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Abstract

In this paper, we explore the effects of lan-
guage variants, data sizes, and fine-tuning task
types in Arabic pre-trained language models.
To do so, we build three pre-trained language
models across three variants of Arabic: Mod-
ern Standard Arabic (MSA), dialectal Arabic,
and classical Arabic, in addition to a fourth
language model which is pre-trained on a mix
of the three. We also examine the importance
of pre-training data size by building additional
models that are pre-trained on a scaled-down
set of the MSA variant. We compare our dif-
ferent models to each other, as well as to eight
publicly available models by fine-tuning them
on five NLP tasks spanning 12 datasets. Our
results suggest that the variant proximity of
pre-training data to fine-tuning data is more
important than the pre-training data size. We
exploit this insight in defining an optimized
system selection model for the studied tasks.

1 Introduction

Pre-trained language models such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019b)
have shown significant success in a wide range of
natural language processing (NLP) tasks in various
languages. Arabic has benefited from extensive
efforts in building dedicated pre-trained language
models, achieving state-of-the-art results in a num-
ber of NLP tasks, across both Modern Standard
Arabic (MSA) and Dialectal Arabic (DA) (Antoun
et al., 2020; Abdul-Mageed et al., 2020a).

However, it is hard to compare these models to
understand what contributes to their performances
because of their different design decisions and hy-
perparameters, such as data size, language variant,
tokenization, vocabulary size, number of training
steps, and so forth. Practically, one may empiri-
cally choose the best performing pre-trained model
by fine-tuning it on a particular task; however, it is

still unclear why a particular model is performing
better than another and what design choices are
contributing to its performance.

To answer this question, we pre-trained various
language models as part of a controlled experiment
where we vary pre-training data sizes and language
variants while keeping other hyperparameters con-
stant throughout pre-training. We started by scaling
down MSA pre-training data size to measure its im-
pact on performance in fine-tuning tasks. We then
pre-trained three different variants of Arabic: MSA,
DA, and classical Arabic (CA), as well as a mix of
these three variants.

We evaluate our models along with eight other re-
cent Arabic pre-trained models across five different
tasks covering all the language variants we study,
namely, named entity recognition (NER), part-of-
speech (POS) tagging, sentiment analysis, dialect
identification, and poetry classification, spanning
12 datasets.

Our contributions can be summarized as follows:

• We create and release eight Arabic pre-trained
models, which we name CAMeLBERT, with
different design decisions, including one
(CAMeLBERT-Mix) that is trained on the
largest dataset to date.1

• We investigate the interplay of data size,
language variant, and fine-tuning task type
through controlled experimentation. Our
results show that variant proximity of pre-
training data and task data is more important
than pre-training data size.

• We exploit this insight in defining an opti-
mized system selection model.

1Our pre-trained models are available at https://
huggingface.co/CAMeL-Lab, and the fine-tuning code
and models are available at https://github.com/
CAMeL-Lab/CAMeLBERT.

https://huggingface.co/CAMeL-Lab
https://huggingface.co/CAMeL-Lab
https://github.com/CAMeL-Lab/CAMeLBERT
https://github.com/CAMeL-Lab/CAMeLBERT
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Ref Model Variants Size #Word Tokens Vocab #Steps
BERT (Devlin et al., 2019) - - 3.3B WP 30k 1M

X1 mBERT (Devlin et al., 2019) MSA - - WP 120k -
X2 AraBERTv0.1 (Antoun et al., 2020) MSA 24GB - SP 60k 1.25M
X3 AraBERTv0.2 (Antoun et al., 2020) MSA 77GB 8.6B WP 60k 3M
X4 ArabicBERT (Safaya et al., 2020) MSA 95GB 8.2B WP 32k 4M
X5 Multi-dialect-Arabic-BERT MSA/DA - - WP 32k -

(Talafha et al., 2020)
X6 GigaBERTv4 (Lan et al., 2020) MSA - 10.4B WP 50k 1.48M
X7 MARBERT (Abdul-Mageed et al., 2020a) MSA/DA 128GB 15.6B WP 100K 17M
X8 ARBERT (Abdul-Mageed et al., 2020a) MSA 61GB 6.5B WP 100K 8M

CAMeLBERT-MSA MSA 107GB 12.6B WP 30k 1M
CAMeLBERT-DA DA 54GB 5.8B WP 30k 1M
CAMeLBERT-CA CA 6GB 847M WP 30k 1M
CAMeLBERT-Mix MSA/DA/CA 167GB 17.3B WP 30k 1M

Table 1: Configurations of existing models and CAMeLBERT models. Ref is a model identifier used in Table 5.
WP is WordPiece and SP is SentencePiece.

