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Abstract
In this work we compare the performance
of convolutional neural networks and shallow
models on three out of the four language iden-
tification shared tasks proposed in the Var-
Dial Evaluation Campaign 2021. In our ex-
periments, convolutional neural networks and
shallow models yielded comparable perfor-
mance in the Romanian Dialect Identification
(RDI) and the Dravidian Language Identifica-
tion (DLI) shared tasks, after the training data
was augmented, while an ensemble of support
vector machines and Naı̈ve Bayes models was
the best performing model in the Uralic Lan-
guage Identification (ULI) task. While the
deep learning models did not achieve state-of-
the-art performance at the tasks and tended to
overfit the data, the ensemble method was one
of two methods that beat the existing baseline
for the first track of the ULI shared task. 1

1 Introduction

In this paper, we present the submissions of Team
Phlyers to the VarDial Evaluation Campaign 2021
(Chakravarthi et al., 2021). The campaign is part of
a conference series, the Workshop on NLP for Sim-
ilar Languages, Varieties and Dialects (VarDial),
which has reached its eighth edition, five of which
have included several shared tasks (Zampieri et al.,
2017, 2018, 2019; Găman et al., 2020). The shared
tasks typically involve the categorization of texts
according to their language or their dialect. This
task, known as language identification, is a classical
NLP problem (House and Neuburg, 1977; Dunning,
1994; McNamee, 2005), because of its importance
for information retrieval, machine translation, and
more recently categorization of social media posts
(Bergsma et al., 2012; Lui and Baldwin, 2014; Zu-
biaga et al., 2016).

1The code for the models employed in this work
is found at https://github.com/AndreaCeolin/
VarDial2021.

In the next sections, we briefly describe the three
tasks that we participated in.

1.1 RDI

The VarDial 2019 edition (Zampieri et al., 2019)
proposed the first shared task based on distinguish-
ing standard Romanian from Moldavian newspaper
articles. The task consisted in training a classifier
on news articles in Romanian and Moldavian from
the MOROCO corpus (Butnaru and Ionescu, 2019),
and using it to classify other news articles yet to be
added to the corpus. The best model achieved an
F1 score of 0.895 on the test set, using an ensemble
method based on convolutional neural networks
(CNN) and support vector machines (SVM) (Tu-
doreanu, 2019).

Last year’s task asked participants to train a clas-
sifier on the news articles of the MOROCO corpus
to distinguish standard Romanian from Moldavian
tweets (Găman et al., 2020). The task was partic-
ularly interesting because the organizers provided
a large validation dataset based on news articles
(5923), and only a small validation dataset based on
tweets (215). This made the validation stage chal-
lenging, because on the one hand a model trained
on news articles which yields high accuracy on the
news validation dataset could fail to generalize to
a different domain, while on the other hand the
size of the tweets validation dataset was so small
that by training a model only on tweets, the risk
of overfitting was considerable. The best result
on the task was obtained by an ensemble of linear
SVM classifiers (Çöltekin, 2020), which yielded
an accuracy of F1=0.788 on the test data. A similar
accuracy (F1=0.775) was reached by fine-tuned Ro-
manian BERT models (Popa and Stefănescu, 2020).
Attempts that relied on Naı̈ve Bayes (NB) models
yielded lower accuracies (Jauhiainen et al., 2020a;
Ceolin and Zhang, 2020).

The shared task has been proposed again in this

https://github.com/AndreaCeolin/VarDial2021
https://github.com/AndreaCeolin/VarDial2021
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year’s VarDial edition, in which a new dataset of
tweets in standard Romanian and Moldavian was
made available to the participants.

1.2 ULI

The Uralic Language Identification task (ULI) dif-
fers from traditional tasks in the high number of
language varieties that are present in the dataset
(Jauhiainen et al., 2020b; Găman et al., 2020). In
total, there are 178 languages that need to be dis-
tinguished, which include the 29 Uralic varieties
which are the focus of the task, 3 extra Uralic lan-
guages (Finnish, Estonian, and Hungarian) and
146 other non-Uralic languages. Moreover, the
classes are imbalanced: for the 29 Uralic varieties,
the number of sentences vary from 19 to 214,225,
while for the other languages the range is much
higher (from 10K to 3 million).

