
Proceedings of the Sixth Conference on Machine Translation (WMT), pages 961–972
November 10–11, 2021. ©2021 Association for Computational Linguistics

961

IST-Unbabel 2021 Submission for the Quality Estimation Shared Task

Chrysoula Zerva1,2,∗ Daan van Stigt3,∗ Ricardo Rei2,3,4,∗ Ana C. Farinha3

Pedro G. Ramos3 José G. C. de Souza3 Taisiya Glushkova1,2 Miguel Vera3

Fábio Kepler3 André F. T. Martins1,2,3
1Instituto Superior Técnico 2Instituto de Telecomunicações 3Unbabel 4INESC-ID

2,3,4Lisbon, Portugal
{chrysoula.zerva, ricardo.rei, taisiya.glushkova, andre.t.martins}@tecnico.ulisboa.pt

{daan.stigt, catarina.farinha, pedro.ramos, jose.souza, miguel.vera, fabio.kepler}@unbabel.com

Abstract

We present the joint contribution of IST and
Unbabel to the WMT 2021 Shared Task on
Quality Estimation. Our team participated
on two tasks: Direct Assessment and Post-
Editing Effort, encompassing a total of 35
submissions. For all submissions, our ef-
forts focused on training multilingual models
on top of OpenKiwi predictor-estimator ar-
chitecture, using pre-trained multilingual en-
coders combined with adapters. We further
experiment with and uncertainty-related objec-
tives and features as well as training on out-of-
domain direct assessment data.

1 Introduction

Quality estimation (QE) is the task of evaluating
a translation system’s quality without access to ref-
erence translations (Blatz et al., 2004; Specia et al.,
2018). This paper describes the joint contribution
of Instituto Superior Técnico (IST) and Unbabel to
the WMT21 Quality Estimation shared task (Spe-
cia et al., 2021), where systems were submitted to
two tasks: 1) sentence-level direct assessment; 2)
word- and sentence-level post-editing effort.

This year’s submission combines several ideas
built on top of the OpenKiwi framework. Moti-
vated by the mixture of blind and seen language
pairs in the test sets, we experimented with ex-
tensions that would allow us to train multilingual
models that maintain good generalization ability
and are robust to the presence of epistemic and
aleatoric uncertainty.

For both tasks we trained and submitted an en-
semble of multilingual models. All submitted mod-
els follow the predictor-estimator architecture (Kim
and Lee, 2016; Kim et al., 2017) and use pre-
trained models for feature extraction. Also, we
fine-tune all models on the provided QE data us-
ing stacked adapter layers (Pfeiffer et al., 2020).

∗ The first three authors have equal contribution.

We show that we can thus achieve comparable per-
formance across language pairs while minimising
the number of trainable parameters (see Table 1).
Furthermore, we experimented with different types
of uncertainty-related information to leverage it’s
benefits, improving performance and robustness
of the submitted systems (see §3.1.1). All related
code extensions will be publicly available.

Our main contributions are:

• We build on our OpenKiwi architecture by
exploring adapter layers (Houlsby et al., 2019;
Pfeiffer et al., 2020) for quality estimation
as these demonstrated to be less amenable
to overfitting while presenting the same or
superior quality performance than fine-tuning
the whole base pre-trained model for different
NLP tasks (He et al., 2021).

• We incorporate different types of uncertainty
into our architectures. We make use of the
glass-box features (Fomicheva et al., 2020)
extracted from the NMT models, the aleatoric
(data) uncertainty derived from the human
annotations and the epistemic (model) uncer-
tainty (Hora, 1996; Kiureghian and Ditlevsen,
2009; Huellermeier and Waegeman, 2021)
that originates from the QE model.

• We show that training the QE models on addi-
tional out-of-domain direct assessment (DA)
data gives considerable gains in performance
for the new language pairs from the blind test
sets.

2 Quality Estimation Tasks

In this year’s shared task edition we submitted mod-
els for the first two tasks:

1. Task 1: sentence-level direct assessment

2. Task 2: word- and sentence level post-editing
effort, comprising of two subtasks: a) predict-
ing the HTER score of the translated sentence
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(hypothesis); and b) predicting OK/BAD tags
for the words and gaps (both in source and
translation)

We note that this year, both tasks 1 and 2 pro-
vided additional blind test sets with language pairs
that were not included in the data made available
for training/development, providing an interesting
challenge and motivating multilingual and general-
isable approaches.

