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Abstract
Dialogue Act Classification (DAC) that deter-
mines the communicative intention of an ut-
terance has been investigated widely over the
years as a standalone task. But the emotional
state of the speaker has a considerable effect
on its pragmatic content. Sentiment as a hu-
man behavior is also closely related to emo-
tion and one aids in the better understanding of
the other. Thus, their role in identification of
DAs needs to be explored. As a first step, we
extend the newly released multi-modal EMO-
TyDA dataset to enclose sentiment tags for each
utterance. In order to incorporate these multiple
aspects, we propose a Dual Attention Mecha-
nism (DAM) based multi-modal, multi-tasking
conversational framework. The DAM mod-
ule encompasses intra-modal and interactive
inter-modal attentions with multiple loss op-
timization at various hierarchies to fuse mul-
tiple modalities efficiently and learn general-
ized features across all the tasks. Addition-
ally, to counter the class-imbalance issue in dia-
logues, we introduce a 2-step Deferred Optimi-
sation Schedule (DOS) that involves Meta-Net
(MN) learning and deferred re-weighting where
the former helps to learn an explicit weighting
function from data automatically and the latter
deploys a re-weighted multi-task loss with a
smaller learning rate. Empirically, we establish
that the joint optimisation of multi-modal DAC,
SA and ER tasks along with the incorporation
of 2-step DOS and MN learning produces better
results compared to its different counterparts
and outperforms state-of-the-art model.

1 Introduction

Dialogue Act Classification (DAC) constitutes an
important means for understanding a speaker’s
communicative intention (for example, question,
command, apology etc.) in any Dialogue System
(Stolcke et al., 2000), (Papalampidi et al., 2017).
Thus, DA seeks to analyze the pragmatics of a
conversation instead of just its literal meaning. Au-
thors of (Saha et al., 2020b) went a step ahead and

established in a multi-modal setting (including text,
audio and video) that a speaker’s true communica-
tive content is greatly influenced by its emotional
state of mind (Barrett et al., 1993). Utterances such
as “Oh sure" or “Ya why not" can be understood as
“agreement" or “disagreement" (if implied sarcasti-
cally). However, the emotional state of the speaker
might enclose cues giving it another definition alto-
gether.

Sentiment and emotion are frequently viewed
as two different entities (Do et al., 2019; Hossain
and Muhammad, 2019; Majumder et al., 2019) etc.,
but are often interpreted in a similar way and are
therefore used interchangeably due to their sub-
jective character. But sentiment and emotion are
not literally the same, but are strongly linked. For
example, emotions such as happy and joy are in-
herently related to a positive sentiment. Thus, the
speaker’s emotion and sentiment are intertwined
and one aids in better understanding of the other.
As a result, information pertaining to emotion, as
well as sentiment, provides a better comprehension
of the speaker’s state of mind. This strong relation-
ship between emotion and sentiment drives us to
incorporate the speaker’s sentiment as well as its
emotion while modeling DAs.

Additionally, we seek to address the class-
imbalance issue for the task of DAC, as not all
DAs are equally represented or are equally occur-
ring in a conversation. When the training dataset
has a high degree of class-imbalance, the testing
criterion necessitates strong generalisation on less
frequent classes (Neyshabur et al., 2017; Novak
et al., 2018). To address this issue, a sample re-
weighting approach is typically utilised (Sun et al.,
2007; Lin et al., 2017; Kumar et al., 2010; Wang
et al., 2017), which involves creating a weighting
function that maps training loss to sample weight.
Currently, employing this strategy requires manu-
ally pre-specifying the weighting function. How-
ever, this approach is not scalable in practice ow-
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ing to the variations of an ideal weighing scheme
based on the investigating task and training data
at hand. In this paper, we leverage from the con-
cept of meta-learning (Wu et al., 2018; Franceschi
et al., 2018) to develop a method capable of learn-
ing an explicit weighting function from the data
itself in an adaptable manner, named, Meta-Net
(MN) learning. Simultaneously, we apply an ef-
fective training schedule (inspired by (Cao et al.,
2019)) on top of MN Learning, namely, two-step
deferred optimization schedule (2-step DOS). The
2-step DOS postpones or defers the re-weighting
so that the classifier learns an initial representation
while avoiding some of the complexities involved
with re-weighting or re-sampling (incase of class-
imbalance).