The shared task is divided in three separate sub-
tasks. The first subtask requires a model to distin-
guish among the 29 Uralic varieties giving equal
importance to each of the classes, and is evaluated
through a macro F1 score. In the second subtask,
classes are weighted according to their frequency,
and thus a micro F1 score is used. In the third sub-
task, the models are evaluated on all 178 languages.

The high number of classes, their overlap, and
the imbalanced dataset all represent challenges for
deep learning algorithms: in particular, they can
lead to overfitting if the traning set is not balanced
(Bernier-Colborne and Goutte, 2020). On the other
hand, the same problem might affect shallow meth-
ods like SVMs, since they need to identify many
distinct separation hyperplanes in a domain where
many languages are virtually indistinguishable.

The shared task was presented for the first time
during the VarDial Evaluation Campaign 2020
(Găman et al., 2020), and in that case the best per-
forming system for all tracks was the HeLI method
(Jauhiainen et al., 2016), which was the baseline
presented by the organizers. Since the HeLI base-
lines were not improved, the task has been pro-
posed again in this year’s edition.

1.3 DLI

The Dravidian Language Identification task (DLI)
requires participants to classify three South Dra-
vidian languages (Tamil, Malayalam, and Kan-
nada) using a dataset of 16,672 YouTube comments
(Chakravarthi et al., 2020b,a; Hande et al., 2020).
The comments are written in Roman script.

This task differs from the others in being fo-
cused on code-switching: all comments contain a
mix of words from the target language and words
from English, and in some cases native words can
appear within an English grammatical structure.
Classifiers must then be robust to this variability
and be able to not be deceived by the English ma-
terial. Another interesting feature of this task is
the large class imbalance in the training set (with
about 10K comments in Tamil, 4K in Malayalam,
and only about 500 in Kannada) and the fact that
both the training and the test datasets contain com-
ments from other languages (under the label ‘other-
language’, approximately 1K comments).

This is the first edition of this task.

2 Methods

Previous methods used for language identifica-
tion typically involve SVMs (Goutte et al., 2014;
Çöltekin and Rama, 2017; Medvedeva et al., 2017;
Kreutz and Daelemans, 2018; Benites de Azevedo e
Souza et al., 2018; Wu et al., 2019) and multino-
mial NB models applied to word and character
ngrams (Barbaresi, 2016; Clematide and Makarov,
2017; Jauhiainen et al., 2016, 2020a). Deep learn-
ing methods based on CNNs and LSTMs have also
been successfully applied to language identifica-
tion tasks (Jaech et al., 2016; Butnaru and Ionescu,
2019; Hu et al., 2019; Tudoreanu, 2019), and the
last two editions of VarDial also showed successful
applications of BERT models (Bernier-Colborne
et al., 2019; Popa and Stefănescu, 2020; Scherrer
and Ljubešić, 2020; Zaharia et al., 2020).

For the current tasks, we employed NB and
SVM models trained on character ngrams as base-
lines, and compared their performance with that
of a CNN. For the CNN, we decided to use the
character-based model for text classification that
was developed by Zhang et al. (2015), and that
was successfully adopted by Butnaru and Ionescu
(2019) to distinguish between standard Romanian
and Moldavian news texts. The architecture of the
CNN is summarized in Table 1. All models were
run using Google Colab, with 1 GPU.2

3 Results

This section summarizes our contributions to the
three shared tasks, the evaluation of our models,
and their performance on the test datasets.

2https://colab.research.google.com
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Type In Out Kernel MaxPool Stride
1 Conv. (*) 128 7 3 3
2 Conv. 128 128 7 3 3
3 Conv. 128 128 3 3 3
4 Linear (*) 1000 - - -
5 Linear 1000 1000 - - -
6 Linear 1000 (*) - - -

Table 1: CNN architecture. Filters applied over a single
dimension. Loss function=CrossEntropy, Optimizer =
Adam. DropOut is added to the two fully connected
layers (0.5). ReLu threshold: 10-6. Output is passed
through Softmax. The dimensions marked with (*) are
task specific.

3.1 RDI

A question that remains open after last year’s edi-
tion is whether deep learning methods can achieve a
good accuracy at distinguishing between standard
Romanian and Moldavian tweets even with lim-
ited training data. The deep learning models that
were used in last year’s task (Popa and Stefănescu,
2020; Zaharia et al., 2020) all relied on pre-trained
BERT models (Dumitrescu et al., 2020), which
might not always be available when working on
low-resource languages. Even though CNNs have
been successfully applied to the task of distinguish-
ing news texts between the two language varieties
(Butnaru and Ionescu, 2019), in our contribution to
last year’s edition we have showed that the repre-
sentations they learn fail to generalize to the tweets
domain (Ceolin and Zhang, 2020). This year we
readdressed this issue using the new dataset.