3 Implemented Systems

3.1 Task 1
For Task 1 our final submission consisted of an
ensemble of two different multilingual models, that
differ in the way they process the input source (orig-
inal sentence) and hypothesis (machine translation).
Both models are based on the predictor-estimator
architecture, using different pre-trained models to
extract features and different training approaches
to optimise for the QE task.

The key idea explored with our first model (de-
noted by M1 variations in the experiments), re-
volved around pursuing highly generalisable mul-
tilingual models, robust to overfitting. To this
end, we train a cross-lingual transformer (XLM-
RoBERTa (Conneau et al., 2020)) on large, multi-
lingual data with direct assessments and then use
adapters (Houlsby et al., 2019; Pfeiffer et al., 2020)
to adapt to the domain specific data of the QE
task with minimal training effort. In line with
our efforts for good generalisation, we use only
task-specific adapters and refrain from using spe-
cific adapters for each language pair. For these
experiments we build on the OpenKiwi archi-
tecture (Kepler et al., 2019), using a pre-trained
xlm-roberta-large encoder as a feature pre-
dictor. The source and hypothesis sentences are
jointly encoded with hypothesis first. Then, source
and hypothesis features are generated using aver-
age pooling over the hypothesis embeddings and
forwarded to the estimator module which corre-
sponds to a feed-forward layer. Figure 1 provides
the general architecture1

The model was first trained on the direct assess-
ment data provided in the Metrics shared tasks
(Mathur et al., 2020), as described in §3.1.2. Upon
training, the XML-R encoder is frozen and the the
model is fine-tuned on sentence regression with

1Note that glass-box features are integrated but not used in
this submission as they did not significantly improve perfor-
mance.

Figure 1: General architecture of M1 model variations.
Word tag prediction is used only for Task 2.

the task-specific data, using stacked adapters. We
hence manage to maintain a low number of train-
able parameters during fine-tuning and minimize
training time while learning to predict task-specific
sentence scores.

For the second model (denoted by M2-KL-G-
MCD) we aimed to explore the potential of a large
pre-trained multilingual model (trained with MT
objectives). We use the mBART (Liu et al., 2020)
encoder-decoder architecture to encode the source
and force-decode the hypothesis. We specifically
use the mBART50 model (Tang et al., 2020) which
is trained with multilingual finetuning on 50 lan-
guages, including all languages of interest for the
QE 2021 task. We obtain the features by aver-
aging the decoder embeddings and concatenating
with the <eos> token of the sequence. The esti-
mator part of the model consists of a bottleneck
feed-forward layer that reduces the dimensionality
of the decoder output, and is concatenated with a
vector with additional glass-box features from the
NMT models (see §3.1.1). The combined vector is
then forwarded to a feed-forward estimator and the
full model is fine-tuned on the task specific QE data.
Apart from the glass-box features we experimented
further with methods that allow the model to be
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Figure 2: General architecture of M2 model variations.

more robust towards the underlying uncertainty of
its predictions. We elaborate that in the next sec-
tion. Figure 2 provides a general architecture of
the M2 model variations.

3.1.1 Learning from uncertainty
Multiple neural models are involved in the pro-
cess of obtaining and scoring machine translations,
which naturally leads to several sources of uncer-
tainty. These sources can be very informative and
useful for MT evaluation. In this work we try to
consider three types of uncertainty: (1) uncertainty
of the NMT models used to obtain the hypotheses,
(2) data (aleatoric) uncertainty for which we use
the inter-annotator disagreement as a proxy, and (3)
uncertainty of the MT evaluation model itself.

NMT model uncertainty The idea of extract-
ing uncertainty-related features from the MT sys-
tems in order to estimate the quality of their predic-
tions, was originally introduced by Fomicheva et al.
(2020). This glass-box approach to QE is mostly
focusing on capturing epistemic uncertainty, and
the proposed features are extracted either using
Monte Carlo (MC) dropout on the NMT or using
the output probability distributions obtained from
a standard deterministic MT system. In our last
year’s submission (Moura et al., 2020) the integra-
tion of such features proved to be effective, thus
we decided to incorporate it into our new model as
well. We list the extracted features below:

• TP sentence average of word translation prob-
ability

• Softmax-Ent sentence average of softmax
output distribution entropy

• Sent-Std sentence standard deviation of
word probabilities

• D-TP average TP across N(N = 30) stochastic
forward-passes

• D-Var variance of TP across N stochastic
forward-passes

• D-Combo combination of D-TP and D-Var
defined by 1−D − TP/D − V ar

• D-Lex-Sim lexical similarity - measured by
METEOR score (Lavie and Denkowski, 2009)
- of MT output generated in different stochas-
tic passes.