2 Related Work

There have been several research efforts on Ara-
bic pre-trained models achieving state-of-the-art
results in a number of Arabic NLP tasks. One
of the earliest efforts includes AraBERT (Antoun
et al., 2020), where they pre-trained a monolingual
BERT model using 24GB of Arabic text in the
news domain. Safaya et al. (2020) pre-trained Ara-
bicBERT using 95GB of text mainly from the Ara-
bic portion of the OSCAR corpus. Based on Ara-
bicBERT, Talafha et al. (2020) further pre-trained
their model using 10 million tweets, which in-
cluded dialectal data. Lan et al. (2020) released sev-
eral English-Arabic bilingual models dubbed Gi-
gaBERTs, where they studied the effectiveness of
cross-lingual transfer learning and code-switched
pre-training using Wikipedia, Gigaword, and the
OSCAR corpus. Most recently, Abdul-Mageed
et al. (2020a) developed two models, ARBERT and
MARBERT, pre-trained on a large collection of
datasets in MSA and DA. They reported new state-
of-the-art results on the majority of the datasets in
their fine-tuning benchmark.

Moreover, there have been various studies ex-
plaining why pre-trained language models perform
well on downstream tasks either in monolingual
(Hewitt and Manning, 2019; Jawahar et al., 2019;
Liu et al., 2019a; Tenney et al., 2019a,b) or multi-
lingual settings (Wu and Dredze, 2019; Chi et al.,
2020; Kulmizev et al., 2020; Vulić et al., 2020).
Most of these efforts leveraged probing techniques

to explore the linguistic knowledge that is captured
by pre-trained language models such as morphosyn-
tactic and semantic knowledge. More recently,
there have been additional efforts investigating the
effects of pre-training data size and tokenization
on the performance of pre-trained language mod-
els. Zhang et al. (2020) showed that pre-training
RoBERTa requires 10M to 100M words to learn
representations that reliably encode most syntactic
and semantic features. However, a much larger
quantity of data is needed for the model to per-
form well on typical downstream NLU tasks. Rust
et al. (2020) empirically compared multilingual
pre-trained language models to their monolingual
counterparts on a set of nine typologically diverse
languages. They showed that while the pre-training
data size is an important factor, the designated tok-
enizer of each monolingual model plays an equally
important role in the downstream performance.

In this work, we primarily focus on understand-
ing the behavior of pre-trained models against vari-
ables such as data sizes and language variants. We
compare against eight existing models. We find
that AraBERTv02 (X3) is the best on average and
it wins or ties for a win in six out of 12 subtasks.
Our CAMeLBERT-Star model is second overall
on average, and it wins or ties for a win in five
out of 12 subtasks. Interestingly, these systems are
complementary in their performance and between
the two, they win or tie for a win in ten out of 12
subtasks.
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3 Pre-training CAMeLBERT

We describe the datasets and the procedure we use
to pre-train our models. We use the original imple-
mentation released by Google for pre-training.2

3.1 Data

MSA Training Data For MSA, we use the Ara-
bic Gigaword Fifth Edition (Parker et al., 2011),
Abu El-Khair Corpus (El-Khair, 2016), OSIAN
corpus (Zeroual et al., 2019), Arabic Wikipedia,3

and the unshuffled version of the Arabic OSCAR
corpus (Ortiz Suárez et al., 2020).

DA Training Data For DA, we collect a range
of dialectal corpora: LDC97T19-CALLHOME
Transcripts (Gadalla et al., 1997); LDC2002T38-
CALLHOME Supplement Transcripts (Linguistic
Data Consortium, 2002); LDC2005S08-Babylon
Levantine Arabic Transcripts (BBN Technologies,
2005); LDC2005S14-CTS Levantine Arabic Tran-
scripts (Maamouri et al., 2005); LDC2006T07-
Levantine Arabic Transcripts (Maamouri et al.,
2006); LDC2006T15-Gulf Arabic Transcripts (Ap-
pen Pty Ltd, 2006a); LDC2006T16-Iraqi Arabic
Transcripts (Appen Pty Ltd, 2006b); LDC2007T01-
Levantine Arabic Transcripts (Appen Pty Ltd,
2007); LDC2007T04-Fisher Levantine Arabic
Transcripts (Maamouri et al., 2007); Arabic Online
Commentary Dataset (AOC) (Zaidan and Callison-
Burch, 2011); LDC2012T09-English/Arabic Paral-
lel text (Raytheon BBN Technologies et al., 2012);
Arabic Multi Dialect Text Corpora (Almeman
and Lee, 2013); A Multidialectal Parallel Corpus
of Arabic (Bouamor et al., 2014); Multi-Dialect,
Multi-Genre Corpus of Informal Written Arabic
(Cotterell and Callison-Burch, 2014); YouDACC
(Salama et al., 2014); PADIC (Meftouh et al.,
2015); Curras (Jarrar et al., 2016); WERd (Ali et al.,
2017); LDC2017T07-BOLT Egyptian SMS (Chen
et al., 2017); Shami (Abu Kwaik et al., 2018);
SUAR (Al-Twairesh et al., 2018); Arap-Tweet (Za-
ghouani and Charfi, 2018); Gumar (Khalifa et al.,
2018); MADAR (Bouamor et al., 2018); Habibi (El-
Haj, 2020); NADI (Abdul-Mageed et al., 2020b);
and QADI (Abdelali et al., 2020).