3.1.1 CNN
In last year’s edition, a small dataset of 215 tweets
was given to the participants to evaluate the model.
Since this year’s edition provides a larger amount
of in-domain data (5237 tweets), we decided to
use the model we trained last year and fine-tune it
using the larger tweets validation dataset available
for this year’s task. We also decided to train a
separate model on tweets-data only, to see if the
use of out-of-domain news data leads to a better
performance than a model trained only on tweets.

In order to augment the data, we experimented
with some of the data augmentation techniques
proposed by Wei and Zou (2019). The one which
turned out to be the most successful was random
swap, especially when it was used multiple times
on the same sentence rather than just once (i.e.,
essentially shuffling the words in the sentence).
See the Appendix for a more detailed summary of

the data augmentation experiments.
After some trial runs, we decided to set a batch

size of 128, and a learning rate of 0.001. We used
1/5 of the data to create a validation dataset, while
the rest was used for training. The training data is
augmented with 10 replications that involve shuf-
fled sentences. On the basis of training and valida-
tion accuracies, we decided to interrupted training
after 10 epochs on the original training data, and
after 5 epochs on the augmented dataset.

3.1.2 Shallow models
We also trained a NB and a linear SVM model on
TFIDF-transformed character ngrams in the [5-8]
range, which was determined to be the optimal
range for these languages in Ceolin and Zhang
(2020). The models have not been fine-tuned,
and have been evaluated using the same validation
dataset selected to evaluate the CNN.

3.1.3 Evaluation
The tweets dataset was already balanced, with 2625
standard Romanian tweets and 2612 Moldavian
tweets. As we see in Table 2, data augmentation
improved the performance of the CNNs dramati-
cally, to the point that it became comparable to that
of shallow models.

Model Macro F1 score
NB 0.760
CNN (news+tweets) + data aug. 0.756
Linear SVM 0.756
CNN (tweets) + data aug. 0.749
CNN (news+tweets) 0.709
CNN (tweets) 0.700

Table 2: Final performance of the models on the evalu-
ation of the RDI task.

For instance, if we take a look at the CNN
(news+tweets) model, Figure 1 shows that after
training for 10 epochs the performance on the vali-
dation set reaches a macro F1 score of 0.709, while
in Figure 2 we see that in the augmented dataset the
accuracy is well above 0.7 after the first epoch, and
converges to ≈0.76 after five epochs. The same is
true for the model trained only on tweets, whose
accuracy jumps from 0.7 to 0.75.

3.1.4 Results
We decided to submit two runs to the RDI shared
task. Both contained the predictions of the CNN
pre-trained on news articles and then fine-tuned
on augmented tweets, but the second submission
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Figure 1: CNN news + tweets model. Comparing
the training and validation performance measured by
macro F1 score through 10 epochs of training. Blue
line: training; orange line: validation. The training
dataset is not augmented.

Figure 2: CNN news + tweets model. Comparing
the training and validation performance measured by
macro F1 score through 5 epochs of training. Blue
line: training; orange line: validation. Training set aug-
mented.

resulted from a model were data augmentation had
an increased weight (from x10 to x12).

Table 3 contains the results of the best runs of the
three teams that took part in the task. The best ac-
curacy (0.777) was reached by SUKI, who last year
proposed a NB model trained on character ngrams
(Jauhiainen et al., 2020a), while the second best
accuracy (0.732) was reached by the UPB team (Za-
haria et al., 2020), who last year addressed the task
using a BERT model. The CNN we presented did
not reach comparable performance, even though an
inspection of precision and recall did not point to
any obvious explanation: the network just ended
up overfitting the training data. Our second run
was not competitive, because increased data aug-
mentation without changing the other parameters
of the CNN led to even more overfitting.

Model Macro F1 score
SUKI 0.777
UPB 0.732
Phlyers 0.653

Table 3: Final performance of the teams’ submissions
to the RDI task.

Considering that the network was trained on the
full tweets dataset rather than 80% of it before the
submission, stopping the iterations after the first or
the second epoch would have been a wiser choice,
since we have seen that no considerable improve-
ment of the valuation performance was made after
the first few epochs, and therefore additional train-
ing might have led to overfitting.

