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Abstract

In machine reading comprehension tasks, a
model must extract an answer from the avail-
able context given a question and a passage.
Recently, transformer-based pre-trained lan-
guage models have achieved state-of-the-art
performance in several natural language pro-
cessing tasks. However, it is unclear whether
such performance reflects true language un-
derstanding. In this paper, we propose ad-
versarial examples to probe an Arabic pre-
trained language model (AraBERT), leading to
a significant performance drop over four Ara-
bic machine reading comprehension datasets.
We present a layer-wise analysis for the trans-
former’s hidden states to offer insights into
how AraBERT reasons to derive an answer.
The experiments indicate that AraBERT re-
lies on superficial cues and keyword match-
ing rather than text understanding. Further-
more, hidden state visualization demonstrates
that prediction errors can be recognized from
vector representations in earlier layers.

1 Introduction

The rise of pre-trained Language Models (LM),
including ELMo (Peters et al., 2018), BERT (De-
vlin et al., 2019), GPT (Radford et al., 2019), and
RoBERTa (Liu et al., 2019), has shifted the field of
Natural Language Processing (NLP) from training
complex neural models from scratch to fine-tuning
on downstream tasks. These contextual embed-
dings are generated by training on a general lan-
guage model task, such that these vectors encode
the structure and meaning of each word in the con-
text. This approach has replaced the effort needed
to tailor complex neural models with a simple fine-
tuning using a relatively small amount of data for a
specific task. As the use of LMs is growing in vari-
ous NLP tasks, it is important to understand how
they achieve high performance. This understand-

ing can be used to leverage their strengths, identify
their vulnerabilities, and rectify their weaknesses.

Morphologically Rich Languages (MRL) are
languages in which significant information is ex-
pressed morphologically via word variation, such
as in Arabic, Hebrew, and Turkish, rather than
syntactically, as in English (Habash, 2010). The
diversity of word forms requires machine learn-
ing models to cope with the extreme data sparse-
ness that follows from the complex word structure,
which further complicates automatic semantic iden-
tification. Furthermore, as each word can appear
in multiple forms, some are unseen in the anno-
tated data, which amplifies the Out-of-Vocabulary
(OOV) problem.

Recently, a considerable number of research
studies have sought to analyze different LMs in the
context of the English language, while other lan-
guages have received limited attention. Most stud-
ies, including (Hewitt and Manning, 2019), (Ten-
ney et al., 2019a), and (Tenney et al., 2019b), use
black-box external probes to assess model robust-
ness and to identify its weaknesses. The present
study follows this direction and proposes adver-
sarial examples as external probes to investigate
what underpins the reported performance of Arabic
pre-trained LMs.

This paper focuses on the task of Arabic Ma-
chine Reading Comprehension (MRC), which re-
quires the model to extract a span from the text as
the answer, given a question and a passage. Our
approach involves probing the fine-tuned AraBERT
(version 0.1) (Antoun et al., 2020a) model by ap-
pending distractors containing keywords to exam-
ples in the test set and, in turn, evaluating model
robustness. The goal is to mislead the model into
making incorrect predictions by adding uninter-
pretable information to the passage, noting that hu-
mans can still easily find the correct answer. To the
best of our knowledge, no previous research study



33

Source: TyDI QA dataset

Context: مثرتسشنامليفيكیجلبلاھكارشإماع2012يتیسثیحيدھتراعإنمیربيسلیشت
تایرابملاثیحبقلبھتریسم–مضنازافويدانيدىلإمتكنیجناكردانىتم11يفمضنا
.2010ًایداعأدبًابعلاىلإ،يفيرودنیوربنفیك؟يزیلجنلاايزیلجنلإا،تمتردریفنیفرتحملا
–2010يكیجلبلانیفرتحملايرودبقلبزافوًایداعًابعلاناكثیح،كنیجيفھتریسمنیوربيدأدب

مثردانلكشبتایرابملايفھكارشإمتثیح،يزیلجنلإايسلیشتيدانىلإمضنا،2012ماعيف.11

،2014ماعيفينیلرتساھینجنویلم18لباقمجروبسفلوفعمعقو.نمیربردریفىلإھتراعإتمت

،ماعلاكلذنمقحلاتقويف]11[.ایناملأيفةنسلايفبعلالضفأبقلىلعلصح2015ماعيفو
.ينیلرتساھینجنویلم54لباقميتیسرتسشنامىلإمضنا

Question: ؟يزیلجنلاا يتیس رتسشنامل نیورب يد نفیك بعلالا مضنا ىتم

Answer: 2015.