Aleatoric uncertainty The noise and complex-
ity of the training data is a source of predictive
uncertainty in itself, referred to as data or aleatoric
uncertainty (Kiureghian and Ditlevsen, 2009). This
uncertainty is often reflected in the disagreement
between human annotations for the same source-
hypothesis segment (Cohn and Specia, 2013; For-
naciari et al., 2021). We hypothesize that the direct
assessments can be better modelled as normally dis-
tributed scores rather than a single score, and that a
model trained to predict this distribution (mean and
standard deviation) could provide better quality es-
timates 2. We formalise this as a KL divergence ob-
jective, using the closed form solution to estimate
the KL divergence between the target distribution
p(x) = N(µ1, σ1) and the predicted distribution
q(x) = N(µ2, σ2), as shown in Eq. 1.

KL(p||q) = log
σ2
σ1

+
σ21 + (µ1 − µ2)2

2σ22
− 1

2
(1)

where we take the mean and standard deviation
(std) of the direct assessment z_scores as the tar-
get (ground truth proxy) values p. This way, we
account for the annotator disagreement (reflected
in the std value) during learning.

QE epistemic uncertainty We use MC dropout
(Gal and Ghahramani, 2016) to account for the un-
certainty of the QE model. Specifically, we enable
dropout during inference and run multiple forward
runs over each test instance. Thus we obtain a dis-
tribution of quality predictions for each instance

2Note that for this task’s data we only had access to 3
scores per segment so the mean and std values are calculated
over these numbers.
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instead of a single point estimate. We use the es-
timated mean of the distribution as our predicted
quality estimate. MC dropout has been shown to
improve predictive accuracy and perform on par or
even better compared to deep ensembles for MT
evaluation tasks (Glushkova et al., 2021). It thus
allows us to simulate ensembling in a cheap and
effective way, without the need to train multiple
checkpoints.

3.1.2 Out-of-domain direct assessment data

The QE data is relatively limited, making it harder
to train multilingual models with a large number
of parameters without over-fitting. Thus, as ex-
plained in §3.1 we aimed to investigate whether we
could obtain models that generalise better and are
more robust to noise and out-of-distribution data by
training the XLM-RoBERTa model first on a larger
–yet noisier and out-of-domain dataset. To that end
we leverage the data provided for the past Metrics
shared tasks, which covers the language pairs used
in this year’s QE task, including the blind tests for
which we had no in-domain data available. Al-
together, it encompasses 30 language pairs from
the news domain (versus 7 in the QE dataset). We
provide more detailed statistics for each language
pair of the Metrics data in Appendix C. We refer to
experiments using the model initially trained on the
Metrics data as M1M-. We also show that using
the trained XLM-RoBERTa encoder from the M1M
model can prove beneficial for the predictions on
post-edited data of Task 2 (see Table 3).

3.2 Task 2

For Task 2 we submitted an ensemble of two varia-
tions of the first model (M1-ADAPT and M1M-
ADAPT) presented for Task 1 (see §3.1). In
both cases, we use multi-task training and a feed-
forward for each output types: hypothesis word
tags, hypothesis gap tags, source word tags, and
sentence regression (on HTER scores). Both vari-
ations use a pre-trained XLM-RoBERTa (large)
encoder to extract features as described for Task
1, but differ in the training of the encoder. In the
first case we use the pre-trained model 3 and fine-
tune on the QE data using stacked adapters. In the
second variation we swap the original pre-trained
model with the XLM-RoBERTa model that has
been trained on the Metrics data as described in

3https://huggingface.co/transformers/
model_doc/xlmroberta.html

§3.1.2. We note that the two variations favor dif-
ferent language pairs, hence we combine multiple
checkpoints from each variation (ranging training
steps). We use the test-20 split of the data to
optimise the hyper-parameters and following this
approach we use the estimated top-3 checkpoints
from each variation using the combined dataset 4

and the top checkpoint for the non-augmented
model trained exclusively on the train set, resulting
in total 7 checkpoints in our final ensemble.