3.2 ULI

As we previously mentioned, this task appeared to
be the most challenging one, given the high amount
of labels and the great class imbalance. In partic-
ular, the first subtask required the models to be
able to accurately classify languages which were
represented by a few dozen sentences.

The strategy we adopted to address these issues
was to train two separate classifiers for two dif-
ferent classification problems. First, we want to
be able to distinguish the 29 ‘target’ Uralic lan-
guages from the 149 ‘non-target’ languages. Once
we have a model that can distinguish the two types
of languages, we can train a second classifier to
distinguish among the 29 target languages using
features only extracted from such languages. In
this way, the second model would be able to extract
more features which are only needed to separate
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the 29 target languages, even though employing
them in the first stage might produce some errors,
in addition to more computational cost.

3.2.1 Distinguishing ‘target’ and ‘non-target’
languages

Defining a unique alphabet for the entire training
dataset is unfeasible, since languages make use of
different writing systems, and this fact makes it
practically difficult to train a character-based CNN
for the task. Therefore, we decided to focus on
shallow models in this first stage. For this binary
classification task, we trained a linear SVM and a
NB method. In addition to the 646,043 sentences
for the target languages, we used 5000 sentences
for each of the non-target language, obtaining a
total of 1,391,043 sentences for the 178 languages
of the task. We then used 5-fold cross-validation to
evaluate the classifier.

After some trial runs, we found that a linear
SVM classifier trained on TF-IDF transformed
character ngrams in the range [3,4], with the num-
ber of features limited to the 100,000 most frequent
ones, converges to a 0.995 macro F1 score. We will
then use this classifier to single out the target lan-
guages in the test dataset.

Model Ngrams Macro F1 score
Linear SVM [3] 0.992
Linear SVM [4] 0.994
Linear SVM [5] 0.991
Linear SVM [3,4] 0.995
NB [3] 0.976
NB [4] 0.986
NB [5] 0.988
NB [4,5] 0.985

Table 4: Evaluation of the models used to distinguish
‘target’ from ‘non-target’ languages.

3.2.2 Classifying ‘target’ languages
We first attempted to train a CNN for this subtask,
but we could not develop a system that was able
to deal with the large class imbalance and with
the high number of different labels that need to
be learned. We then retrained our shallow mod-
els for the task of distinguishing among the target
languages. The best performing model was a NB
model trained on TFIDF character ngrams, with
ngrams in the range [3,5] and alpha=10-6 (cf. Table
5). Rare ngrams, those whose relative document
frequency was less than <10-4, were excluded. The
model parameters were selected through 5-fold

cross-validation.

Model Ngrams Macro F1 Micro F1

Linear SVM [3] 0.748 0.964
Linear SVM [4] 0.765 0.965
Linear SVM [5] 0.772 0.962
NB [3] 0.871 0.976
NB [4] 0.909 0.983
NB [5] 0.911 0.985
NB [4,5] 0.907 0.985
NB [3,5] 0.915 0.986

Table 5: Evaluation of the models used to distinguish
among the ‘target’ languages.

3.2.3 Evaluation - Track 1 and 2
In order to evaluate our system, we decided to cre-
ate a 80/20 training-test split. First, the SVM is
trained on 80% of the dataset in order to determine
whether the sentences in the test set are from tar-
get or non-target languages. Then, the NB model
assigns a label to the sentences that are recognized
as target sentences. The results are in Table 6.

Model Macro F1 Micro F1

Linear SVM + NB 0.905 0.988

Table 6: Evaluation of the final model.

We see that the full model yields a macro F1
score of 0.905. We noted that precision was higher
than recall (0.958 versus 0.878), and in particular
rare languages are associated to low recall scores.
This means that the system does not make ‘wrong’
predictions often, but it can fail to identify the less
common varieties.

The micro F1 score for the system is about 0.99,
as expected.

3.2.4 Evaluation - Track 3
The model we devised could not be used for a
submission to Track 3, because the non-target lan-
guages are excluded in the first step. For this reason,
we decided to retrain our models to directly pre-
dict the labels, and to use 5-fold cross-validation to
evaluate them.