Figure 1: An instance from the TyDI QA MRC dataset
with a distractor sentence (presented in bold) appended
to the beginning of the passage.

analyzes the Arabic pre-trained LM fine-tuned on
MRC task.

Figure 1 shows an example of a distractor sen-
tence appended to the passage. We construct an
unreadable distractor by concatenating a variation
of keywords from the question, answer, and a ran-
dom sentence from the passage, and shuffling the
word order in the input. Our experimental results
show a significant performance drop, implying that
AraBERT (version 0.1) relies on statistical cues
and keyword matching and, moreover, can be dis-
tracted easily when irrelevant information is added
to the passage.

Although the task of Arabic MRC has gained
popularity in the research community, the ques-
tion of what information must be captured by a
model to achieve high performance remains un-
clear. We extend our analysis on adversarial exam-
ples by examining the hidden state vectors between
encoder layers. At this end, we visualize vector
transformations in each layer of the transformer for
correctly-predicted and falsely-predicted answers.
This visualization exposes incorrect predictions in
the earlier layers and reveals the part of the context
that the model regards as supporting facts.

We summarize the main contributions of this
research as follows:

• We conduct a deep analysis of the state of the
art Arabic LM (namely, AraBERT (Antoun
et al., 2020a)) on Arabic MRC datasets.

• We construct adversarial examples for Arabic
MRC that fool the model and undermine its
performance substantially.

• We visualize and analyze the hidden state vec-
tors in each layer of the transformer model for
Arabic MRC.

The rest of the paper is organized as follows:
Section 2 reviews the related work. Section 3 dis-
cusses the methodology to construct adversarial
examples and visualizes the transformer’s hidden
state vectors. We conduct several experiments and
discuss our findings in section 4. Finally, we con-
clude the paper in section 5.

2 Related Work

The interpretability and probing of models for NLP
tasks fall into three areas: probing tasks to under-
stand linguistic properties captured by the model;
adversarial examples to understand the flaws and
weaknesses of the model; and assessing dataset
quality by conducting partial training and construct-
ing challenging sets (Belinkov and Glass, 2019).
We discuss the first two directions as they are the
focus of our work.

Probing tasks The most common approach used
to understand the linguistic properties captured by
a model is to investigate its hidden states by design-
ing probing tasks. The authors in (Tenney et al.,
2019b) designed a novel edge probing task to mea-
sure the effectiveness of a pre-trained model in
capturing linguistic information, which involved
probing core NLP tasks encompassing diverse syn-
tactic and semantic phenomena. In (Tenney et al.,
2019a), the authors discovered that BERT follows a
classical NLP pipeline in an interpretable and local-
izable way. The authors in (van Aken et al., 2019)
applied a set of general and QA-specific probing
tasks to discover information in each representation
layer. An attention-based probing classifier was
proposed by (Clark et al., 2019) to demonstrate
syntactic information and coreference captured by
BERT’s attention. Through structural probes, (He-
witt and Manning, 2019) suggested that syntactic
information can be recovered from BERT token
representations.

As multiple probing studies report that BERT
possesses syntactic, semantic, and world knowl-
edge information, (Tenney et al., 2019a) empha-
sized that the absence of linguistic patterns in a
probing classifier cannot lead one to conclude that
the information is not there, nor can the presence
of such information reveal how it is used. Fur-
thermore, it is worth questioning the extent to
which a probing classifier can be complex such
that the recovered information is extracted from
the original model rather than the probing classi-
fier (Rogers et al., 2020). To rectify these issues,
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(Elazar et al., 2020) proposed amnesic probing,
which involves removing certain information from
the model (e.g., part-of-speech tags) and evaluating
the performance change.