The contributions of this work are as follows : (i)
We propose a Dual Attention Mechanism (DAM)
based multi-task framework for multi-modal DAC,
SA and ER in conversations. We leverage the in-
formation pertaining to emotional state and senti-
ment of the speaker to identify DAs; (ii) Addition-
ally, we introduce a 2-step DOS that involves MN
learning and deferred re-weighting to counter the
class-imbalance issue for the task of DAC; (iii) In
order to integrate these various facets, we extend
the newly created dataset, EMOTyDA, to encom-
pass annotations of the sentiment tags. We surmise
that this extended characteristic of EMOTyDA will
introduce novel sub-task for future investigation:
sentiment and emotion aided DAC; (iv) We illus-
trate the gain in different measures that jointly opti-
mizing these three tasks (DAC, SA and ER) using
our proposed framework with the incorporation
of 2-step DOS and MN learning produces better
results compared to its different counterparts and
state-of-the-art model.

2 Related Works

DAC, ER and SA are extensively explored linguis-
tic tasks whose implications are observed in various
dialogue system related research discussed below.
With the success of Deep Learning (DL), DAC
leveraged from it with several works proposed ex-
ploiting numerous DL concepts (Khanpour et al.,
2016), (Kumar et al., 2018), (Khanpour et al., 2016)
etc. However, all these works treated DAC as an in-
dependent problem without taking advantage of its
correlation with other user behaviours such as emo-
tion and sentiment. The idea of identifying speech
acts in dialogues have also been extended for so-

cial media platforms such as Twitter also known as
tweet acts (Saha et al., 2019, 2020c,d).

In (Cerisara et al., 2018b; Qin et al., 2020; Li
et al., 2020), authors presented several DL based
approaches to study the role of sentiment in identi-
fying speech acts for a social media platform called
Mastodon. In (Ihasz and Kryssanov, 2018), au-
thors made an attempt to determine correlation be-
tween DAs and basic emotion tags for an in-game
Japanese conversation. In (Saha et al., 2020b), au-
thors introduced a large-scale, multi-modal conver-
sational data annotated with DAs and emotions in
order to establish that emotion indeed aided the
task of DAC. However, they did not make use of
sentiment of the speaker which is yet another cru-
cial user behavior that can aid in understanding the
DAs better. In (Saha et al., 2021, 2022), authors
introduced the concept of studying speech acts in
correlation with sentiment and emotion but it was
meant for the social media communication in Twit-
ter with no dialogic structure. Authors of (Saha
et al., 2020f; Saha and Ananiadou, 2022; Saha et al.,
2020e) proposed several correlated tasks in a di-
alogue system that leverages with the addition of
sentiment and/or emotion in its learning process.

3 Dataset
The newly created multi-modal (i.e., text, audio
and video), Emotion-DA Dataset: EMOTyDA (Saha
et al., 2020b), consists of 1341 dyadic and multi-
party conversations resulting in a total of 19,365
utterances and approximately 22 hours of record-
ings. In this dataset, utterances are annotated with
12 DA tags with the corresponding 10 emotion
tags. The details of the DA and emotion tags are
mentioned in the appendix below. So, this dataset
is manually re-annotated for its related sentiment
labels. EMOTyDA dataset is curated using con-
versations from MELD (Poria et al., 2019) and
IEMOCAP (Busso et al., 2008) datasets. In case of
MELD, pre-annotated sentiment labels of the utter-
ances were already existing. We chose to use the
same sentiment labelling as released in the source
dataset. However, the IEMOCAP dataset contains
solely pre-annotated emotion tags without any sen-
timent labels1. Three annotators were hired for
the task of sentiment annotation. They were asked
to manually annotate the utterance by viewing the
corresponding video and context to assign its senti-

1The extended version of the EMOTyDA dataset with
its sentiment tags will be available in https://github.
com/sahatulika15/EMOTyDA

https://github.com/sahatulika15/EMOTyDA
https://github.com/sahatulika15/EMOTyDA
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(a) (b)

Figure 1: Statistics across the dataset : (a) Distribution of sentiment label, (b) Distribution of top-10 most highly
occurring DA-Emotion-Sentiment labels.

ment label, namely positive, negative and neutral.
We observed an inter-annotator score of 78% which
can be considered reliable. Statistics of the dataset
related to sentiment and relation between the dif-
ferent tasks are shown in Figure 1. Other statistics
as well as the process of resolving disagreement
amongst annotators are reported in the appendix
below.

4 Proposed Methodology

The proposed approach and implementation details
will be outlined in this section.

Problem Statement. For the multi-task set-up,
let us consider a training set, {xi, yi, wi, zi}Ni=1,
where xi is the i-th sample, yi, wi and zi are the
label vectors for DAC, SA and ER tasks, respec-
tively and N is the number of training instances.
f(x,w) denotes the multi-task, multi-modal clas-
sifier, called the primary network (say) and w is
its parameters. The task is to find the optimal pa-
rameter, w∗, by minimizing the multi-task train-
ing loss (combined loss from each of the three
tasks), 1/N

∑N
i=1 L

train
i (w), where Ltrain

i (w) =
l(yi, f(xi, w)).