4 Experimental Results

We present the performance of the implemented
models on the test-20 dataset.

4.1 Task 1

The results can be seen in Tables 1 and 2. In line
with the shared task guidelines we treat Pearson r
as the primary performance metric and select the
submitted models accordingly. We can observe,
that while on average the M1 model and its varia-
tions outperform the M2 model, their performance
is comparable, and M2-KL-G-MCD can even out-
perform M1M-ADAPT for specific language pairs,
hence it made sense to combine them in the final
ensemble. We can also see that fine-tuning the M1
model on the Metrics data, results in performance
gains for the majority of the language pairs. Specif-
ically, even applying the M1M directly, without
further fine-tuning on QE data, achieves compet-
itive performance for most pairs, which further
improves upon fine-tuning. It helps in increasing
the performance on the blind sets (denoted as zero-
shot in the Appendix B). The performance gains
concern mostly the correlation performance indi-
cators (Pearson and Spearman correlations), since
especially for M1 the error-based indicators (MAE
and RMSE) seem to favor the versions of the model
that have not seen the Metrics data. One possible
explanation for this discrepancy could lie in the dif-
ferences between the range and distribution of DA
scores for the two datasets. Indicatively, the range
of scores on the train-dev-test-20 concate-
nation of the QE data is [−7.542, 3.178] and for
the Metrics data [−8.624, 4.332]. The target DA
scores in both datasets are calculated via standard-
izing (taking the z score) the direct assessments for
each annotator and then averaging all standardized

4The combined dataset in this case refers to the concatena-
tion of the train/dev/test20 annotated data splits provided for
the shared task

https://huggingface.co/transformers/model_doc/xlmroberta.html
https://huggingface.co/transformers/model_doc/xlmroberta.html
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Pears↑ Spear↑ MAE↓ RMSE↓
E

N
-D

E M1 BASE 0.4534 0.4532 0.4482 0.6371
M1-ADAPT 0.5092 0.4825 0.4868 0.6288

M1M 0.5288 0.4872 0.4485 0.6327
M1M-ADAPT 0.5695 0.5131 0.4127 0.6095

E
N

-Z
H M1 BASE 0.4429 0.4362 0.5364 0.6867

M1-ADAPT 0.4723 0.4755 0.5228 0.6714
M1M 0.4447 0.4400 0.4772 0.6110

M1M-ADAPT 0.4815 0.4872 0.5502 0.7017

E
T-

E
N

M1 BASE 0.7939 0.8076 0.5388 0.6928
M1-ADAPT 0.7948 0.8061 0.4518 0.5810

M1M 0.7580 0.7611 0.5820 0.7134
M1M-ADAPT 0.7956 0.8110 0.5358 0.6921

N
E

-E
N M1 BASE 0.7805 0.7592 0.4278 0.5461

M1-ADAPT 0.7609 0.7475 0.4075 0.5393
M1M 0.7477 0.7324 0.4499 0.6161

M1M-ADAPT 0.7888 0.7556 0.4192 0.5332

R
O

-E
N M1 BASE 0.8718 0.8360 0.3598 0.4878

M1-ADAPT 0.8923 0.8533 0.3068 0.4201
M1M 0.8345 0.8132 0.4585 0.5863

M1M-ADAPT 0.8889 0.8488 0.3142 0.4437

R
U

-E
N M1 BASE 0.7587 0.6919 0.4885 0.6949

M1-ADAPT 0.7736 0.7142 0.4138 0.6082
M1M 0.6703 0.6535 0.5606 0.7583

M1M-ADAPT 0.7425 0.7159 0.4989 0.7250

S
I-

E
N

M1 BASE 0.6456 0.6112 0.5060 0.6481
M1-ADAPT 0.6613 0.6172 0.4742 0.5939

M1M 0.6308 0.6535 0.4742 0.5786
M1M-ADAPT 0.6649 0.6225 0.4863 0.6064

M
L

M1 BASE 0.6781 0.6565 0.4722 0.6276
M1-ADAPT 0.6949 0.6709 0.4377 0.5775

M1M 0.6593 0.5131 0.4127 0.6095
M1M-ADAPT 0.7045 0.6791 0.4596 0.6160

Table 1: Results for Task 1 with the M1 predictor-
estimator (XLM-RoBERTa) and different training/fine-
tuning approaches. M1M is the M1 model trained on
the Metrics dataset and M#-ADAPT signifies a model
fine-tuned on the QE data with adapters. ML stands for
MULTILINGUAL, showing the performance averaged
over all language pairs. Underlined numbers indicate
the best result for each language pair and evaluation
metric. Bold systems were selected for the final ensem-
ble.