In this case, we need to increase the threshold
for filtering rare ngrams to 10-3 for memory con-
straints, and to limit the analysis to NB systems,
since the high number of labels makes working
with SVMs more challenging. The best model we
selected was a NB model with TFIDF transformed
character 5-grams (F1=0.949, see Table 7).
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Model Ngrams Macro F1
NB [3] 0.937
NB [4] 0.946
NB [5] 0.949

Table 7: Evaluation of the models developed for Track
3.

3.2.5 Results
We submitted the two systems we described in the
preceding sections (SVM+NB for Track 1 and 2,
and NB for Track 3) for evaluation. In addition,
we submitted the prediction of two ensemble mod-
els, that we summarize in Table 8. The models are
derived from the two main models, but their pre-
dictions change when the two main models are in
disagreement about which of two target languages
is the correct label. The first ensemble (Ensemble1)
model uses all the predictions of the model de-
veloped for Track 1 and 2, but there is one case
in which the prediction of the model developed
for Track 3 are selected instead: when the first
model predicts one of the five rare languages of
the dataset, Ingrian (izh), Nganasan (nio), Kemi
Sami (sjk), Ume Sami (sju), Votic (vot), and the
second model predicts a different target language,
then this second target language is selected instead.
Our motivation is the following: if the model er-
roneously predicts a language which is not in the
test set, precision for that language will go to zero,
and the performance of the classifier will signifi-
cantly drop. This strategy will make sure that the
prediction is indeed accurate when dealing with
rare languages. In this case, if the signal between
the two classifiers is conflicting, it appears wiser to
default to the prediction of the most common class.

The second ensemble (Ensemble2) takes the pre-
dictions of the NB model developed for Track 3,
but when the SVM+NB model predicts a different
target language, then this more refined prediction
is chosen instead, under the assumption that since
the SVM+NB model has been developed specifi-
cally for distinguishing among target languages, its
predictions should be more accurate.

The results for the three tasks are summarized in
Table 9, Table 10 and Table 11.

As for Track 1 (Table 9), the first ensemble sys-
tem was the best performing system among those
we submitted, and the second best overall, although
all teams provided systems with similar perfor-
mances and architectures. It is noticeable how com-
bining the predictions of the two different systems

SVM+NB (1,2) NB (3) Ensemble1 Ensemble2
NA NA NA NA
NA Targetb NA Targetb

Targeta NA Targeta NA
Targeta Targetb Targeta-b Targeta

Table 8: Ensemble methods developed for the three sub-
tasks. Targeta refers to the prediction of a language on
target made by the classifier developed for Track 1 and
2, while Targetb refers to the prediction of a language
on target made by the classifier developed for Track 3.
Note how the predictions of the two ensemble models
are essentially the same, respectively, of the two main
models, but they differ in how they assign a label to
a target language when there is disagreement between
the two main classifiers.

we devised for the task, with the aim of improving
the classification of the rare languages, led to a sig-
nificant improvement over the performance of the
two systems taken separately.

Team Model Macro F1

NRC Probabilistic Classifier, ch.5grams 0.8138
Phlyers Ensemble1 (SVM+NB), ch. 3-5grams 0.8085
Phlyers Ensemble2 (SVM+NB), ch. 3-5grams 0.8076
SUKI HeLI 0.8004
Phlyers NB ch. 5grams 0.7977
LAST Logistic R., ch.1-3grams, BM25 0.7977
Phlyers SVM (ch.3-4grams)+NB (ch.3-5grams) 0.7740

Table 9: Results for Track 1.

As for Track 2 (Table 10), Ensemble1 and the
SVM+NB model yielded the same performance
(0.84), which was clearly below the baseline es-
tablished by HeLI (Jauhiainen et al., 2020b), and
below the performance of the systems submitted by
the other teams. During the evaluation of our sub-
missions, the organizers also provided us with the
precision and recall scores, and it was clear that the
failure was entirely due to the low precision of the
systems. Since our evaluation set was balanced be-
tween target and non-target languages (with about
30% of the sentences belonging to the target set),
the precision scores looked acceptable, but an error
analysis clearly showed that the systems had the
tendency of assigning a target label to a non-target
language more often than the opposite, even though
it was precisely this behavior that we were hoping
to avoid with the SVM classifier.