4.1 Feature Extraction
The process of feature extraction for different
modalities is discussed below.
• Textual Features : For extracting text based

features of an utterance U having nu number of
words, the word embeddings of each of the words,
w1, ..., wu, where wi ∈ Rdu and wi’s are obtained
from pretrained GloVe (Pennington et al., 2014)
embeddings, where du = 300. For an utterance
U , each of these wis belonging to the words of the

utterance are concatenated to obtain a final textual
sentence representation, i.e., U ∈ Rnu×du .

• Audio Features : OpenSMILE (Eyben et al.,
2010), an open source software has been used in
order to extract features from the acoustic modal-
ity. Let na be the window segments for each of
the audio with respect to an utterance. For each
of the window segments, ni, da = 384 dimen-
sion of features are obtained from the openSMILE
software2. Each of these da dimensional features
for na segments are concatenated to obtain a final
audio representation for each of the utterances as
A ∈ Rna×da .

• Video Features : To elicit visual features from
the video of an utterance, containing nv number of
frames a pool layer of an ImageNet (Deng et al.,
2009), pretrained ResNet-152 (He et al., 2016) im-
age classification model has been used. For each
of the frames, ni, dv = 4096 dimensional feature
vector is obtained from the classification module.
The final visual representation of each utterance
(V ) is acquired by concatenating each of the dv
vectors to a total of nv, i.e., V ∈ Rnv×dv (Castro
et al., 2019), (Illendula and Sheth, 2019).

4.2 Network Architecture
The proposed network has three primary compo-
nents : (i) Modality Enocoders (ME) which inputs
the uni-modal features extracted above and out-
put its respective modality encodings, (ii) Dual
Attention Mechanism (DAM) comprising of intra-
modal and interactive inter-modal attentions, (iii)
Classification Layer containing output channels for

2We utilized the “The INTERSPEECH 2009 Emotion
Challenge feature set" (IS09_emotion.conf) configuration file
to extract the audio features
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Figure 2: The architectural diagram of the proposed network

optimizing the three tasks (DAC, SA and ER) at
different levels/hierarchies of the network to learn
generalized representations.

Modality Encoders. Here, we detail how differ-
ent modalities are encoded in the proposed archi-
tectural framework.
• Text, Audio and Video Modalities : The fea-

tures U , A and V belonging to each of the modal-
ities of an utterance (discussed above) are made
to pass through three individual Bi-directional
LSTMs (Bi-LSTMs) (Hochreiter and Schmidhu-
ber, 1997). For textual modality (say), the corre-
sponding representation of an utterance is shown
as Hu ∈ Rnu×2dl . Hidden units in each LSTM
is represented as dl and the sequence length is nu.
In this similar way, Bi-LSTMs are also applied to
the features extracted from the audio and video
modalities and finally a sentence representation of
corresponding audio and video modality encodings
as Ha ∈ Rna×2dl and Hv ∈ Rnv×2dl , respectively,
is obtained.

Dual Attention Mechanism. One of the major
challenges faced by any model employing multi-
modal inputs is to learn how to leverage the in-
teractions amongst various modalities. Here, we
introduce a Dual Attention Mechanism (DAM) for
the joint optimization of DAC, SA and ER tasks.
DAM primarily comprises of a series of attention

mechanisms of varied types such as intra-modal
attention (IA) and interactive inter-modal attention
(IIA) that aim to learn complementary information
from individual modalities as well as by interacting
between two modalities.
• Intra-modal Attention : In order to under-

stand how the current word and the preceding parts
of the text are interdependent, we compute intra-
modal attention (IA) for all of these modalities
separately. So, we actually try to compute a final
representation of the same sequence for each of
these modalities by sort of relating different posi-
tions of that given sequence (Vaswani et al., 2017).
The IA scores for each of the modalities are esti-
mated as :