assessments for each segment. Thus, the difference
in target score range and distribution could affect
the magnitude of predicted scores and the distance
to the ground truth values, which is reflected in
the MAE and RMSE metrics. These findings, fur-
ther supported by the results on Task 2, is a first
step in exploring the underlying connection and
bridging the gap between the Metrics and Quality
Estimation shared tasks.

4.2 Task 2

The results can be seen in Table 3. Similarly to Task
1, the primary evaluation metric for the sentence
level sub-task of Task 2 is the Pearson r coefficient,

Pears↑ Spear↑ MAE↓ RMSE↓

E
N

-D
E M2 BASE 0.4889 0.4645 0.4608 0.6180

M2-KL 0.4971 0.4769 0.4549 0.6191
M2-KL-G 0.5110 0.4738 0.4396 0.6133

M2-KL-G-MCD 0.5093 0.4754 0.4495 0.6128

E
N

-Z
H M2 BASE 0.4484 0.4355 0.4940 0.6374

M2-KL 0.4574 0.4471 0.5042 0.6485
M2-KL-G 0.4566 0.4543 0.5278 0.6751

M2-KL-G-MCD 0.4628 0.4584 0.4973 0.6390

E
T-

E
N

M2 BASE 0.7792 0.7842 0.4581 0.5624
M2-KL 0.7833 0.7896 0.4684 0.5824

M2-KL-G 0.7847 0.7962 0.4643 0.5924
M2-KL-G-MCD 0.7868 0.7951 0.4539 0.5674

N
E

-E
N M2 BASE 0.7333 0.7154 0.4347 0.5531

M2-KL 0.7638 0.7393 0.4040 0.5247
M2-KL-G 0.7529 0.7228 0.4194 0.5353

M2-KL-G-MCD 0.7596 0.7269 0.4125 0.5313

R
O

-E
N M2 BASE 0.8780 0.8407 0.3403 0.4514

M2-KL 0.8826 0.8406 0.3199 0.4305
M2-KL-G 0.8728 0.8397 0.3314 0.4635

M2-KL-G-MCD 0.8777 0.8429 0.3209 0.4426

R
U

-E
N M2 BASE 0.7406 0.6874 0.4696 0.6381

M2-KL 0.7532 0.7123 0.4558 0.6299
M2-KL-G 0.7485 0.7191 0.4630 0.6612

M2-KL-G-MCD 0.7509 0.7204 0.4492 0.6358
S

I-
E

N

M2 BASE 0.6243 0.5899 0.4709 0.5939
M2-KL 0.6373 0.6000 0.4572 0.5726

M2-KL-G 0.6506 0.6168 0.4586 0.5796
M2-KL-G-MCD 0.6545 0.6199 0.4495 0.5697

M
L

M2 BASE 0.6704 0.6454 0.4469 0.5792
M2-KL 0.6821 0.6580 0.4378 0.5725

M2-KL-G 0.6825 0.6604 0.4434 0.5886
M2-KL-G-MCD 0.6859 0.6627 0.4333 0.5712

Table 2: Results for Task 1 with the M2 predictor-
estimator (mBART) and different uncertainty handling
additions. “KL” signifies the incorporation of KL loss,
“G”the incorporation of glass-box features and MCD
the addition of MC dropout. ML stands for MULTILIN-
GUAL, showing the performance averaged over all lan-
guage pairs. Underlined numbers indicate the best re-
sult for each language pair and evaluation metric. Bold
systems were selected for the final ensemble.

while the word level sub-task is evaluated using the
Matthews correlation coefficient (MCC, (Matthews,
1975)) as the primary performance indicator.