Since our system still failed to filter out some
non-target languages, precision was drastically re-
duced in the test phase, where non-target languages
clearly outnumbered target languages (sentences
belonging to target languages were about 2% of the
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whole sample, according to the SVM model).
Indeed, we also submitted the model we devel-

oped for Track 3, and the second ensemble, but
both attempts yielded an even lower performance,
which suggests that the SVM filter was partially
successful at filtering out non-target languages,
even though it was not sufficient to achieve state-
of-the-art performance.

Team Model Micro F1

NRC Probabilistic Classifier using ch. 5grams 0.9668
SUKI HeLI 0.9632
NRC BERT Deep Neural Network 0.9530
LAST Logistic R., ch.1-3grams, BM25 0.9496
Phlyers SVM(ch.3-4grams)+NB(ch.3-5grams) 0.8389
Phlyers NB ch. 5grams 0.5934
Phlyers Ensemble2 (SVM+NB), cf.3-5grams 0.5932

Table 10: Results for Track 2.

Finally, for Track 3 (Table 11) none of the sys-
tems submitted to the task were able to beat the
strong baseline set by HeLI. Even though in this
case the performance of our systems was close to
that of the systems submitted by LAST and NRC,
ours were not able to reach the performance of the
other teams.

Team Model Macro F1

SUKI HeLI 0.9252
LAST Logistic R., ch.1-3grams, BM25 0.9164
NRC Probabilistic Classifier, ch.5grams 0.9079
NRC BERT Deep Neural Network 0.9039
Phlyers Ensemble2 (SVM+NB), ch.3-5grams 0.8847
Phlyers NB ch. 5grams 0.8831

Table 11: Results for Track 3.

3.3 DLI
As we said above, this task is focused on code-
switching, and this means that many features that
could be extracted are completely irrelevant to de-
termine the original language of the text. The great
class imbalance is another problem that needs to
be addressed. Especially in the design of deep
learning architectures, some strategy to prevent
overfitting was required.

3.3.1 CNN
We addressed this task using the same CNN devel-
oped for the RDI task, with an important difference.
Since in this case we have to deal with class im-
balance, we decided to perform balanced sampling
during the training phase.

First, 1/5 of the labeled data was randomly
selected for evaluation purposes as a validation

dataset, and the rest was used for training. Then,
we sampled a total of 25,000 sentences uniformly
across the four categories by selecting each of the
four classes with p=0.25, and each sentence with
p=1/nC, with nC being the number of sentences
available for each class. This will necessarily im-
ply that many sentences will be picked more than
once, especially for the classes which are not well
represented.

In order to avoid repeating the same sentences
for the more uncommon classes, we decided to
shuffle the order of the words in the sentences,
essentially adopting the data augmentation strategy
that was employed for the RDI task. This strategy
had two purposes: dealing with class imbalance by
augmenting the data of the classes which were not
well represented, and addressing the problem of
the influence of the English grammar, by exposing
the network to sentences in which the order of the
words was changed, with the aim of retrieving word
sequences that were not in the training data, but
were still possible in the language. We also trained
a separate model where instead the order of the
words was not shuffled, and therefore sentences in
the training dataset were just repeated.

Since most of the comments are short, only the
first 160 characters per comment were used as input
to the network. After some parameter tuning, we
set the learning rate to 0.001, and the batch size
is 256. We also reduced the output of the second
linear layer to 500. Training was interrupted after
10 epochs.

3.3.2 Shallow models
Following the strategy adopted for the RDI task, we
trained a NB and a linear SVM model on TFIDF-
transformed character ngrams in the [5-8] range.
The models have not been fine-tuned, and have
been evaluated using the same dataset used to eval-
uate the CNN.

3.3.3 Evaluation
Table 12 shows the micro F1 score, which was the
metric used to rank the submissions, for the models
evaluated.

The patterns are similar to those we have ob-
tained in the RDI task: shuffling words had the
effect of improving the performance of the CNN.
Figure 3 and Figure 4 show that in this case shuf-
fling had only a marginal effect on the task, since
in both cases training and validation performances
were comparable.
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Figure 3: CNN model. Comparing the training and
validation performance measured by micro F1 score
through 10 epochs of training. Blue line: training; or-
ange line: validation. Sentences are not shuffled.

Figure 4: CNN model. Comparing the training and
validation performance measured by micro F1 score
through 10 epochs of training. Blue line: training; or-
ange line: validation. Sentences are shuffled.

We then submitted our best model for evaluation.