IA = softmax(QHKT
H)VH (1)

where IA ∈ Rnu×2dl for IAu, IA ∈ Rna×2dl

for IAa, IA ∈ Rnv×2dl for IAv.
Each of these matrices obtained from the individ-

ual modalities are then passed through individual
dense layer of dimension, df (say). So, we obtain
3 different attention outputs from these modalities
as IA ∈ Rnu×df for IAu, IA ∈ Rna×df for IAa,
IA ∈ Rnv×df for IAv. Next, we obtain mean of
these individual attention outputs to compute repre-
sentations for each of these modalities in the same
dimension as IA ∈ R1×df for IAu, IA ∈ R1×df

for IAa, IA ∈ R1×df for IAv. These individual
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representations are then passed through two sep-
arate dense layers of db and dc (say) dimensions
each. Thus, we obtain six different channels as
IAub ∈ R1×db , IAuc ∈ R1×dc , IAab ∈ R1×db ,
IAac ∈ R1×dc , IAvb ∈ R1×db and IAvc ∈ R1×dc .
• Interactive Inter-modal Attention : As stated

above, one of the most challenging tasks for any
multi-modal system is to successfully integrate in-
puts from various modalities. Individual modali-
ties typically have discrete features, regardless of
whether they contribute in the achievement of a
common goal. For eg., in multi-modal DAC, the
purpose of all the modalities i.e., text, audio and
video is to predict the DA of a given utterance. The
divergent characteristics from each modality alone
is likely to provide an inconclusive scenario for de-
ciding on a specific DA tag, reducing the model’s
ability to learn features efficiently. To counter this,
we describe an interactive inter-modal attention
(IIA) mechanism for learning a mutual interaction
between two distinct modalities (in a way that the
two modalities carry distinctive features of an utter-
ance) serving a common goal. The IIA, thus, aims
to encode feature representation of one modality
(say text) and decode it into a feature representation
of another modality (say video). In intuition, this
concept is pretty similar to how an auto-encoder
works. Like an auto-encoder aims to make the in-
put and output conceptually as similar as possible.
Analogously, the feature representations of two
chosen modalities act as the input and the output,
which are then meant to be conceptually aligned.
In a sense, the IIA mechanism attempts to learn a
vector that represents the combined representation
of the two modalities involved which can thus, be
further used in the network.

As seen in figure 2, the IIA network is imple-
mented as a stacking of dense layers to deconstruct
(encode) into lower dimension de and construct (de-
code) into higher dimension dc of the input to the
output. We take unique pairs of modality combina-
tion from IAuc, IAac, IAvc to form three unique
pairs of input-output to feed to the IIA network
resulting in IIAua ∈ R1×dc , IIAuv ∈ R1×dc and
IIAav ∈ R1×dc . In order to ensure that the resul-
tant vector is as close to the output modality, the
IIA vectors are conditionally trained using the co-
sine similarity loss, lc where lc is the maximizing
function as for e.g., :

lc = cos(IIAua, IAa) (2)

This applies to the remaining two IIA vectors
as well. Also, while training this IIA network for
each pair (say text-video), the encoded vector at
the text side, i.e., IAuc gets dual gradient of errors,
one from the decoded IIA output at the video side,
i.e., from IIAuv, lc and the other from the three
task-oriented labels, lt1 of DAC, SA and ER. Both
these errors are summed up, (lc + lt1) and back-
propagated to the input side, i.e., IAuc (shown in
Figure 2). This is done so that the input side of
the IIA network also adjusts itself to the desired
task-specific features. To ensure, that output side
of the IIA network (in this case IIAuv) also learns
features specific to the task, a gradient of error is
also back-propagated to it for the three tasks at
hand, lt2 (shown in Figure 2). This discussion also
applies to other two IIA vectors as well.
• Attention Fusion : For each of these pairs, i.e.,

text-audio, text-video, audio-video, we obtain the
corresponding IIA vectors along with the IA vec-
tors of the encoded input vector. We concatenate
each of these involved IA and IIA vectors:

C1 = concat(IIAua, IAu) (3)

C2 = concat(IIAav, IAa) (4)

C3 = concat(IIAuv, IAu) (5)

where C ∈ R1×2∗dc for each of C1, C2 and C3.
To get a final representation of the utterance, we
take the mean of these three separate concatenated
attention vectors.

M = mean(C1, C2, C3) (6)

Context. The context plays an essential role in
deciding the DA of the current speaker (Liu et al.,
2017). To incorporate the contextual relationship,
previous utterance is encoded separately using a
separate Bi-LSTM to model sentence level repre-
sentation. The obtained contextual representation
and the representation of the current utterance from
the DAM module are concatenated to obtain a final
representation.