Adversarial examples Adversarial examples
have gained immense popularity in the NLP field,
particularly as a way to understand model failures.
Most research studies have focused on constructing
black-box attacks due to the nature of the text (Be-
linkov and Glass, 2019). First, the discrete nature
of the input complicates the task of measuring the
distance between the original and the adversarial
example. Second, it is difficult to formulate mini-
mizing the distance as an optimization problem for
a discrete input. In (Jia and Liang, 2017), it was
shown that appending a distractor sentence to the
passage in an MRC task lowers the performance for
state-of-the-art models. The authors in (Alzantot
et al., 2018) proposed a black-box genetic algo-
rithm to construct semantically and syntactically
similar examples, the aim being to fool sentiment
analysis and textual entailment models. The per-
formance of BERT dropped when evaluated on un-
readable adversarial examples, which were gener-
ated by appending keywords to candidate answers
in multiple-choice reading comprehension datasets
(Si et al., 2019). Recently, model-in-the-loop ad-
versarial annotation, which has been investigated
by (Wallace et al., 2019), (Nie et al., 2020), and
(Kaushik et al., 2020), is a new direction that has
been applied to annotate challenging datasets us-
ing an adversarial model to retrieve hard examples.
The annotators are allowed to interact with the ad-
versary during the annotation process, and they
can use model feedback to inform the generation
process.

Only one study, that of (Alshemali and Kalita,
2019), has investigated adversarial examples in
the Arabic language. Specifically, noun-adjective
agreement in Arabic was violated in order to con-
struct a perturbed input text. This attack fooled a
word-level Bidirectional Long Short-term Memory
(BiLSTM) model and a word-level Convolutional
Neural Network (CNN) model, and it successfully
reduced model performance when evaluated on a
sentiment analysis task.

Transformer models Our analysis focuses on
AraBERT (version 0.1) (Antoun et al., 2020a),
an Arabic pre-trained language model based on
the BERT-BASE architecture (Devlin et al., 2019).

BERT is a stack of transformer encoder layers
with multiple self-attention heads (Vaswani et al.,
2017). In (Antoun et al., 2020a), the authors trained
the BERT-BASE architecture on manually-scraped
Arabic news websites, the public-words Arabic
corpus, and the Open Source International Arabic
News Corpus (OSIAN). Since then, several Arabic
transformer models have been proposed. Safaya
et al. (2020) introduced an Arabic BERT, a pre-
trained BERT-BASE on Arabic Wikipedia dump
and the Arabic version of OSCAR (Ortiz Suárez
et al., 2020). In ARBERT and MARBERT, (Abdul-
Mageed et al., 2020) pre-trained BERT model on
Modern Standard Arabic (MSA) and dialects. An-
toun et al. (2020b) generated AraGPT2 trained
from scratch on large Arabic corpora following
the architecture and training procedure of GPT2
(Radford et al., 2019).

To the best of our knowledge, no research study
has been undertaken to analyze recent Arabic pre-
trained language models. Arabic adversarial ex-
amples were constructed for sentiment analysis
task (Alshemali and Kalita, 2019), but no previ-
ous study has examined adversarial examples for
Arabic MRC.

3 Methodology

We focus our analysis on AraBERT (version 0.1)
fine-tuned on the task of Arabic MRC using four
different Arabic MRC datasets. We propose two
approaches to investigate the model’s failures and
to study the transformation of hidden vectors in
each layer. First, we construct an unreadable per-
turbed sentence and append it to the context to
generate adversarial examples. Following this, we
qualitatively analyze the vector transformations by
examining their position in vector space.

3.1 Adversarial Examples

This subsection introduces the method for con-
structing adversarial examples. We first fine-tune
AraBERT (version 0.1) on the original training set
and, in turn, evaluate it on the perturbed set. To gen-
erate an adversarial example, we append an unread-
able perturbed sentence to the passage. To obtain
the distractor sentence, we concatenate different
parts from the example, as shown in Figure 2. We
generate an ungrammatical sentence by randomly
shuffling the sentence and changing the word order
in the input. Note that we only shuffle the distrac-
tor sentence and leave the answer unchanged, as
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Answer Random sent

Concat

Shuffle

ConcatPassage

Perturbed passage

Question Answer

Concat

Shuffle

ConcatPassage

Question Random sent

Concat

Shuffle

ConcatPassage

(a) Question-Sent-Shuffled (b) Answer-Sent-Shuffled (c) Question-Answer-Shuffled

Perturbed passage Perturbed passage

Figure 2: Procedure for constructing adversarial examples for MRC.

well as the other sentences. For this reason, the
example’s answer remains the same.

We construct three variants for the adversarial
attack based on the information appended to the
distractor. Q-Sent-Shuffled attack is constructed
by concatenating the question and a random sen-
tence from the passage that does not contain the
answer. In Answer-Sent-Shuffled attack, the distrac-
tor is formed by mixing the answer and random
sentence words. Even if the answer appears twice
in the context, the model should extract the answer
from the relevant context rather than from the un-
readable text. The shuffled question and answer are
appended to the text in Q-Answer-Shuffled attack.

