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Abstract

Knowledge Distillation (KD) offers a natural
way to reduce the latency and memory/energy
usage of massive pretrained models that have
come to dominate Natural Language Process-
ing (NLP) in recent years. While numer-
ous sophisticated variants of KD algorithms
have been proposed for NLP applications, the
key factors underpinning the optimal distilla-
tion performance are often confounded and re-
main unclear. We aim to identify how dif-
ferent components in the KD pipeline affect
the resulting performance and how much the
optimal KD pipeline varies across different
datasets/tasks, such as the data augmentation
policy, the loss function, and the intermedi-
ate representation for transferring the knowl-
edge between teacher and student. To tease
apart their effects, we propose Distiller, a
meta KD framework that systematically com-
bines a broad range of techniques across differ-
ent stages of the KD pipeline, which enables
us to quantify each component’s contribution.
Within Distiller, we unify commonly used ob-
jectives for distillation of intermediate repre-
sentations under a universal mutual informa-
tion (MI) objective and propose a class of MI-
α objective functions with better bias/variance
trade-off for estimating the MI between the
teacher and the student. On a diverse set of
NLP datasets, the best Distiller configurations
are identified via large-scale hyper-parameter
optimization. Our experiments reveal the fol-
lowing: 1) the approach used to distill the in-
termediate representations is the most impor-
tant factor in KD performance, 2) among dif-
ferent objectives for intermediate distillation,
MI-α performs the best, and 3) data augmen-
tation provides a large boost for small train-
ing datasets or small student networks. More-
over, we find that different datasets/tasks pre-
fer different KD algorithms, and thus propose
a simple AutoDistiller algorithm that can rec-
ommend a good KD pipeline for a new dataset.
∗Work done while being an intern at Amazon Web Ser-

vices.

1 Introduction

Recent advancements in Natural Language Pro-
cessing (NLP) such as BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), and ELECTRA (Clark
et al., 2020) have demonstrated the effectiveness of
Transformer models in generating transferable lan-
guage representations. Pretraining over a massive
unlabeled corpus and then fine-tuning over labeled
data for the task of interest has become the state-of-
the-art paradigm for solving diverse NLP problems
ranging from sentence classification to question an-
swering (Raffel et al., 2019). Scaling up the size
of these networks has led to rapid NLP improve-
ments. However, these improvements have come at
the expense of significant increase of memory for
their many parameters and compute to produce pre-
dictions (Brown et al., 2020; Kaplan et al., 2020).
This prevents these models from being deployed on
resource-constrained devices such as smart phones
and browsers, or for latency-constrained applica-
tions such as click-through-rate prediction. There
is great demand for models that are smaller in size,
yet still retain similar accuracy as those having a
large number of parameters.

To reduce the model size while preserving accu-
racy, various model compression techniques have
been proposed such as: pruning, quantization, and
Knowledge Distillation (KD) (Gupta and Agrawal,
2020). Among these methods, task-aware KD
is a popular and particularly promising approach
for compressing Transformer-based models (Gupta
and Agrawal, 2020). The general idea is to first
fine-tune a large model (namely the teacher model)
based on the task’s labeled data, and then train a
separate network that has significantly fewer param-
eters (namely the student model) than the original
model to mimic the predictions of the original large
model. A large number of task-aware KD algo-
rithms have been proposed in the NLP regime, e.g.,
DistillBERT (Sanh et al., 2019), BERT-PKD (Sun
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et al., 2019), BERT-EMD (Li et al., 2020), Tiny-
BERT (Jiao et al., 2020), DynaBERT (Hou et al.,
2020), and AdaBERT (Chen et al., 2020), some
of which can compress the teacher network by
10× without significant accuracy loss on certain
datasets.

Innovations in KD for NLP generally involve
improvements in one of the following aspects: 1)
the loss function for gauging the discrepancy be-
tween student and teacher predictions (Kim et al.,
2021), 2) the method for transferring intermediate
network representations between teacher and stu-
dent (Sun et al., 2019; Li et al., 2020; Yang et al.,
2021), 3) the use of data augmentation during stu-
dent training (Jiao et al., 2020), and 4) multiple
stages of distillation (Chen et al., 2020; Mirzadeh
et al., 2020). Many research proposals have si-
multaneously introduced new variations of more
than one of these components, which confounds
the impact of each component on the final perfor-
mance of the distillation algorithm. In addition,
it is often unclear whether a proposed distillation
pipeline will generalize to a new dataset or task,
making automated KD challenging. For example,
MixKD (Liang et al., 2021) has only been evaluated
on classification problems and it is unclear if the
method will be effective for question answering.