Classification Layer. The final representation of
an utterance obtained from the DAM module, is
then passed through a dense layer and then shared
across three channels of the proposed multi-task
framework pertaining to the three tasks i.e., DAC,
SA and ER. Each of these channels is accompanied
by a softmax layer for the final classification. The
gradient of errors, (lf ) received from each of these
branches is back-propagated jointly to the preced-
ing layers (shown in Figure 2). The three vectors,
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Figure 3: The architecture of the meta-net

IAub, IAab and IAvb, obtained from the IA layer,
are also subjected to the final classification layer
separately, thus, receiving gradient of errors from
the three task-oriented labels, lt3 (shown in Figure
2). In a way, these three vectors receive two gra-
dients of errors to back-propagate, i.e., (lf + lt3).
Similarly, the three vectors IIAuvb, IIAavb and
IIAuab, obtained from the IIA layer, are also sub-
jected to the final classification layer separately,
thus, receiving gradient of errors from the three
task-oriented labels, lt2 as mentioned above. The
intuition behind these multiple gradients of errors at
some attention hierarchies is as DAC shares a lesser
amount of correlation with SA and ER compared
to SA and ER themselves, we impose a higher de-
gree of strictness at various levels to learn useful
features pertaining to the three tasks.

4.3 Meta-Net Learning
When the training data is biased, sample re-
weighting based methods boost the efficiency of
training by imposing weight on the i-th sample
multi-task loss, α(Ltrain

i (w); Θ), where α(l; Θ)
represents the weight net and Θ its parameters. The
optimal w is calculated by minimizing the weighted
multi-task loss as :

w∗(Θ) =
1

N

N∑
i=1

α(Ltrain
i (w); Θ)Ltrain

i (w) (7)

The MN-learning aims to exploit the idea of
meta-learning to learn the hyper-parameters Θ au-
tomatically (inspired by (Shu et al., 2019)). For
this, α(Ltrain

i (w); Θ) is devised as a MLP network
(shown in Figure 3). We refer to this weight net as
Meta-Net. The input of MN is the multi-task loss
and the output is a sigmoid function to squash the
output in the interval of [0, 1]. We sample a small
amount of unbiased data (focused on DAs, imply-
ing that sentiment and emotion might or might not
be balanced) from the training set called the meta-

data set, {x(meta)
i , y

(meta)
i }Mi=1 which depicts the

meta-knowledge of DA ground-truth distribution,
where M is the number of instances in meta-data
set and M << N , the optimal Θ∗ is obtained by
minimizing the meta-loss as given below:

Θ∗ =
1

M

M∑
i=1

Lmeta
i (w∗(Θ)) (8)

So, the updating equation of the primary network
(proposed framework discussed above) is devised
by the current wt along the descent direction of the
multi-task loss in Eqn. 7 on a mini-batch training
data as follows:

wt(Θ) = wt − γ
1

n
×

n∑
i=1

α(Ltrain
i (wt); Θ)

▽w Ltrain
i (w) (9)

where γ and n are step and mini-batch size, re-
spectively. After receiving the feedback of the pri-
mary network, the parameter Θ is updated by mov-
ing the current Θt along the objective gradient of
Eqn. 8 calculated on the meta-data as :

Θt+1 = Θt − β
1

m

m∑
i=1

Lmeta
i (wt(Θ)) (10)

where β is the step size. Thus, the updated Θt+1

is utilized to alleviate the parameter w of the pri-
mary network as given below :

wt+1 = wt − γ
1

n
×

n∑
i=1

α(Ltrain
i (wt); Θt+1)

▽w Ltrain
i (w) (11)

4.4 Two-step Deferred Optimisation Schedule

Re-weighting and re-sampling are two well-known
and successful procedures for dealing with imbal-
anced datasets because, as expected, they effec-
tively bring the imbalanced training distribution
closer to the uniform test distribution. The issues
in applying these techniques are : (i) re-sampling
the minority classes causes heavy over-fitting in DL
based models (Cui et al., 2019) and (ii) when the
minority class losses are weighted up, optimization
can become difficult and unstable, especially when
the classes are highly imbalanced (Huang et al.,
2016). To counter this, we adopt a strategy similar
to (Cao et al., 2019), known as deferred optimisa-
tion schedule. We call this two-step because at first
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Table 1: Different hyper-parameter values used in the
proposed approach

Hyper-parameter Value
Bi-LSTM Memory

Cells
100

Dense Layer (de, dc, db) 100, 500, 300
Loss Function Categorical Crossentropy
Learning Rate 0.01

Optimizer Adam

we train the primary network with MN-learning be-
fore annealing the stochastic gradient descent learn-
ing rate, and then deploy a re-weighted multi-task
loss with a smaller learning rate. Experimentally,
the first step training induces a good initialization
for the second step training. Since the multi-task
loss is non-convex by nature and the learning rate
for the second step is very small, it does not move
the weights very far.

Implementation Details. 80% of the conversa-
tions of the EMOTyDA dataset were used as the
train set and the remaining as the test set. The
training set contains 14986 utterances resulting to
1073 dialogues whereas the test set comprises of
4379 utterances amounting to 268 dialogues. The
three channels contain 12, 4 and 10 output neurons,
for DA, sentiment and emotion tags, respectively.
Different hyper-parameters and its value used in
the proposed approach is listed in Table 1.