To ensure that the distractor is ungrammatical
and difficult to interpret, we reshuffle the sequence
based on the shuffle degree as follows:

ShuffleDegree =
MinimumEditDistance

SequenceLength

The Minimum Edit Distance (MED) is calculated
between the original sequence and the shuffled se-
quence. The original sequence is re-shuffled until
the shuffle degree exceeds a threshold value (in
this case, 0.65). The main trigger, here, is that cer-
tain words from the question appear in the passage
with other random sentences. Ideally, if the pre-
trained LM understands the text and does not rely
on keyword matching, it will not be fooled by the
distractor sentence.

3.2 Visualization of Transformed Tokens

BERT’s architecture is based on a stacked trans-
former that allows the vector transformation to be
traced for each token traversing from the bottom to
the top layers. Following (van Aken et al., 2019),
we use this characteristic and analyze the vector
transformation for correctly-predicted and falsely-
predicted answers.

To analyze vector transformation for the Arabic
pre-trained LM fine-tuned on an MRC task, we ran-
domly select correct and incorrect answer samples
from the respective test sets. We extract the vec-
tor representation for each token in the sequence
from each layer and remove padding. We consider
the distance between vectors in the vector space as
an indication of the semantic relation. The BERT-
BASE model uses hidden vectors with a dimension
of 768, and we need to visualize the relation be-
tween vectors within a 2-dimensional (2D) space.
Accordingly, we apply Principal Component Anal-
ysis (PCA) to reduce the vector dimensions into
2D in each layer.

4 Experiments and Analysis

4.1 Datasets

In this paper, we analyze four Arabic MRC datasets.
We briefly introduce each one in the following sub-
sections.
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AR TyDI QA dev AR XQuAD AR MLQA Arabic WikiReading Average

AraBERTv0.1 68.94 25.88 23.73 63.01 -

Q-Sent-Shuffled
48.47

-29.7%
13.89

-46.33%
12.66

-46.65%
53.07

-15.1% -34.45%

Answer-Sent-Shuffled
50.97

-26.07%
22.98

-11.21%
20.00

-15.72%
58.37

-6.62%
-14.9%

Q-Answer-Shuffled
44.08

-36.06%
18.74

-27.59%
19.48
-17.91

- -27.19%

Average drop -30.61% -28.38% -26.76% -10.86% -25.51%

Table 1: EM scores for fine-tuned AraBERT (version 0.1) on the original and perturbed test sets with adversarial
examples. Italicized numbers represent the percentage of performance drop relative to the original performance.
Bold performance values indicate the most effective method to distract the model for each dataset.

TyDI QA is a multi-lingual dataset covering 11
topological diverse languages (Clark et al., 2020).
The dataset was collected by annotators who were
presented with a short prompt from Wikipedia and
asked to write a question inspired by the prompt.
The Wikipedia article that best matched the ques-
tion using Google search was returned as the con-
text. After that, the annotator selected the passage
containing the answer, if any, along with the mini-
mal span containing the answer. This dataset evalu-
ates three tasks: passage selection, minimal answer
selection, and gold passage. We are interested in
the gold passage task; to extract the answer from
a passage rather than from a long text to facilitate
the comparison with other datasets.

XQuAD is a cross-lingual MRC dataset com-
posed of 240 paragraphs and 1,190 question-
answer pairs translated from SQuADv1.1 by profes-
sional translators into 10 languages, one of which
is Arabic (Artetxe et al., 2020).

MLQA is a multilingual QA dataset comprising
7 languages (Lewis et al., 2020). Question-answer
pairs were collected by crowd-workers in the En-
glish language, after which they were translated
into the target languages by professional transla-
tors.

Arabic WikiReading1 The dataset was auto-
matically constructed under a distant supervision
strategy using the Wikidata statement property as
a query and the statement value as the ground
truth answer. Arabic articles were collected from

1https://github.com/esulaiman/Arabic-WikiReading-and-
KaifLematha-datasets

arwikiExtracts2 by parsing an Arabic 20190920
Wikipedia dump, using the WikiExtractor3 tool
to strip away images, tables, info-boxes, and fig-
ures. The first paragraph of each article, which
captures the essential information of an article, was
extracted and paragraphs with fewer than 300 char-
acters were discarded. Arabic Wikidata dump was
extracted from the 20190909.JSON dump using the
Wikidata-filter4 tool. All statements with the same
item and property were consolidated into a single
(item, property, answer) triple. Query-answer pairs
were then matched with the relevant paragraph by
replacing each Wikidata item in the (item, property,
answer) triples with the appropriate Wikipedia cu-
rated paragraph, knowing the title of the Wikipedia
article that matches the item in the collected triples,
and discarding any item not linked to Wikipedia
articles to form approximately 98,000 MRC in-
stances.