To understand the importance of different com-
ponents in KD, we undertake a systematic study
of KD algorithms in NLP. Our study is conducted
using a meta-distillation pipeline we call Distiller
that contains multiple configurable components.
All candidate algorithms in the search space of Dis-
tiller work for two types of NLP tasks: text clas-
sification and sentence tagging. Distiller unifies
existing techniques for knowledge transfer from
intermediate layers of the teacher network to the
student network (i.e. intermediate distillation) as
special cases of maximizing (bounds on) the Mu-
tual Information (MI) between teacher and student
representations. Based on this unification and re-
cent progress in variational bounds of MI (Poole
et al., 2019), we propose a new intermediate distil-
lation objective called MI-α that uses a scalar α to
control the bias-variance trade-off of MI estimation.
Including MI-α in the search space of Distiller, we
run extensive hyper-parameter tuning algorithms to
search for the best Distiller-configuration choices
over GLUE (Wang et al., 2019b) and SQuAD (Ra-
jpurkar et al., 2016). This search helps us identify
the best distillation pipelines and understand what

impact different KD modules have on student per-
formance in NLP. Using the observations of this
large-scale study, we train a AutoDistiller model to
predict the distillation ratio, which is defined as the
fraction of the teacher’s performance achieved by
the student, based on KD pipeline choices and char-
acteristics of a dataset. Leave-one-out cross valida-
tion evaluation of AutoDistiller demonstrates that
it is able to reliably prioritize high-performing KD
configurations in most folds, and is able to suggest
good distillation pipelines on two new datasets.

The main contributions of this work include:

• The meta KD pipeline Distiller used to sys-
tematically study the impact of different com-
ponents in KD, including the: 1) data aug-
mentation policy, 2) loss function for trans-
ferring intermediate representations, 3) layer
mapping strategies for intermediate represen-
tations, 4) loss function for transferring out-
puts, as well as what role the task/dataset play.

• Unification of existing objectives for distilling
intermediate representations as instances of
maximizing bounds of the mutual information
between teacher and student representations.
This leads us to propose the MI-α objective
that outperforms the existing objectives.

• Using the results collected from our system-
atic Distiller study, we fit a model that auto-
matically predicts the best distillation strategy
for a new dataset. On a never-seen dataset
“BoolQ”(Wang et al., 2019a), predicted strate-
gies achieve 1.002 distillation ratios (fraction
of the student’s and the teacher’s performance)
on average, outperforming random selected
strategies with mean of 0.960. To the best of
our knowledge, this is the first attempt towards
automated KD in NLP.

2 Related Work

Knowledge Distillation. The general KD frame-
work was popularized by Buciluǎ et al. (2006);
Hinton et al. (2014), aiming to transfer knowledge
from an accurate but cumbersome teacher model
to a compact student model by matching the class
probabilities produced by the teacher and the stu-
dent. Focusing on AutoML settings with tabular
data, Fakoor et al. (2020) proposed a general KD
algorithm for different classical ML models and
ensembles thereof. Also hoping to identify good
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choices in the KD pipeline like our work, Kim et al.
(2021) compared Kullback-Leibler divergence and
mean squared error objectives in KD for image
classification models, finding that mean squared
error performs better.

Recent KD research in the domain of NLP
has investigated how to efficiently transfer knowl-
edge from pretrained Transformer models. Sun
et al. (2019) proposed BERT-PKD that transfers
the knowledge from both the final layer and inter-
mediate layers of the teacher network. Jiao et al.
(2020) proposed the TinyBERT model that first
distills the general knowledge of the teacher by
minimizing the Masked Language Model (MLM)
objective (Devlin et al., 2019), with subsequent
task-specific distillation. Li et al. (2020) proposed
a many-to-many layer mapping function leveraging
the Earth Mover’s Distance to transfer intermediate
knowledge. Our paper differs from the existing
work in that we provide a systematic analysis of
the different components in single-stage task-aware
KD algorithms in NLP and propose the first auto-
mated KD algorithm in this area.