5 Results and Analysis
We carried out a number of experiments to assess
the efficacy of the proposed method. Experiments
were carried out for various combinations of multi-
tasking with DAC as the crucial task, as well as
for varying modalities, in addition to the single
task DAC variation along with MN and DOS based
learning. This was followed by experiments in a
conversational framework and compared against
single utterance classification.

Table 2 shows the results for all the baselines and
the proposed models. As expected, the text modal-
ity gives the best results compared to the other two
uni-modal variants (i.e., audio and video modality).
However, as seen, the addition of these two non-
verbal modalities improves this uni-modal textual
baseline. Thus, stressing the role of considering
multi-modal inputs for predicting DAs. The combi-
nation of text and video modalities (T+V) gives the
best results compared to all other modality variants.
The tri-modal variant does not achieve the best re-
sults due to the sub-optimal behavior of the acous-

tic modality. As evident in Table 2, the tri-task vari-
ant of the multi-task framework (i.e., DAC + SA +
ER) consistently gave the best results throughout
all the experiments, indicating that the presence of
both sentiment and emotion benefits each other to
comprehend the state of mind of the speaker better.
All the reported results are statistically significant
(Welch, 1947) as we have performed Welch’s t-test
at 5% significance level. As expected, in the bi-task
variant, DAC+SA multi-task framework, shows lit-
tle improvement in different metrics as opposed
to DAC+ER multi-task framework compared to
the single task DAC variant. This benefit is self-
evident, as sentiment alone cannot always give a
complete picture of the speaker’s state of mind. For
eg., a negative sentiment can arise due to various
emotions such as fear, disgust, sadness etc.

In Table 3, we show experiments in different set-
up by including contextual utterance along with the
speaker utterance to predict the DAs. We observe
that incorporating contextual relationship gave con-
sistently better results for multi-task framework
compared to single utterance classification. This
observation is consistent with previous works. Ad-
ditionally, we observe that the 2-step DOS involv-
ing MN learning and deferred re-weighting im-
proves the performance of the DAC task consider-
ably and consistently throughout all the multi-task
variants. Intuitively, the incorporation of MN learn-
ing handles the extreme class-imbalance issue of
the DAs effectively in a multi-task set-up. The ad-
dition of DOS on top of it further improves this
issue indicating that the second-step of DOS starts
from better features, adjusts the decision bound-
ary and locally fine-tunes the features. All these
observations are in conformity with the literature.
We also compare our proposed approach with the
recent state of the art models for different DAC and
multi-modal models and the results for the same
are reported in Table 5. As evident, the proposed
network attained better results as compared to the
state of the art models.

In Figure 4, we present a visualization of the
learned weights of an utterance from the IAu

layer (as this layer contains word-wise attention
scores). The true DA tag of this particular ut-
terance is disagreement. The importance of dis-
agreement bearing words are learnt well for the
multi-task approach as opposed to the single-task
DAC model where attention is on compliance bear-
ing word such as fine. With DAC+SA, DAC+ER
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DAC DAC + SA DAC + ER DAC + SA + ER
Model MN DOS Acc. F1-score Acc. F1-score Acc. F1-score Acc. F1-score

Text (T) × × 51.27±1.08 48.63 51.92±1.02 49.06 52.65±0.75 49.76 53.00±0.80 50.46
Audio (A) × × 25.41±1.24 19.90 25.73±0.56 20.27 26.09±1.02 21.61 26.32±0.96 22.07
Video (V) × × 29.16±0.36 26.41 29.83±0.27 27.08 30.67±0.5 27.71 31.30±0.1 28.61

T+A × × 51.91±0.41 49.23 52.57±0.29 † 49.81 † 53.36±1.41 † 50.26 † 54.61±1.2 † 51.80 †
A+V × × 30.06±1.36 27.84 30.42±0.2 28.05 31.53±1.13 28.84 31.86±0.72 29.27
T+V × × 56.81±1.22 52.22 57.27±1.08 † 52.63 † 58.12±0.51 † 53.49 † 58.56±0.54 † 54.13 †

T+A+V × × 56.14±1.74 51.45 56.81±2.31 † 51.80 † 57.34±1.28 † 52.47 † 57.81±1.42 † 53.66 †
T+V (IA) × × 53.42±1.03 49.27 54.29±1.31 50.07 54.88±1.04 51.01 55.87±0.55 51.69
T+V (IIA) × × 52.63±1.3 48.91 53.77±1.05 49.65 54.06±0.61 50.33 54.63±0.16 50.60