CA Training Data For CA, we use the OpenITI
corpus (v1.2) (Nigst et al., 2020).

2https://github.com/google-research/
bert

3https://archive.org/details/
arwiki-20190201

3.2 Pre-processing

After extracting the raw text from each corpus, we
apply the following pre-processing. We first re-
move invalid characters and normalize white spaces
using the utilities provided by the original BERT
implementation. We also remove lines without any
Arabic characters. We then remove diacritics and
kashida using CAMeL Tools (Obeid et al., 2020).
Finally, we split each line into sentences with a
heuristic-based sentence segmenter.

3.3 Preparing Data for BERT Pre-training

We follow the original English BERT model’s hy-
perparameters for pre-training. We train a Word-
Piece (Schuster and Nakajima, 2012) tokenizer on
the entire dataset (167 GB text) with a vocabulary
size of 30,000 using Hugging Face’s tokenizers.4

We do not lowercase letters nor strip accents. We
use whole word masking and a duplicate factor
of 10. We set maximum predictions per sequence
to 20 for the datasets with a maximum sequence
length of 128 tokens and 80 for the datasets with a
maximum sequence length of 512 tokens.

3.4 Pre-training Procedure

We use a Google Cloud TPU (v3-8) for model pre-
training. We use a learning rate of 1e-4 with a
warmup over the first 10,000 steps. We pre-trained
our models with a batch size of 1,024 sequences
with a maximum sequence length of 128 tokens
for the first 900,000 steps. We then continued
pre-training with a batch size of 256 sequences
with a maximum sequence length of 512 tokens
for another 100,000 steps. In total, we pre-trained
our models for one million steps. Pre-training one
model took approximately 4.5 days.

4 Fine-tuning Tasks

We evaluate our pre-trained language models on
five NLP tasks: NER, POS tagging, sentiment anal-
ysis, dialect identification, and poetry classification.
Specifically, we fine-tune and evaluate the models
using 12 datasets (corresponding to 12 subtasks).
We used Hugging Face’s transformers (Wolf et al.,
2020) to fine-tune our CAMeLBERT models.5 The
fine-tuning was done by adding a fully connected
linear layer to the last hidden state.

4https://github.com/huggingface/
tokenizers

5We used transformers v3.1.0 along with PyTorch v1.5.1

https://github.com/google-research/bert
https://github.com/google-research/bert
https://archive.org/details/arwiki-20190201
https://archive.org/details/arwiki-20190201
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
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Task Dataset/Subtask #Label #Train #Test Unit Variant %MSA
NER ANERcorp (Benajiba et al., 2007) 9 125,102 25,008 Token MSA 83.6

POS
PATB (MSA) (Maamouri et al., 2004) 32 503,015 63,172 Token MSA 85.1
ARZTB (EGY) (Maamouri et al., 2012) 33 133,751 20,464 Token DA 21.5
Gumar (GLF) (Khalifa et al., 2018) 35 162,031 20,100 Token DA 30.0

SA
ASTD (Nabil et al., 2015) 3 23,327 663 Sent MSA 56.9
ArSAS (Elmadany et al., 2018) 3 23,327 3,705 Sent MSA 60.5
SemEval (Rosenthal et al., 2017) 3 23,327 6,100 Sent MSA 77.7

DID

MADAR-26 (Salameh et al., 2018) 26 41,600 5,200 Sent DA 14.1
MADAR-6 (Salameh et al., 2018) 6 54,000 12,000 Sent DA 17.2
MADAR-Twitter-5 (Bouamor et al., 2019) 21 39,836 9,116 Grp MSA 92.3
NADI (Abdul-Mageed et al., 2020b) 21 21,000 5,000 Sent DA 38.3

Poetry APCD (Yousef et al., 2019) 23 1,391,541 173,963 Sent CA 71.3

Table 2: Statistics of our fine-tuning datasets. Unit refers to a unit we use to calculate the number of examples
in Train and Test. For MADAR-Twitter-5, we use a group of five tweets as a unit (Grp). A language variant is
determined based on dataset design and the estimated proportion of MSA sentences in the dataset.

Tasks and Variants We selected the fine-tuning
datasets and subtasks to represent multiple variants
of Arabic by design. For some of the datasets, the
variant is readily known. However, other datasets
contain a lot of social media text where the domi-
nant variant of Arabic is unknown. Therefore, we
estimate the proportion of MSA sentences in each
dataset by identifying whether the text is MSA
or DA using the Corpus 6 dialect identification
model in Salameh et al. (2018) as implemented
in CAMeL Tools (Obeid et al., 2020). This tech-
nique does not model CA. Of course, none of the
datasets was purely MSA or DA; however, based
on known dataset variants, we observe that having
about 40% or fewer MSA labels strongly suggests
that the dataset is dialectal (or a strong dialectal
mix).