Mutual Information Estimation. Mutual Infor-
mation (MI) measures the degree of statistical de-
pendence between random variables. Given ran-
dom variables A and B, the MI between them,
I(A,B), can be understood as how much knowing
A will reduce the uncertainty of B or vice versa.
For distributions that do not have analytical forms,
maximizing MI directly is often intractable. To
overcome this difficulty, recent work resorts to vari-
ational bounds (Donsker and Varadhan, 1975; Blei
et al., 2017; Nguyen et al., 2010) and deep learn-
ing (Oord et al., 2018) to estimate MI. These works
utilize flexible parametric distributions or critics
that are parameterized neural networks (NNs) to ap-
proximate unknown densities that appear in MI cal-
cuations. Poole et al. (2019) provides a review of
existing MI estimators and proposes novel bounds
that trade-off bias and variance. Kong et al. (2020)
unified language representation learning objective
functions from the MI maximization perspective.

Data Augmentation in NLP. Data Augmenta-
tion (DA) is an effective technique for improving
the accuracy of text classification models (Wei
and Zou, 2019) and has also been shown to
boost the performance of KD for NLP algo-
rithms (Jiao et al., 2020) as well as KD in mod-
els for tabular data (Fakoor et al., 2020). Wei

and Zou (2019) proposed the Easy Data Augmen-
tation (EDA) technique that randomly replaces
synonyms, inserts, swaps and deletes characters
in the sentence. Jiao et al. (2020) proposed to
utilize the pretrained BERT model and GloVe
word embeddings (Pennington et al., 2014) to
augment the input sentence via random word-
level replacement. MixKD (Liang et al., 2021)
adopts mixup (Zhang et al., 2018) and backtransla-
tion (Edunov et al., 2018) in augmenting the text
data to boost the performance of sentence clas-
sification models. Unlike these papers, we pro-
pose a novel search space for DA policies that sup-
ports stacking elementary augmentation operations
such as EDA, mixup, and backtranslation. Thus,
our considered DA module is similar to AutoAug-
ment (Cubuk et al., 2019), except it is used for KD
in NLP with different elementary operators.

3 Methodology

Our study is structured around a configurable meta-
distillation pipeline called Distiller. Distiller con-
tains four configurable components, namely: a data
augmentation policy a(·, ·), a layer mapping con-
figuration of intermediate distillation {mi,j}, an
intermediate distillation objective linter(·, ·), and a
prediction layer distillation objective lpred(·, ·). As-
sume the teacher network fT has M layers and the
student network fS has N layers. Then for a given
data/label pair (x, y) sampled from the dataset D,
the student acquires knowledge from the teacher
by minimizing the following objective:

L = Ex̂,ŷ∼a(x,y);x,y∼D
M∑
i=1

N∑
j=1

mi,jl
inter
i,j (HT

i , H
S
j )

+ β1l
pred(fT (x), fS(x)) + γ1l

pred(y, fS(x))

+ β2l
pred(fT (x̂), fS(x̂)) + γ2l

pred(ŷ, fS(x̂)),
(1)

Here mi,j ∈ [0, 1] represents the layer mapping
weight between the i-th teacher layer and j-th stu-
dent layer, HT

i , H
S
j are the i-th and the j-th hidden

states of the teacher and the student (i.e. their inter-
mediate representations at layers i and j), β1, β2
control the strength of distilling from class prob-
abilities produced by the teacher, and γ1 and γ2
control the strength of learning from ground truth
data (x, y) and synthesized (augmented) data (x̂, ŷ).
In Appendix, we illustrated how previous model
distillation algorithms (Jiao et al., 2020; Li et al.,
2020; Liang et al., 2021) can be encompassed in
the Distiller framework.
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Figure 1: Overview of the Distiller pipeline. All con-
figurable components are colored.

Algorithm 1: Data Augmentation Policy
Params: A sequence of elementary data

augmentation operations G,
∀Gj ∈ {CA,RA,BT,Mixup}.