T+V (single loss) × × 52.85±1.35 48.81 53.69±1.01 49.87 54.44±0.53 50.75 55.29±1.28 51.29
T+V (final

concat attention)
× × 54.21±0.56 49.72 55.09±0.36 50.35 55.82±1.20 51.06 56.31±0.67 52.05

T+V with
Vanilla Re-weighting

× × 56.83 52.66 57.76 52.90 58.49 53.82 58.91 54.56

T+V ✓ × 57.29 53.94 58.37 53.85 59.51 54.35 59.20 55.92
T+V ✓ ✓ 58.72 † 54.50 † 59.96 † 54.18 † 60.02 † 55.93 † 61.72 † 57.01 †

Table 2: Results of the proposed model (without context) and its different baseline in terms of accuracy and F1-score.
† represents that the results are statistically significant

Model
DAC + SA + ER

(context)
Acc. F1-score

Text (T) 53.88±0.40 51.09
Audio (A) 26.61±0.39 22.19
Video (V) 31.75±0.62 28.94

T+A 55.46±1.27 52.25
A+V 32.35±1.21 29.74
T+V 59.50±1.46 † 54.86 †

T+A+V 58.73±1.02 54.08
T+V (IA) 56.82±1.52 52.22
T+V (IIA) 55.37±0.61 51.04

T+V (single loss) 56.62±1.23 51.74
T+V (final

concat attention)
57.15±0.65 52.79

Table 3: Results of the proposed model considering
context of the speaker utterance

and DAC+SA+ER respectively, the degrees of
importance of correct/incorrect words have in-
creased/decreased gradually as enhanced informa-
tion is learnt due to the effect of different tasks
and its combinations. During a detailed analy-
sis, it was observed that expressive DAs such as
‘greeting", “acknowledge", “apology", “command",
“agreement", “disagreement" are sensitive to the
presence of sentiment and emotion etc. For e.g., ut-
terance such as “That’s very amusing indeed" was
identified as “agreement" in the single task DAC
model, but was correctly classified as “disagree-
ment" in the proposed multi-task, DAC+SA+ER
model as the sentiment and emotion of the utter-
ance were “negative" and “angry", respectively,
given the context that the speaker was disagreeing
with the hearer in a sarcastic manner. It was also
observed that for longer utterances comprising of
composite sentences, sentiment and emotion of the
speaker did play significant role in correctly iden-
tifying the DA tag. For eg., an utterance such as
“Hey, I’m, uh. I’m really sorry about what hap-

Figure 4: The visualization of the learned weights for
an utterance from IAu layer- u1: “Fine, if you insist
on being completely insolent." for the best performing
model (T+V), single task DAC (baseline), multi-task
DAC+SA, DAC+ER (baselines) and DAC+SA+ER (pro-
posed) models

pened. I don’t um- I mean what you can you do?"
was wrongly predicted as “opinion" in the single
task DAC model but was predicted correctly as
“apologize" in the proposed multi-task model given
the “negative" and“sad" sentiment and emotion of
the speaker, respectively, that it is simply trying to
sympathize with the sufferer. It was also observed
that “surprise" emotion gets marginally benefited
with the addition of sentiment as there was no clear
correlation of “surprise" with a definite sentiment
state of the speaker. Other emotion categories such
as happy, anger, sad which had direct correlations
with the DA tags as shown in Figure 1b get bene-
fited with the addition of sentiment tags.

Error Analysis. An in-depth investigation identi-
fied several possible explanations for why the pro-
posed approach faltered which are as follows : (i)
Imbalanced dataset : Most of the DA tags in the
EMOTyDA dataset are less frequent than others,
which make the dataset highly imbalanced. Due to
their lesser instances, the model is unable to learn
its representations correctly; (ii) Composite utter-
ances : A number of utterances in the dataset are
of composite nature with elongated span of words.
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Utterance True
Label DAC DAC with

(SA+ER)
Of course I did want to a little further up the coast you know get away from all the lights and people and everything.

Is it midnight, do they always start at midnight? Is that what it is midnight? How you doing, huh? You okay? That’s good.
q o o

You know you probably didn’t know this, but back in high school, I had a, um, major crush on you. s ans o
Oh that’s a great reason. It’s no reason at all. dag ag dag

I know, I know, I’m such an idiot. o s o
All right. All right. Calm yourself. c ag c

Table 4: Examples with its predicted labels for the multi-task DAC+SA+ER (T+V) and its single task DAC variant

Model Accuracy F1-score
Feature level (early fusion)

(Poria et al., 2015)
51.50% 48.49

Feature level (early fusion) +
simple attention

52.34% 49.85

Hypothesis level fusion
(Poria et al., 2016)