Table 2 presents the number of labels, size, unit,
variant, and MSA percentage for the datasets used
in the subtasks.

4.1 Named Entity Recognition
Dataset We fine-tuned our models on the pub-
licly available Arabic NER Dataset ANERcorp
(∼150K words) (Benajiba et al., 2007) which is in
MSA and we followed the splits defined by Obeid
et al. (2020). We also kept the same IOB (inside,
outside, beginning) tagging format defined in the
dataset covering four classes: Location (LOC), Mis-
cellaneous (MISC), Organization (ORG), and Per-
son (PERS).

Experimental Setup During fine-tuning, we
used the representation of the first sub-token as

an input to the linear layer. All models were fine-
tuned on a single GPU for 3 epochs with a learning
rate of 5e-5, batch size of 32, and a maximum se-
quence length of 512. Since ANERcorp does not
have a dev set, we used the last checkpoint after
the fine-tuning is done to report results on the test
set using the F1 score.

4.2 Part-of-Speech Tagging

Dataset We fine-tuned our models on three dif-
ferent POS tagging datasets: (1) the Penn Arabic
Treebank (PATB) (Maamouri et al., 2004) which is
in MSA and includes 32 POS tags; (2) the Egyp-
tian Arabic Treebank (ARZATB) (Maamouri et al.,
2012) which is in Egyptian (EGY) and includes
33 POS tags; and (3) the GUMAR corpus (Khalifa
et al., 2018) which is in Gulf (GLF) and includes
35 POS tags.

Experimental Setup Similar to NER, we used
the representation of the first sub-token as an input
to the linear layer. Our models were fine-tuned on
a single GPU for 10 epochs with a learning rate of
5e-5, batch size of 32, and a maximum sequence
length of 512. We used the same hyperparameters
for the fine-tuning across the three POS tagging
datasets. After the fine-tuning, we used the best
checkpoints based on the dev sets to report results
on the test sets using the F1 score.

4.3 Sentiment Analysis

Dataset We used a combination of sentiment
analysis datasets to fine-tune our models. The
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datasets are: (1) the Arabic Speech-Act and Senti-
ment Corpus of Tweets (ArSAS) (Elmadany et al.,
2018); (2) the Arabic Sentiment Tweets Dataset
(ASTD) (Nabil et al., 2015); (3) SemEval-2017 task
4-A benchmark dataset (Rosenthal et al., 2017);
and (4) the Multi-Topic Corpus for Target-based
Sentiment Analysis in Arabic Levantine Tweets
(ArSenTD-Lev) (Baly et al., 2019). We combined
and preprocessed the datasets in a similar way to
what was done by Abu Farha and Magdy (2019)
and Obeid et al. (2020). That is, we removed dia-
critics, URLs, and Twitter usernames from all the
tweets.

Experimental Setup Our models were fine-
tuned on ArSenTD-Lev and the train splits from
SemEval, ASTD, and ArSAS (23,327 tweets) on
a single GPU for 3 epochs with a learning rate of
3e-5, batch size of 32, and a maximum sequence
length of 128. After the fine-tuning, we used the
best checkpoint based on a single dev set from
SemEval, ASTD, and ArSAS to report results on
the test sets. We used the FPN

1 score which was
defined in the SemEval-2017 task 4-A; FPN

1 is
the macro F1 score over the positive and negative
classes only while neglecting the neutral class.

4.4 Dialect Identification

Dataset We fine-tuned our models on four dif-
ferent dialect identification datasets: (1) MADAR
Corpus 26 which includes 26 labels; (2) MADAR
Corpus 6 which includes six labels; (3) MADAR
Twitter Corpus (Bouamor et al., 2018; Salameh
et al., 2018; Bouamor et al., 2019) which includes
21 labels; and (4) NADI Country-level (Abdul-
Mageed et al., 2020b) which includes 21 labels.
The datasets were preprocessed by removing dia-
critics, URLs, and Twitter usernames while main-
taining the same train, dev, and test splits for each
dataset. Moreover, we collated the tweets belong-
ing to a particular user in the MADAR Twitter Cor-
pus in groups of 5 before feeding them to the model.
We refer to this preprocessed version as MADAR-
Twitter-5 to avoid confusion with the publicly avail-
able original MADAR Twitter Corpus.

Experimental Setup Our models were fine-
tuned for 10 epochs with a learning rate of 3e-5,
batch size of 32, and a maximum sequence length
of 128. After the fine-tuning, we used the best
checkpoints based on the dev sets to report results
on the test sets using the F1 score. Moreover, for

the MADAR-Twitter-5 evaluation, we took a vot-
ing approach. That is, each user in the dev and
test sets is assigned to the most frequent predicted
country label. In case of a tie, we always pick the
most frequent predicted country label based on the
training set.