Input: Training Dataset Dtrain
Output: Augmented dataset Dsynthesize

1 Initialize Dsynthesize ← {}
2 foreach {xi, yi} ∈ Dtrain do
3 for j← 1 to len(G) do
4 x̂i, ŷi = Gj(xi, yi);
5 xi, yi ← x̂i, ŷi;
6 end
7 Dsynthesize ← Dsynthesize ∪ {xi, yi}
8 end

3.1 Data Augmentation Policy

A key challenge is the limited data available to
train students in KD. This can be mitigated via
Data Augmentation (DA) to generate additional
data samples. Unlike in supervised learning, where
labels for synthetic augmented data may be un-
clear unless the augmentation is limited to truly
benign perturbations, the labels for augmented data
in KD are simply provided by the teacher which
allows for more aggressive augmentation (Fakoor
et al., 2020). Denoting the set of training samples
of the down-stream task as Dtrain, the augmenter
a(·, ·) will stretch the distribution from Ex,y∼Dtrain

to Ex̂,ŷ∼a(x,y),x,y∼Dtrain . We consider various ele-
mentary DA operations including: 1) MLM-based
contextual augmentation (CA) , 2) random aug-
mentation (RA), 3) backtranslation (BT) and 4)
mixup. The search space of possible augmenta-

tions in Distiller is constructed by stacking these
four elementary operations in an arbitrary order, as
detailed in Algorithm 1.

For contextual augmentation, we use the pre-
trained BERT model to do word level replacement
by filling in randomly masked tokens. As in EDA
(Wei and Zou, 2019), our random augmentation
randomly swaps words in the sentence or replaces
words with their synonyms. For backtranslation,
we translate the sentence from one language (in
this paper, English) to another language (in this pa-
per, German) and then translate it back. Addition-
ally, mixup can be used to synthesize augmented
training samples. First proposed for image classi-
fication (Zhang et al., 2018), mixup constructs a
synthetic training example via the weighted aver-
age of two samples (including the labels) drawn at
random from the training data. To use it in NLP,
Guo et al. (2019); Liang et al. (2021) applied mixup
on the word embeddings at each sentence position
xi,t with λ ∈ [0, 1] as the mixing-ratio for a partic-
ular pair of examples xi, xj :

x̂i,t = λxi,t + (1− λ)xj,t, ŷi = λyi + (1− λ)yj ,

Here λ is typically randomly drawn from a Uniform
or Beta distribution for each pair, yi, yj are labels in
one-hot vector format, and (x̂i, ŷi) denotes the new
augmented sample. To apply mixup for sentence
tagging tasks, in which each token has its own label,
we propose calculating the weighted combination
of the ground-truth target at each location t as the
new target:

x̂i,t = λxi,t+(1−λ)xj,t, ŷi,t = λyi,t+(1−λ)yj,t,

3.2 Prediction Layer Distillation
In traditional KD, the student network learns from
the output logits of the teacher network, adopting
these as soft labels for the student’s training data
(Hinton et al., 2014). Here we penalize the discrep-
ancy between the outputs of student vs. teacher via:

Lpred = lpred(fT (x), fS(x)), (2)

where lpred(·, ·) is the KD loss component whose
search space in this work includes either: softmax
Cross-Entropy (CE) or Mean Squared Error (MSE).
3.3 Intermediate Representation Distillation
To ensure knowledge is sufficiently transferred,
we can allow the student to learn from interme-
diate layers of the teacher rather than only the lat-
ter’s output predictions by minimizing discrepan-
cies between selected layers from the teacher and
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the student. These high-dimensional intermedi-
ate layer representations constitute a much richer
information-dense signal than is available in the
low-dimensional predictions from the output layer.
As teacher and student usually have different num-
ber of layers and hidden-state dimensionalities, it
is not clear how to map teacher layers to student
layers (mi,j) and how to measure the discrepancy
between their hidden states (linter

i,j ). Previous works
proposed various discrepancy measures (or loss
functions) for intermediate distillation, including:
Cross-Entropy (CE), Mean Squared Error (MSE),
L2 distance, Cosine Similarity (Cos), and Patient
Knowledge Distillation (PKD) (Sun et al., 2019).
For these objectives, we establish the following
result (the proof is relegated to the Appendix).

Theorem 3.1 Minimizing MSE, L2, or PKD loss,
and maximizing cosine similarity between two ran-
dom variables X ,Y are equivalent to maximizing
lower bounds of the mutual information I(X;Y ).