We can see that while HTER scores do not al-
ways correlate highly with DAs (see Table 4), the
use of the M1M model encoder that was trained on
large data with direct assessments can still prove
useful. Indeed, when fine-tuning on the Task2
data, the model using the M1M encoder (M1M-
ADAPT in the table 3) provides a performance
boost for the Pearson correlation in most language
pairs, and competitive performance for the rest.
Based on these results, we deem it worthwhile
to include checkpoints trained with this configu-
ration in the ensemble estimating that they will
contribute in higher performance, especially on the
blind test sets. This can be further confirmed when
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Pearson↑ SRC-MCC↑ TGT-MCC↑
E

N
-D

E M1 BASE 0.5256 0.3331 0.4092
M1-ADAPT 0.5573 0.4211 0.36454

M1M-ADAPT 0.5499 0.3647 0.4239

E
N

-Z
H M1 BASE 0.3786 0.3253 0.3589

M1-ADAPT 0.3711 0.4346 0.3288
M1M-ADAPT 0.3721 0.4255 0.3643

E
T-

E
N M1 BASE 0.7319 0.4537 0.5110

M1-ADAPT 0.7360 0.5545 0.4978
M1M-ADAPT 0.7498 0.4929 0.5513

N
E

-E
N M1 BASE 0.5898 0.5198 0.4386

M1-ADAPT 0.5987 0.6884 0.5426
M1M-ADAPT 0.6252 0.4244 0.4682

R
O

-E
N M1 BASE 0.8531 0.5727 0.6190

M1-ADAPT 0.8282 0.5984 0.5653
M1M-ADAPT 0.8280 0.5682 0.5813

R
U

-E
N M1 BASE 0.4899 0.2766 0.3213

M1-ADAPT 0.4811 0.341 0.3071
M1M-ADAPT 0.5060 0.2927 0.3421

S
I-

E
N M1 BASE 0.6659 0.4653 0.4776

M1-ADAPT 0.6698 0.6776 0.5057
M1M-ADAPT 0.6935 0.3872 0.4937

M
L M1 BASE 0.6050 0.4209 0.4479

M1-ADAPT 0.6061 0.5323 0.4445
M1M ADAPT 0.6178 0.4222 0.4607

Table 3: Results for Task 2 with the M1 predictor-
estimator (XLM-RoBERTa) and different training/fine-
tuning approaches. M1M is the M1 model trained on
the Metrics dataset and M#-ADAPT signifies a model
fine-tuned on the QE data with adapters. ML stands for
MULTILINGUAL, showing the performance averaged
over all language pairs. Underlined numbers indicate
the best result for each language pair and evaluation
metric. Bold systems were selected for the final ensem-
ble.

inspecting the results for the blind sets (en-cs,
en-ja, km-en and ps-en) in the official results
on test-21 as shown in Appendix B.

lp TRAIN DEV TEST-20

EN-DE -0.1654 -0.4032 -0.3850
EN-ZH -0.2947 -0.1895 -0.1932
ET-EN -0.5464 -0.5850 -0.5995
NE-EN -0.4527 -0.5004 -0.4558
RO-EN -0.5887 -0.7932 -0.7880
RU-EN -0.5358 -0.5055 -0.5152
SI-EN -0.3916 -0.4384 -0.4125

Table 4: Pearson correlation between the z_mean of
the direct assessments for the QE Task 1 data and the
HTER score for the post edits in QE Task 2 data.

5 Conclusions

We presented a joint contribution of IST and Un-
babel to the WMT 2021 QE shared task. Our

submissions are ensembles of multilingual check-
points extending the OpenKiwi framework. We
found adapter-tuning to be suitable for fine-tuning
OpenKiwi on the QE tasks data and less prone to
overfitting. We showed that pre-training on large,
out-of-domain annotated data can prove benefi-
cial both for the direct assessment and the post-
editing QE tasks. We also demonstrated that han-
dling uncertainty-related sources of information
improves the performance when integrated into the
QE system. For Task 2 we do multi-task training
based on the models from the previous task and
use multiple checkpoints to create the submitted
ensemble.
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A Hyperparameters

A.1 M1

In Table 5 is an excerpt of the training configura-
tion used for training OpenKiwi for our M1 models.
Note that the configurations follow the configura-
tion file format of OpenKiwi and any additional
configurations are identical to the ones proposed
in the sample configuration file of the github
repository5.