4.5 Poetry Meter Classification
Dataset We used the Arabic Poem Comprehen-
sive Dataset (APCD) (Yousef et al., 2019), which
is mostly in CA, to fine-tune our models to identify
the meters of Arabic poems. The dataset contains
around 1.8M poems and covers 23 meters. We
preprocessed the dataset by removing diacritics
from the poems and separated the halves of each
verse by using the [SEP] token. We applied an
80/10/10 random split to create train, dev, and test
sets respectively.

Experimental Setup We fine-tuned our models
on a single GPU for 3 epochs with a learning rate
of 3e-5, batch size of 32, and a maximum sequence
length of 128. After the fine-tuning, we used the
best checkpoint based on the dev set to report re-
sults on the test set using the F1 score.

5 Evaluation Results and Discussion

We first present an experiment where we investigate
the effect of pre-training data size. We then report
on CAMeLBERT models pre-trained on MSA, DA,
and CA data, in addition to a model that is pre-
trained on a mixture of these variants. We then
provide a comparison against publicly available
models.

5.1 Models with Different Data Sizes
To investigate the effect of pre-training data size
on fine-tuning tasks, we pre-train MSA models
in a controlled setting where we scale down the
MSA pre-training size by a factor of two while
keeping all other hyperparameters constant. We
pre-train four CAMeLBERT models on MSA data
as follows: MSA-1/2 (54GB, 6.3B words), MSA-
1/4 (27GB, 3.1B words), MSA-1/8 (14GB, 1.5B
words), and MSA-1/16 (6GB, 636M words). In
Table 3, we show the results on our fine-tuning
subtasks.

We observe that the full MSA model is on av-
erage the highest performing system by a slight
margin, and it wins or ties for a win in seven out of
12 subtasks. It is also the best model on average in
the MSA and DA subtasks. However, we note that
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Task Subtask Variant
%Performance

MSA MSA-1/2 MSA-1/4 MSA-1/8 MSA-1/16 Max-Min(107GB) (53GB) (27GB) (14GB) (6GB)
NER ANERcorp MSA 82.4 82.3 82.0 82.3 80.5 1.9

POS
PATB (MSA) MSA 97.4 97.4 97.4 97.4 97.4 0.1
ARZTB (EGY) DA 90.8 90.3 90.5 90.5 90.4 0.5
Gumar (GLF) DA 97.1 97.0 97.0 97.1 97.0 0.1

SA
ASTD MSA 76.9 76.0 76.8 76.7 75.3 1.6
ArSAS MSA 93.0 92.6 92.5 92.5 92.3 0.8
SemEval MSA 72.1 70.7 72.8 71.6 71.2 2.0

DID

MADAR-26 DA 62.6 62.0 62.8 62.0 62.2 0.8
MADAR-6 DA 91.9 91.8 92.2 92.1 92.0 0.4
MADAR-Twitter-5 MSA 77.6 78.5 77.3 77.7 76.2 2.3
NADI DA 24.9 24.6 24.6 24.9 23.8 1.1

Poetry APCD CA 79.7 79.9 80.0 79.7 79.8 0.3

Variant-wise-average
MSA 83.2 82.9 83.1 83.0 82.1 1.1
DA 73.5 73.1 73.4 73.3 73.1 0.4
CA 79.7 79.9 80.0 79.7 79.8 0.3

Macro-average 78.9 78.6 78.8 78.7 78.2 0.7

Table 3: Performance of CAMeLBERT models trained on MSA datasets with different sizes. We use F1 score
as a metric for all tasks. Max-Min refers to the difference in performance among the models for each dataset.
Variant-wise-average refers to average over a group of tasks in the same language variant. The best results among
the models are in bold.

the MSA-1/4 wins or ties for a win in five subtasks
and performs best in the CA subtask, even though it
was pre-trained on a quarter of the full MSA data.

We also observe that different subtasks have dif-
ferent patterns. For some subtasks, plateauing in
performance happens rather early. For instance,
the performance on PATB (MSA) does not change
even if we increase the size. Similarly, the dif-
ference in performance on Gumar (GLF) is very
small (0.1%). For other subtasks, the improvement
is not consistent with the size, particularly in Se-
mEval. When we calculate the correlation between
the performance and the pre-training data size, we
note that ArSAS has a strong positive correlation of
0.96, however, MADAR-6 has a negative correla-
tion of -0.62. In fact, the average of the correlation
of each of the 12 experiments is 0.37, which is not
a strong pattern correlating size with performance.
These observations suggest that the size of pre-
training data has limited and inconsistent effect on
the fine-tuning performance. This is consistent with
Micheli et al. (2020), where they concluded that
pre-training data size does not show a strong mono-
tonic relationship with fine-tuning performance in
their controlled experiments on French corpora.

5.2 Models with Different Language Variants

Next, we explore the relationship between language
variants in pre-training and fine-tuning datasets.