Model Micro F1 score
CNN (shuffle) 0.880
NB 0.878
CNN (no shuffle) 0.870
Linear SVM 0.848

Table 12: Final performance of the models on the eval-
uation of the DLI task.

3.3.4 Results
The results of the evaluation campaign are in Table
13. Our model performed as expected, with a micro
F1 score of 0.9. The performance was comparable
to the submission of the other three teams, which
however all yielded a better F1 score.

The only systematic difference between our sub-
mission and the others was a low F1 score for the
‘other-languages’ class (0.46), while all teams were
able to achieve a score of at least 0.54. This sug-
gests that our network was not able to obtain a rep-

resentation of this class as robust as that obtained
by the other classifiers.

Model Micro F1 score
LAST 0.93
Nayel 0.92
HWR 0.92
Phlyers 0.90

Table 13: Final performance of the teams’ submissions
to the DLI task.

4 Conclusion

The last editions of the VarDial evaluation cam-
paign (Zampieri et al., 2019; Găman et al., 2020)
have seen an increased use of deep learning tech-
niques for language identification, which in several
cases yielded the best performance at the tasks (Tu-
doreanu, 2019; Bernier-Colborne et al., 2019). In
this work, we tried to compare the performance
of CNNs and shallow models for three out of the
four tasks at VarDial 2021. While for the ULI task
developing a CNN turned out to be challenging,
for both the RDI and the DLI task CNNs yielded
performances which were in line with the baselines
established by the more classic shallow models,
even though the final results showed that they are
prone to overfitting.

It is interesting to note that shuffling the words
in the training data improved the accuracy of our
CNN classifiers, in particular for the RDI task. The
procedure essentially introduces noise in the data,
because the order of the words in the sentences
will be ungrammatical after they are shuffled, so
why it improves the performance of the classifier
is not clear. One possibility is that it introduces the
network to word combinations that would be pos-
sible in the language (for instance, but switching
a subject and an object, or by juxtaposing words
separated by modifiers), increasing the diversifi-
cation of the training data. Another possibility is
that since shuffling words does not affect character
sequences within words, but at word boundaries,
shuffling has the effect of preventing the network
from focusing on sequences with spaces in the mid-
dle, which could be less meaningful than sequences
within words to learn the lexicon and the morphol-
ogy associated to each language variety. In the
current experiments, this strategy had the effect
of reducing overfitting. This outcome will require
more investigation in the future.

While data augmentation is popular in image
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classification (Wang and Perez, 2017; Cubuk et al.,
2019), it has so far had limited application in NLP
(Coulombe, 2018; Kobayashi, 2018; Wei and Zou,
2019). Our experiments on the VarDial 2021 shared
tasks suggest that data augmentation can play an
important role in adapting neural models to the task
of language identification.
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Tiedemann, Chris van der Lee, Stefan Grondelaers,
Nelleke Oostdijk, Antal van den Bosch, Ritesh Ku-
mar, Bornini Lahiri, and Mayank Jain. 2018. Lan-
guage Identification and Morphosyntactic Tagging:
The Second VarDial Evaluation Campaign. In Pro-
ceedings of the Fifth Workshop on NLP for Similar
Languages, Varieties and Dialects (VarDial), pages
1–17, Santa Fe, USA.

Marcos Zampieri, Shervin Malmasi, Yves Scherrer,
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A Appendix - Data augmentation

Following Wei and Zou (2019), we ran some data
augmentation experiments on the dataset of the
RDI task. We experimented with Random Swap
(swap the position of two words in the sentence),
Random Delection (remove one word in the sen-
tence), and Random Insertion (insert one extra
word in the sentence). We did not experiment with
Random Replacement, which involves the replace-
ment of a word with a synonym. We also experi-
mented with an additional technique, Shuffling, in

which the words of the sentence are simply shuf-
fled, and which is essentially a variation of Random
Swap. We trained the network, on each augmented
dataset, for 5 different times, and determined its
test accuracy on the same hold-out dataset.

The results of the experiments on the model pre-
trained on news (the news+tweets model) are in
Table 14. All techniques led to an improvement
of the performance of the network, and the best
improvement was obtained by shuffling the words
of the sentences.

Technique Training Epochs Macro F1

Shuffling 5 0.756
Random Swap 5 0.733
Random Deletion 5 0.733
Random Insertion 5 0.727
No augmentation 10 0.709

Table 14: Summary of our experiments on data aug-
mentation in the RDI task, on the news+tweets model.


