4 91.2 82.8 81.8 84.8 88.3

Table 15: Full PAWS-X Results (F1 score)

af ar bg de el en es et eu fa fi fr he hi hu

XLM-R 89.8 67.5 88.1 88.5 86.3 96.1 88.3 86.5 72.5 70.6 85.8 45.1 68.3 76.4 82.6
XLM-R ft-all 83.8 57.8 80.8 79.0 75.3 95.9 72.0 78.9 57.6 60.2 74.8 75.3 61.7 58.9 74.8
Ours (m2En) 89.8 69.4 89.5 89.4 86.9 96.0 87.5 86.9 72.7 70.1 86.9 86.5 71.9 70.5 83.8
Ours (m2m) 87.1 64.7 87.6 86.3 86.0 95.2 86.9 85.8 72.6 66.5 84.8 84.2 69.0 75.0 81.0

id it ja ko mr nl pt ru ta te tr ur vi zh Avg

XLM-R 72.4 89.4 15.9 53.9 80.8 89.5 87.6 89.5 65.2 86.6 76.3 70.3 56.8 25.7 74.2
XLM-R ft-all 68.6 72.6 17.6 42.6 71.4 85.6 78.2 76.8 60.1 77.6 68.5 56.6 49.8 34.0 67.1
Ours (m2En) 72.3 87.3 33.5 52.6 81.0 89.6 85.9 89.8 64.4 84.8 76.5 61.6 56.1 34.5 76.1
Ours (m2m) 72.4 86.6 19.3 50.9 82.4 88.3 85.8 87.7 61.7 87.7 76.0 69.2 57.0 19.7 74.4

Table 16: Full POS Results (F1 score)

af ar bg bn de el en es et eu fa fi fr he hi hu id it ja jv ka

XLM-R 78.9 53.0 81.4 78.8 78.8 79.5 84.7 79.6 79.1 60.9 61.9 79.2 80.5 56.8 73.0 79.8 53.0 81.3 23.2 62.5 71.6
XLM-R ft-all 71.6 37.6 65.9 53.8 61.9 44.5 82.7 67.5 64.8 44.1 32.5 65.1 76.4 39.4 58.3 67.9 52.4 75.4 13.4 53.2 52.7
Ours (m2En) 74.4 52.2 76.7 70.1 76.4 75.8 82.6 74.0 74.3 61.9 50.7 76.1 78.4 52.4 67.2 76.8 55.5 79.6 19.7 61.7 62.4
Ours (m2m) 75.5 44.7 77.1 67.4 78.4 72.2 80.2 68.7 75.2 62.0 50.1 78.9 77.2 46.8 66.9 76.6 50.3 76.7 9.8 58.9 57.3

kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh Avg

XLM-R 56.2 60.0 67.8 68.1 57.1 54.3 84.0 81.9 69.1 70.5 59.5 55.8 1.3 73.2 76.1 56.4 79.4 33.6 33.1 65.4
XLM-R ft-all 33.4 23.0 41.5 44.8 68.5 40.0 77.7 76.3 52.6 63.0 40.1 34.9 2.2 73.1 71.4 42.2 65.2 32.5 19.1 52.1
Ours (m2En) 52.7 54.5 54.8 56.0 69.8 45.3 80.8 80.4 67.1 62.6 52.3 46.8 0.5 72.2 77.7 66.7 74.1 45.3 27.8 62.2
Ours (m2m) 50.0 49.1 52.6 55.5 73.1 47.3 81.2 78.7 52.4 59.1 50.2 44.0 1.4 71.3 75.7 48.4 73.7 33.5 10.1 59.0

Table 17: Full NER Results (F1 score)

ar de en es hi vi zh Avg

XLM-R 66.6 / 47.1 70.1 / 54.9 83.5 / 70.6 74.1 / 56.6 70.6 / 53.1 74 / 52.9 62.1 / 37.0 71.6 / 53.2
XLM-R ft-all 54.8 / 35.3 63.6 / 47.2 80.1 / 66.8 68.6 / 48.9 51.7 / 31.3 66.2 / 45.2 55.1 / 33.6 62.9 / 44.0
Ours (m2En) 62.6 / 40.8 67.9 / 51.0 80.2 / 65.7 71.4 / 52.5 66.1 / 46.7 71.1 / 49.1 61.8 / 36.4 68.7 / 48.9
Ours (m2m) 65.2 / 44.6 70.5 / 55.3 82.1 / 68.4 74.1 / 55.6 69.5 / 50.5 73.0 / 51.1 60.7 / 36.2 70.7 / 51.7

Table 18: Full MLQA Results (F1 / EM score)
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de fr ru zh Avg

XLM-R 66.5 73.5 56.7 67.5 66.0
XLM-R ft-all 3.4 8.0 2.4 17.9 7.9
Ours (m2En) 89.6 84.1 86.6 83.1 85.9
Ours (m2m) 91.8 86.5 88.4 85.4 88.0

Table 19: Full BUCC Results (F1 Score)

af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv

XLM-R 58.2 47.5 71.6 43.0 88.8 61.8 75.7 52.2 35.8 70.5 71.6 73.7 66.4 72.2 65.4 77.0 68.3 60.6 14.1
XLM-R ft-all 22.1 56.6 80.5 55.8 96.2 14.6 93.0 60.2 14.8 72.1 92.0 65.7 68.2 92.0 49.7 52.3 50.2 64.3 5.4
Ours (m2En) 74.4 72.8 87.2 74.6 98.1 83.1 96.1 81.5 54.6 91.0 94.6 90.7 82.0 94.2 86.9 91.9 87.9 91.1 19.5
Ours (m2m) 65.6 76.4 88.8 74.8 98.1 83.8 96.8 80.4 54.1 92.5 94.9 87.1 84.5 94.4 87.1 92.1 84.4 92.2 16.1

ka kk ko ml mr nl pt ru sw ta te th tl tr ur vi zh Avg

XLM-R 52.1 48.5 61.4 65.4 56.8 80.8 82.2 74.1 20.3 26.4 35.9 29.4 36.7 65.7 24.3 74.7 68.3 57.7
XLM-R ft-all 62.1 44.0 39.2 76.7 71.3 55.6 78.2 89.2 17.2 59.3 68.8 81.2 11.7 55.9 66.0 69.5 91.0 59.5
Ours (m2En) 77.6 68.0 86.4 91.9 83.6 93.3 93.7 90.8 22.8 74.9 85.9 91.4 55.8 90.4 84.0 93.9 94.2 81.4
Ours (m2m) 83.0 69.6 88.9 93.6 84.4 91.4 93.4 91.5 20.0 80.1 87.6 91.4 52.7 87.1 83.5 94.8 94.7 81.4

Table 20: Full Tatoeba Results (Accuracy)
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