5.2.1 MSA, DA, and CA
Task Type Difference We compare the behavior
of three models pre-trained on MSA, DA, and CA
data. From Table 4, we observe that the difference
in performance (Max-Min) among CAMeLBERT’s
MSA, DA, and CA models is 4.9% on average,
ranging from 0.7% to 16.2%. To study trends by
task type, we compute the average performance
difference across the subtasks for each task. NER is
the most sensitive to the pre-trained model variant
(16.2%), followed by sentiment analysis (8.2%),
dialect identification (3.8%), poetry classification
(1.3%), and POS tagging (1.3%). This indicates
the importance of optimal pairing of pre-trained
models and fine-tuning tasks.

On average the CAMeLBERT-MSA model per-
forms best, and is the winner in 10 out of 12
subtasks. The following are the two exceptions:
(a) the CAMeLBERT-DA model performs best in
the highly dialectal MADAR-6 subtask; and (b)
the CAMeLBERT-CA model outperforms other
models in the poetry classification task, which is
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Task Dataset Variant %Performance %OOV
Star Mix MSA DA CA Max-Min Mix MSA DA CA

NER ANERcorp MSA 82.4 80.2 82.4 74.2 66.2 16.2 0.2 0.2 1.4 4.2

POS
PATB (MSA) MSA 97.4 97.3 97.4 96.5 96.6 1.0 0.2 0.2 0.9 3.0
ARZTB (EGY) DA 90.1 90.1 90.8 89.4 88.6 2.2 0.6 0.8 1.0 7.3
Gumar (GLF) DA 97.3 97.3 97.1 97.0 96.5 0.7 0.2 0.8 0.3 5.4

SA
ASTD MSA 76.9 76.3 76.9 74.6 69.4 7.5 0.9 1.1 1.2 5.3
ArSAS MSA 93.0 92.7 93.0 91.8 89.4 3.6 1.3 1.5 1.8 7.4
SemEval MSA 72.1 69.0 72.1 68.4 58.5 13.6 1.9 2.1 2.4 6.6

DID

MADAR-26 DA 62.9 62.9 62.6 61.8 61.9 0.8 0.4 0.8 0.8 7.5
MADAR-6 DA 92.5 92.5 91.9 92.2 91.5 0.7 0.1 1.1 0.2 8.1
MADAR-Twitter-5 MSA 77.6 75.7 77.6 74.2 71.4 6.2 2.4 2.6 3.0 6.7
NADI DA 24.7 24.7 24.9 20.1 17.3 7.6 1.6 2.0 2.4 8.1

Poetry APCD CA 80.9 79.8 79.7 79.6 80.9 1.3 0.4 1.1 2.7 0.9

Variant-wise-average
MSA 83.2 81.9 83.2 79.9 75.3 8.0 1.2 1.3 1.8 5.5
DA 73.5 73.5 73.5 72.1 71.1 2.3 0.6 1.1 0.9 7.3
CA 80.9 79.8 79.7 79.6 80.9 1.3 0.4 1.1 2.7 0.9

Macro-average 79.0 78.2 78.9 76.6 74.0 4.9 0.9 1.2 1.5 5.9

Table 4: Performance of CAMeLBERT models trained on MSA, DA, CA, and their Mix data. Star refers to a way
of choosing CAMeLBERT models based on the language variant of the fine-tuning dataset. We use F1 score as a
metric for all tasks. Max-Min refers to the difference in performance among CAMeLBERT’s MSA, DA, and CA
models only. Variant-wise-average refers to average over a group of tasks in the same language variant. The best
results among CAMeLBERT’s MSA, DA, and CA models are underlined. The best results among CAMeLBERT’s
MSA, DA, CA, Mix, and Star are in bold. The OOV rate for each dataset is calculated based on the data used for
pre-training each model. We underline the lowest OOV value per dataset.

in classical Arabic. These two exceptions sug-
gest that performance in fine-tuning tasks may be
associated with the variant proximity of the pre-
training data to fine-tuning data; although we also
acknowledge that CAMeLBERT-MSA’s data is
two times the size of CAMeLBERT-DA’s, and 18
times the size of CAMeLBERT-CA’s, which may
give CAMeLBERT-MSA an advantage.

OOV Effect To further investigate the effect of
variant proximity on performance, we compute
the word out-of-vocabulary (OOV) rate of all fine-
tuning test sets against the pre-training data, as
a way to estimate their similarity.6 Note that
CAMeLBERT-Mix, where we concatenate MSA,
DA, and CA pre-training data, has the lowest OOV
rate by design. In Table 4, we show the OOV rates
for each dataset.