System
batch_size 2

Encoder
hidden_size 1024

Decoder
bottleneck_size 1024
dropout 0.05
hidden_size 1024

Optimizer
class_name adam
encoder_learning_rate 0.0001
learning_rate_decay 1.0
learning_rate_decay_start 0
learning_rate 0.0001

Trainer
training_steps 2180
early_stop_patience 10
validation_steps 0.5
gradient_accumulation_steps 4
gradient_max_norm 1.0

Table 5: Hyperparameters for M1 models

A.2 M2

In Table 6 is an excerpt of the training configuration
used for training the M2 models using the mBART
encoder-decoder:

B Evaluation on test set of WMT21

We present the performance of the submitted en-
sembles on the TEST-21 dataset as calculated in the
official QE results 6 for each task and sub-task. We
also provide the comparison with the organisers’
baseline.

5https://github.com/Unbabel/OpenKiwi/
blob/master/config/xlmroberta.yaml

6https://www.statmt.org/wmt21/
quality-estimation-task_results.html

System
bottleneck_size 256
dropout 0.1
hidden_size 2048
nr_frozen_epochs 0.333

Optimizer
optimizer adam
encoder_learning_rate 6.0e-06
learning_rate 1.0e-05

Trainer
training_steps 5512
early_stopping_patience 2
save_top_k 3
batch_size 4
gradient_accumulation_steps 4

Table 6: Hyperparameters for M2 models

B.1 Task 1: Direct Assessments prediction at
sentence-level

The results for Task1 on TEST-21 are presented in
Table 7.

B.2 Task 2: HTER prediction at
sentence-level

The results for Task2 on TEST-21TEST-21 are pre-
sented in Table 8, showing the performance for the
sentence level, HTER score predictions.

B.3 Task 2: Word-level prediction
The results for Task2 on TEST-21 are presented in
Table 9, showing the performance for the word tag
predictions.

C Statistics on the Metrics data

We present below (Tables 10 and 11) the statistics
on the Metrics data used to train the M1M model
on direct assessments.

https://github.com/Unbabel/OpenKiwi/blob/master/config/xlmroberta.yaml
https://github.com/Unbabel/OpenKiwi/blob/master/config/xlmroberta.yaml
https://www.statmt.org/wmt21/quality-estimation-task_results.html
https://www.statmt.org/wmt21/quality-estimation-task_results.html
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METHOD PEARSON R↑ MAE↓ RMSE↓

MULTILINGUAL

IST-UNBABEL 0.665 0.627 0.482
BASELINE 0.541 0.729 0.562

EN-DE

IST-UNBABEL 0.579 0.567 0.393
BASELINE 0.403 0.629 0.433

EN-ZH

IST-UNBABEL 0.586 0.631 0.499
BASELINE 0.525 0.683 0.534

RO-EN

IST-UNBABEL 0.899 0.393 0.289
BASELINE 0.818 0.556 0.408

ET-EN

IST-UNBABEL 0.796 0.519 0.404
BASELINE 0.660 0.700 0.543

NE-EN

IST-UNBABEL 0.856 0.515 0.401
BASELINE 0.738 0.657 0.524

SI-EN

IST-UNBABEL 0.605 0.742 0.583
BASELINE 0.513 0.797 0.626

RU-EN

IST-UNBABEL 0.792 0.583 0.412
BASELINE 0.677 0.702 0.492

ZERO-SHOT LANGUAGE PAIRS

EN-CZ

IST-UNBABEL 0.577 0.751 0.583
BASELINE 0.352 0.845 0.686

EN-JA

IST-UNBABEL 0.355 0.764 0.566
BASELINE 0.230 0.816 0.617

PS-EN

IST-UNBABEL 0.628 0.780 0.658
BASELINE 0.476 0.852 0.711

KM-EN

IST-UNBABEL 0.650 0.721 0.568
BASELINE 0.562 0.788 0.614

Table 7: Results for Task 1 on the held-out evaluation
set of WMT 2021.