4.2 Experimental Setup

We base our training code on the PyTorch imple-
mentation of Hugging Face transformers5. We
use AraBERT (version 0.1) (Antoun et al., 2020a),
a BERT BASE model (Devlin et al., 2019) pre-
trained on an Arabic corpus with 12 layers, 12
self-attention heads, and a total of 110 million pa-
rameters. We fine-tune AraBERT (version 0.1) on
Arabic MRC datasets. Precisely, we train on the
Arabic TyDI QA gold passage (Clark et al., 2020)
training set, and we evaluate on the original devel-
opment set and the perturbed variants, as the test

2https://github.com/motazsaad/arwikiExtracts
3https://github.com/attardi/wikiextractor
4https://github.com/xwhan/wikidata-filter
5https://huggingface.co/transformers/
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AR TyDI QA dev AR XQuAD AR MLQA Arabic WikiReading Average

AraBERTv0.1 81.70 41.04 39.64 68.27 -

Q-Sent-Shuffled
62.90

-23.01%
22.36

-45.52%
21.61

-45.48%
58.08

-13.66% -31.92%

Answer-Sent-Shuffled
67.18

-17.77%
37.49

-8.66%
35.38

-10.75%
66.81

-0.68%
-9.47%

Q-Answer-Shuffled
68.84

-15.74%
40.12
-2.24

43.66
+10.14

- -2.6%

Average drop -18.84% -18.87% -15.36% -7.17% -14.66%

Table 2: F1 scores for fine-tuned AraBERT (version 0.1) on the original and perturbed test sets with adversarial
examples. Italicized numbers represent the percentage of performance drop relative to the original performance.
Bold performance values indicate the most effective method to distract the model for each dataset.

set is not publicly available. We further evaluate
the model on the original Arabic XQuAD (Artetxe
et al., 2020) and Arabic MLQA (Lewis et al., 2020)
test sets and their perturbed variants. Additionally,
we train on the Arabic WikiReading training set
and evaluate using the test set and the constructed
adversarial examples. Each training run is per-
formed over 3 epochs with a batch size equals 8,
and we follow (Mozannar et al., 2019) by adopting
a learning rate of 3e-5. The maximum sequence
length chosen is 512. Tokens exceeding this length
are truncated, while the input sequence is padded
to reach the maximum sequence length.

4.3 Results and Discussion
The performance results are reported in Tables 1
and 2. Table 1 shows the EM score for the
AraBERT (version 0.1) model tested on the orig-
inal MRC datasets and the attacked variants with
adversarial examples discussed in Section 3. Note
that the question and the ground-truth answers are
unchanged. AraBERT (version 0.1) achieves F1
scores of 81.70 and 68.27 when tested on Ar-TyDI
QA and Arabic WikiReading, respectively, while
Ar-XQuAD and Ar-MLQA perform poorly with
41.04 and 39.64 F1 score, respectively. When
evaluating using the adversarial examples, the per-
formance drops by around 45% for Ar-XQuAD
and Ar-MLQA, and by 23% for TyDI QA for the
question-random sentence attack. This indicates
that AraBERT (version 0.1) was fooled by the ad-
versarial sentence inserted into the passage, which
was unreadable even for humans. This implies
that the BERT model relies heavily on statistical
cues and keyword matching rather than an under-
standing of the text. This result is consistent with

English LM studies (Si et al., 2019), suggesting
that BERT is not robust against adversarial attacks.

Generally, the inclusion of question words into
the perturbed sentence causes the greatest reduction
in F1 score over all the datasets. Similarly, when
the question words appear in the distractor sentence,
the EM score decreases substantially across all the
datasets. Adversarial attacks targeted at the Arabic
WikiReading dataset yield the lowest performance
decrease compared to other MRC datasets. This
may be due to the nature of the question, which
consists of a small number of tokens compared to
other MRC datasets.

Token Transformation Analysis Figure 3
shows the vector representation for the question
and the passage tokens reduced into 2D using
PCA. Vector transformation from the bottom to
the top layers suggests that the model follows
several phases to answer the question. Figure 3a
indicates that earlier layers in AraBERT (version
0.1) group tokens with similar subjects into
clusters, simulating an embedding layer in the
neural network architecture.