In all the cases except Gumar (11 out of 12),
we obtain the best performance where the model
has the lowest OOV rate. To better understand
the relationship between fine-tuning performance
and OOV rates, we assessed the correlation be-

6We use a simple token as a unit, where we segment text
with white space and punctuation.

tween model performance and OOV rates for each
dataset. We found a strong negative correlation of
-0.82 on average. Interestingly, the CAMeLBERT-
CA model which was pre-trained only on 6 GB of
data outperforms other models that are pre-trained
on significantly larger data in the poetry classifi-
cation task. It is also worth mentioning that the
CAMeLBERT-CA model has the lowest OOV rate
on the poetry dataset (0.9%), while having access
to approximately 18 times less data compared to
the CAMeLBERT-MSA model (6GB vs 107GB).
This again suggests that the variant proximity of
pre-training data to fine-tuning data is more impor-
tant than the size of pre-training data.

5.2.2 Mix of MSA, DA, and CA

To further study the interplay of language variants
and pre-training data size, we pre-trained a model
(CAMeLBERT-Mix) on the concatenation of the
MSA, DA, and CA datasets. This is the largest
dataset used to pre-train an Arabic language model
to date. As shown in Table 4, the CAMeLBERT-
Mix model improves over other models in three
cases, all of which are dialectal, suggesting that the
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Task Dataset Variant %Performance
Star Mix MSA DA CA X1 X2 X3 X4 X5 X6 X7 X8

NER ANERcorp MSA 82.4 80.2 82.4 74.2 66.2 76.7 82.4 82.0 80.3 77.3 82.0 79.3 83.6

POS
PATB (MSA) MSA 97.4 97.3 97.4 96.5 96.6 96.5 97.2 97.3 97.2 96.8 97.4 96.8 97.4
ARZTB (EGY) DA 90.1 90.1 90.8 89.4 88.6 88.1 89.9 91.2 89.8 90.1 90.6 90.3 90.5
Gumar (GLF) DA 97.3 97.3 97.1 97.0 96.5 96.3 97.0 97.3 96.9 96.7 97.1 97.0 97.0

SA
ASTD MSA 76.9 76.3 76.9 74.6 69.4 64.5 74.2 78.1 69.5 71.7 72.0 77.6 72.0
ArSAS MSA 93.0 92.7 93.0 91.8 89.4 88.4 91.5 93.3 89.4 90.8 90.8 92.3 90.8
SemEval MSA 72.1 69.0 72.1 68.4 58.5 57.5 69.5 72.7 66.8 67.2 66.7 69.7 69.8

DID

MADAR-26 DA 62.9 62.9 62.6 61.8 61.9 60.4 61.9 62.2 59.6 59.6 59.5 61.9 59.3
MADAR-6 DA 92.5 92.5 91.9 92.2 91.5 90.8 91.9 92.3 90.6 90.8 90.4 91.1 90.4
MADAR-Twitter-5 MSA 77.6 75.7 77.6 74.2 71.4 71.8 79.0 79.0 77.0 76.5 74.4 77.2 74.9
NADI DA 24.7 24.7 24.9 20.1 17.3 16.7 21.1 24.5 23.5 25.4 20.5 26.1 24.2

Poetry APCD CA 80.9 79.8 79.7 79.6 80.9 78.8 79.6 79.9 75.1 73.6 74.5 74.2 74.9

Variant-wise-average
MSA 83.2 81.9 83.2 79.9 75.3 75.9 82.3 83.7 80.0 80.1 80.6 82.2 81.4
DA 73.5 73.5 73.5 72.1 71.1 70.5 72.4 73.5 72.1 72.5 71.6 73.3 72.3
CA 80.9 79.8 79.7 79.6 80.9 78.8 79.6 79.9 75.1 73.6 74.5 74.2 74.9

Macro-average 79.0 78.2 78.9 76.6 74.0 73.9 77.9 79.1 76.3 76.4 76.3 77.8 77.1

Table 5: Performance of CAMeLBERT models and other existing models. We use F1 score as a metric for all
the tasks. Star refers to a way of choosing CAMeLBERT models based on the language variant of the fine-tuning
dataset. X1, · · · , X8 corresponds to the models in Table 1. Variant-wise-average refers to average over a group of
tasks in the same language variant. The best results among the models are in bold.

CAMeLBERT-Mix model does better in some di-
alectal context. However, we do not see an increase
in performance in other cases when compared with
the best performing model, although the size of the
pre-training data and the variety of the data are in-
creased. This suggests that having a wide language
variety in pre-training data can be beneficial for DA
subtasks, whereas variant proximity of pre-training
data to fine-tuning data is important MSA and CA
subtasks.

5.2.3 Selecting an Optimal Model

Taking these insights into consideration, one can-
not help but consider the exciting possibility of
a system-selection ensembling approach that can
help users make decisions with reasonable expecta-
tions using what they know of their specific tasks.
We outline here such a setup: the user has access to
three versions of the models: CAMeLBERT’s CA,
MSA, and Mix. If the task data is known a priori
to be CA, then we select the CAMeLBERT-CA
model; if the task data is known to be MSA, we
select the CAMeLBERT-MSA model; otherwise,
we use the CAMeLBERT-Mix model (for dialects,
i.e.). We report on this model in Table 4 and 5 as
CAMeLBERT-Star.