METHOD PEARSON R↑ MAE↓ RMSE↓

MULTILINGUAL

IST-UNBABEL 0.597 0.219 0.171
BASELINE 0.502 0.235 0.188

EN-DE

IST-UNBABEL 0.617 0.172 0.116
BASELINE 0.529 0.183 0.129

EN-ZH

IST-UNBABEL 0.290 0.266 0.220
BASELINE 0.282 0.287 0.246

RO-EN

IST-UNBABEL 0.879 0.122 0.098
BASELINE 0.831 0.142 0.115

ET-EN

IST-UNBABEL 0.811 0.153 0.112
BASELINE 0.714 0.195 0.149

NE-EN

IST-UNBABEL 0.718 0.161 0.126
BASELINE 0.626 0.205 0.160

SI-EN

IST-UNBABEL 0.710 0.178 0.136
BASELINE 0.607 0.204 0.159

RU-EN

IST-UNBABEL 0.539 0.224 0.165
BASELINE 0.448 0.255 0.188

ZERO-SHOT LANGUAGE PAIRS

EN-CZ

IST-UNBABEL 0.529 0.271 0.200
BASELINE 0.306 0.262 0.206

EN-JA

IST-UNBABEL 0.275 0.279 0.224
BASELINE 0.098 0.279 0.232

PS-EN

IST-UNBABEL 0.555 0.328 0.284
BASELINE 0.503 0.333 0.290

KM-EN

IST-UNBABEL 0.655 0.243 0.199
BASELINE 0.576 0.241 0.196

Table 8: Results for Task 2 sentence-level system on
the held-out evaluation set of WMT 2021.
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METHOD SRC-MCC↑ TGT-MCC-WORDS↑ TGT-MCC-GAPS↑

EN-DE

IST-UNBABEL 0.404 0.466 0.183
BASELINE 0.322 0.370 0.116

EN-ZH

IST-UNBABEL 0.286 0.310 0.068
BASELINE 0.241 0.247 0.065

RO-EN

IST-UNBABEL 0.603 0.649 0.357
BASELINE 0.511 0.536 0.205

ET-EN

IST-UNBABEL 0.522 0.570 0.254
BASELINE 0.405 0.461 0.136

NE-EN

IST-UNBABEL 0.445 0.508 0.268
BASELINE 0.390 0.440 0.215

SI-EN

IST-UNBABEL 0.406 0.528 0.258
BASELINE 0.335 0.425 0.208

RU-EN

IST-UNBABEL 0.351 0.332 0.165
BASELINE 0.251 0.256 0.073

ZERO-SHOT LANGUAGE PAIRS

EN-CZ

IST-UNBABEL 0.294 0.376 0.125
BASELINE 0.224 0.273 0.039

EN-JA

IST-UNBABEL 0.175 0.169 0.025
BASELINE 0.175 0.131 0.036

PS-EN

IST-UNBABEL 0.294 0.370 0.177
BASELINE 0.249 0.313 0.134

KM-EN

IST-UNBABEL 0.345 0.448 0.259
BASELINE 0.279 0.351 0.175

Table 9: Results for Task 2 word-level system on the
held-out evaluation set of WMT 2021.
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CS-EN DE-EN FI-EN RU-EN RO-EN TR-EN ZH-EN ET-EN
LT-EN GU-EN KK-EN JA-EN KM-EN PL-EN PS-EN TA-EN

Total tuples 28887 91584 47205 61505 560 30746 71941 20496
10315 9063 6789 8917 4722 11666 4611 7562

Avg. tokens (reference) 31.43 24.61 20.48 23.31 24.35 23.32 31.70 23.93
26.84 17.73 20.65 28.64 19.49 21.93 19.87 19.91

Avg. tokens (source) 25.65 22.93 14.49 19.77 24.99 19.01 6.05 18.61
20.61 15.13 16.47 3.27 29.91 18.55 21.87 15.31

Avg. tokens (MT) 29.99 24.19 19.95 23.51 24.42 22.97 30.60 24.06
25.44 17.15 20.00 27.41 19.59 21.64 19.37 20.14

Table 10: Statistics for the WMT 15 to 20 Direct Assessments corpus into-English language pairs.

EN-RU EN-CS EN-DE EN-FI EN-LV EN-TR EN-ZH
EN-ET EN-LT EN-GU EN-KK EN-JA EN-PL EN-TA

Total tuples 63771 60905 55352 30924 5810 5171 66830
13376 8959 6924 8219 9573 10506 7886

Avg. tokens (reference) 22.48 23.48 23.96 17.7 20.45 19.74 7.26
18.83 20.61 22.07 19.21 1.4 24.54 19.84

Avg. tokens (source) 24.5 25.82 24 23.21 24.99 24.2 28.81
24.23 24.09 24.3 24.13 25.2 25.33 25.15

Avg. tokens (MT) 22.14 23 23.84 17.81 21.18 19.24 7.53
18.96 20.62 22.39 19.71 2.29 23.19 19.18

Table 11: Statistics for the WMT 15 to 20 Direct Assessments corpus from-English language pairs.