51.23% 47.72

JointDAS
(Cerisara et al., 2018a)

52.03% 49.26

Hidden-state level (late fusion)
(Saha et al., 2020a)

53.77% 50.06

Hidden-state level (late fusion) +
simple attention

54.55% 50.19

SA+IMA : DAC+ER
(Saha et al., 2020b)

56.62% 51.70

Proposed Approach
(DAC+ER)

58.12% 53.49

Proposed Approach (DAC+SA+ER) 59.50% 54.86
Proposed Approach (DAC+SA+ER)

MN+DOS
61.72% 57.01

Table 5: Comparison of the proposed approach with the
recent state of the art models

Thus, a single utterance exhibits multiple notions of
DAs making it challenging for classification mod-
els to learn features to discriminate amongst DAs;
(iii) Mis-identification and absence of sentiment-
emotion tags : In cases, where sentiment-emotion
(and/or) tags were incorrectly identified, resulted in
DAs also being wrongly classified. Also, instances
where sentiment-emotion tags are neutral, the DAC
task cannot really take advantage of these behav-
iors to enhance its learning. Sample utterances for
the error analysis are shown in Table 4.

6 Conclusion and Future Works

In this paper, we study the role of sentiment and
emotion while modelling the task of DAC. For this,
we propose a Dual Attention Mechanism based
multi-modal, multi-tasking framework for jointly
optimizing DAC, SA and ER tasks. The DAM
module employs intra-modal and interactive inter-
modal attentions with multiple loss optimization at
various hierarchies in order to fuse multiple modali-
ties efficiently and learn generalized features across
all the tasks. Additionally, to counter the class-
imbalance issue in dialogues, we introduce a 2-step
DOS that involves MN learning and deferred re-
weighting where the former is an adaptive sam-
ple weighting strategy to automatically learn an
explicit weighting function from data and the lat-

ter deploys a re-weighted multi-task loss with a
smaller learning rate. Empirical results indicate
that the joint optimisation of DAC, SA and ER
tasks along with the incorporation of 2-step DOS
and MN learning produces better results compared
to its counterparts and outperforms SOTA model.
In future, we would like to explore which other
human behavior can aid the performance of DAC
along with proposing other classification models
encompassing speaker information and other DL
concepts.
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A Appendix

EMOTyDA Dataset. The 12 DA tags of the
EMOTyDA dataset are namely, Statement-Opinion
(o), Greeting (g), Statement-Non-Opinion (s), Ques-
tion (q), Apology (ap), Answer (ans), Command
(c), Agreement (ag), Backchannel (b), Disagree-
ment (dag), Acknowledge (a) and Others (oth) with
the 10 emotion tags, namely, angry, fear, sad, ex-
cited, frustrated, disgust, surprised, happy, neutral
and others. The DAs and emotion labels distribu-
tion of the EMOTyDA dataset across the source
datasets are shown in Figure 6. Distribution of
sentiment labels of the EMOTyDA dataset across
the source datasets are shown in Figure 1a. The
10 most highly occurring DA-Emotion-Sentiment
labels in the EMOTyDA dataset is shown in 1b.

Sentiment Annotation. In case of disagreement
between annotators, we utilized its corresponding
emotion category to assign it, its related sentiment
category. This was done because for e.g., emotions
such as excited and happy are more likely to belong
to the positive sentiment class whereas emotions
such as fear, sad, angry, frustrated and disgust
can be clubbed together to belong to the negative

Figure 5: Importance of sentiment and emotion in DAC

sentiment class. Similarly, neutral and others emo-
tions can inherently belong to the neutral sentiment
tags, respectively. For the surprised emotion tag,
annotators were strictly asked to resolve disagree-
ment amongst themselves by mutual agreement as
an emotion of surprise can arise both because of
positive as well as negative sentiments.

Qualitative Aspect. Here, we investigate with
some samples from the dataset that need sentiment
and emotion needed reasoning for DAs. In Figure 5,
we present two examples from the dataset and show
how sentiment and emotional states of the speaker
contribute in the identification of DAs. In the first
instance, the commandment intent of the speaker
is a result of her angry state of mind which in turn
arises because of a negative sentiment. Similarly,
in the second instance, the happier state of mind of
the speaker largely directs the speaker to agree with
the hearer which in turn can also be related to her
positive sentiment. The above examples empha-
size the importance of considering additional user
behavior, such as sentiment and emotion, when rea-
soning about DAs. Thus, asserting the importance
of resolving such synergy amongst DAC, SA, and
ER.
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(a) (b)

Figure 6: Statistics across the dataset : (a) Distribution of DA labels, (b) Distribution of emotion labels.
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