It is noteworthy that this model is not the same as

oracularly selecting the best performer among our
four models (MSA, DA, CA, and Mix). In fact, it
is lower in performance than such oracular system
as the CAMeLBERT-MSA model performs bet-
ter than CAMeLBERT-Mix model in ARZTB and
NADI. We do not claim here that this is a foolproof
method; however, it is an interesting candidate for
common wisdom of the kind we are hoping to de-
velop through this effort.

5.3 Comparison with Existing Models

Table 5 compares our work with other existing mod-
els. We do not use models that require morpho-
logical pre-tokenization to allow direct compari-
son, and also because existing tokenization systems
are mostly focused on MSA or EGY (Pasha et al.,
2014; Abdelali et al., 2016; Obeid et al., 2020).

We are aware that design decisions such as vo-
cabulary size and number of training steps are not
the same across these eight existing pre-trained
models, which might be a contributing factor to
their varying performances. We plan to investigate
the effects of such decisions in future work.

Task Performance Complementarity The best
model on average is AraBERTv02 (X3); it wins or
ties for a win in six out of 12 subtasks (four MSA
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and two DA). Our CAMeLBERT-Star is second
overall on average, and it wins or ties for a win in
five out of 12 subtasks (three DA, one MSA, one
CA). Interestingly, the two systems are comple-
mentary in their performance and between the two
they win or tie for a win in 10 out of 12 subtasks.
The two remaining subtasks are uniquely won by
MARBERT (X7) (NADI, DA), and ARBERT (X8)
(ANERcorp, MSA). In practice, such complemen-
tarity can be exploited by system developers to
achieve higher overall performance.

Size and Performance Considering the data size
and performance of the other pre-trained models
(X1 to X8), we observe a similar trend to our
CAMeLBERT models. AraBERTv02 (X3) is the
best on average, with only 77GB of pre-training
data. AraBERTv01 (X2) is the smallest (24GB);
however, on average it outperforms other models
pre-trained on much larger datasets, such as MAR-
BERT (X7, 128GB), and ArabicBERT (X4, 95GB).
This confirms that pre-training data size may not
be an important factor to fine-tuning performance,
as we showed in Section 5.1.

Variant Proximity and Performance When we
examine the proximity in terms of language vari-
ants of the pre-training data and the fine-tuning
data across the eight existing pre-trained models,
we observe the following. First, the monolingual
MSA models (X2, X3, X4, X8) are better perform-
ers than the mixed models (X5, X7) on average
(77.6% and 77.1%, respectively).7 Second, the
monolingual MSA models perform better than the
mixed models in MSA subtasks on average (81.9%
and 81.1%, respectively), while the mixed models
perform better than the MSA models in DA sub-
tasks on average (72.9% and 72.6%, respectively).8

This result is consistent with our analysis of the
CAMeLBERT-Mix and the CAMeLBERT-MSA
models in Section 5.2, where we found that the
CAMeLBERT-Mix model is the best choice for DA
subtasks, whereas the CAMeLBERT-MSA model
is the best in MSA subtasks.

On MARBERT and ARBERT In another study
that compared models pre-trained on MSA alone
or a mix of MSA and DA data, Abdul-Mageed et al.
(2020a) reported that MARBERT (X7, pre-trained
on MSA-DA mix) is more powerful than AR-
BERT (X8, pre-trained on MSA). In our study, we

7The average over macro-average performances.
8The average over variant-wise-average performances.

do replicate their specific relative performance in
terms of macro-average in our experiments (77.8%
for MARBERT and 77.1% for ARBERT). It is not
clear why MARBERT and ARBERT do not ex-
hibit similar trends as observed in the analysis of
our own CAMeLBERT models and other existing
models. This may be attributed to numerous fac-
tors such as the degree of MSA-DA mixture, genre,
and the pre-training procedure details. It is also
worth noting that the data used to pre-train our
CAMeLBERT-MSA model is a subset of the data
used to pre-train our CAMeLBERT-Mix model,
whereas the pre-training data for MARBERT and
ARBERT are derived from different data sources.

6 Conclusion and Future Work

In this paper, we investigated the interplay of size,
language variant, and fine-tuning task type in Ara-
bic pre-trained language models using carefully
controlled experiments on a number of Arabic NLP
tasks. Our results show that pre-training data and
subtask data variant proximity is more important
than pre-training data size. We confirm these re-
sults on existing models. We exploit this insight
in defining an optimized system selection model
for the studied tasks. We make all of our created
models and fine-tuning code publicly available.

In future work, we plan to explore other design
decisions that may contribute to the fine-tuning per-
formance, including vocabulary size, tokenization
techniques, and additional data mixtures. We also
plan to utilize CAMeLBERT models in a number of
other Arabic NLP tasks, and integrate them in the
open-source toolkit, CAMeL Tools (Obeid et al.,
2020).
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