In the middle layers (layer 5 in the figure),
we observe that some tokens remain grouped
based on topical similarity (sorp, qrAn and Ayp),
�
éK


�
@ ð

	
à

�
@Q

�
¯ ,

�
èPñ� while other tokens transform to

represent the relation between entities given the in-
put context. For instance, the model identifies that
the tokens are (mrym and Alkhf) 	

êºË@ ð Õç'
QÓ

related to each other as sorp �
èPñ� rather than as

pronouns and these tokens were observed close to
each other in the vector space. The task-specific
function of matching the question with the support-
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(d) Answer extraction: the answer is separated from other
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Figure 3: Vector visualization for the question-context tokens from different AraBERT (version 0.1) layers af-
ter applying PCA dimensionality reduction. Red diamond represents the answer token, dark cyan dots indicate
supporting fact tokens, turquoise dots are question tokens, and gray dots show other tokens in the sequence.

ing facts appears at layer 7. Question tokens are
transformed to the same vector space as the con-
text tokens related to the answer. Finally, in the
last layer, the model dissolves most of the previ-
ous clusters and distinguishes the possible answer
from other tokens, while irrelevant tokens form a
separate cluster, as depicted in Figure 3d.

Adversarial Examples Analysis We visualize
the vector transformation for an incorrectly pre-
dicted answer in a perturbed example from the
TyDi QA development set depicted in figure 1. The
example was generated by concatenating a shuffled
question and random sentence to the passage. We
further compare it to the original example before
adding the perturbed sentence, thereby investigat-
ing the effect of the attack on model understanding.
Figures 4a and 4b represent the vector space for
the question and context tokens in layer 7. As dis-

cussed earlier, the question tokens are transformed
in the middle layers to group with supporting facts
from the context. Figures 4a and 4b show that the
question tokens are far from the supporting fact
tokens (illustrated with green dots), while tokens
from the perturbed sentence in Figure 4b cover the
same vector space as the question tokens. This sug-
gests the importance of supporting fact extraction
in layer 7. In particular, when the model was un-
able to extract the supporting fact from the context,
it was fooled, and question tokens were matched
with the perturbed sentence containing words from
the question. As a result, the answer 2012 was se-
lected from the perturbed sentence rather than the
correct answer 2015.

Although the model predicted 2015 as the cor-
rect answer in Figure 4c, the vector visualizations
indicate that the other candidate answers 2014,
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(c) The answer (2015) is extracted as the answer, while other
candidate answers appeared in the same vector space.
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(d) A token (2012) from the perturbed sentence is extracted as
the answer.

Figure 4: Vector visualization for the question-context tokens from different AraBERT layers after applying PCA
dimensionality reduction. Red diamond represents the answer token, dark cyan dots indicate supporting fact tokens,
turquoise dots are question tokens, and gray dots show other tokens in the sequence.

2010, and 2012 cover the same vector space as
the correct answer, and the other tokens are spread
over the vector space rather than forming a homo-
geneous group. However, the model predicted the
answer 110 in Figure 3d with high confidence since
that other tokens were separated from the answer
and formed groups far away from the answer.

5 Conclusion

This paper analyzed hidden state transformations
through layers and adversarial examples to ex-
plore what an Arabic pre-trained LM learns from
MRC datasets. We proposed a simple yet effective
method to construct adversarial examples that fool
AraBERT, which resulted in a substantial perfor-
mance drop. Our analysis suggests that pre-trained
LMs achieve competitive performance simply by
relying on superficial cues such as lexical overlap

or entity type matching.

Qualitative analysis of the hidden states of trans-
formers indicated that uninterpretable information
can be used to understand the reasons that underpin
model failure and weaknesses. We demonstrated
that locating the correct supporting fact for MRC
earlier in the middle layers contributes to correct
predictions. Our finding suggests that different lay-
ers solve different problems. We suggest examin-
ing part of the network or connecting non-adjacent
layers based on the downstream task at hand.

It would be worthwhile for future work to an-
alyze the degree to which different tokenization
methods (input representations) assist in the learn-
ing of better morphology and the modeling of in-
frequent words in Arabic pre-trained LMs. Further-
more, we are interested in extending our adversarial
examples to cover other Arabic pre-trained LMs
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and constructing unanswerable questions.
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