In our KD setting, X and Y correspond to the
hidden state representations of our student and
teacher model (for random training examples), re-
spectively. Inspired by this result, we can use any
lower bounds of MI as an intermediate objective
function in KD. In particular, we consider the mul-
tisample MI lower bound of Poole et al. (2019),
which estimates I(X;Y ) given the sample x, y
from p(x, y) and another K additional IID samples
z1:K that are drawn from a distribution independent
from X and Y :

I(X;Y ) ≥ Ep(x,z1:K )p(y|x)

[
log

ef(x,y)

αm(y; x, z1:K) + (1− α)q(y)

]

− Ep(x,z1:K )p(y)

[
log

ef(x,y)

αm(y; x, z1:K) + (1− α)q(y)

]
+ 1

, Iα. (3)

In Iα, f(·, ·) and q(·) are critic functions for
approximating unknown densities and m(·, ·) is a
Monte-Carlo estimate of the partition function that
appears in MI calculations. Typically, the space z
and the sample x, y are from the same minibatch
while training, that isK+1 equals to the minibatch
size. Iα can flexibly trade off bias and variance,
since increasing α ∈ [0, 1] will reduce the vari-
ance of the estimator while increasing its bias. We
propose to use Iα as an objective for intermediate
distillation and call it MI-α. Our implementation
leverages a Transformer encoder (Vaswani et al.,
2017) to learn f(·, ·) and q(·). To our knowledge,

this is the first attempt to utilize complex NN archi-
tectures for critic functions in MI estimation; typi-
cally only shallow multilayer perceptrons (MLPs)
are used (Tschannen et al., 2020). Our experiments
(Table 4 in Appendix) reveal that Transformer pro-
duces a better critic function than MLP.

Note that for intermediate distillation, objectives
like MSE attempt to ensure the teacher and student
representations take matching values, whereas ob-
jectives like MI (and tighter bounds thereof) merely
attempt to ensure the information in the teacher rep-
resentation is also captured in the student represen-
tation. The latter aim is conceptually better suited
for KD, particularly in settings where the student’s
architecture differs from the teacher (e.g. it is more
compact), in which case forcing intermediate stu-
dent representations to take the exact same values
as teacher representations seems overly stringent
and unnecessary for a good student (it may even
be harmful for tiny student networks that lack the
capacity to learn the same function composition
used by the teacher). We emphasize that a high
MI between student and teacher representations
suffices for the teacher’s prediction to be approxi-
mately recovered from the student’s intermediate
representation (assuming the teacher uses deter-
ministic output layers as is standard in today’s NLP
models). Given that high MI suffices for the stu-
dent to match the teacher, we expect tighter MI
bounds like MI-α can outperform looser bounds
like MSE that impose additional requirements on
the student’s intermediate representations beyond
just their information content.

3.3.1 Layer Mapping Strategy
We investigate three intermediate layer mapping
strategies: 1) Skip: the student learns from every
bM/Nc layer of the teacher, i.e., mi,j = 1 when
j = i× bM/Nc; 2) Last: the student learns from
the last k layers of the teacher, i.e., mi,j = 1 when
j = i +M − N ; and 3) EMD: a many-to-many
learned layer mapping strategy (Li et al., 2020)
based on Earth Mover’s Distance. In the Distiller
pipeline, the intermediate loss with EMD mapping
can be denoted as:

LEMD(H
S
1:N , H

T
1:M ) =

∑M
i=1

∑N
j=1w

H
i,jd

H
i,j∑M

i=1

∑N
j=1w

H
i,j

,

(4)
where DH = [dHi,j ] is a distance matrix represent-
ing the cost of transferring the hidden states knowl-
edge from HT to HS . And WH = [wHi,j ] is the
mapping flow matrix which is learned by minimiz-
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ing the cumulative cost required to transfer knowl-
edge from HT to HS . In Distiller, the distance
matrix is calculated via intermediate objective func-
tion: dHi,j = linter(HS

i , H
T
j ).

3.4 AutoDistiller

Our experiments indicate that the best distillation
algorithm varies among datasets/tasks (see in par-
ticular the top-5 configurations listed in Table 9 in
Appendix). This inspires us to train a prediction
model that recommends a good KD pipeline given
a dataset. To represent the distillation performance
across datasets which are evaluated on different
metrics, we define distillation ratio as the fraction
of the teacher’s performance achieved by the stu-
dent and use it as a general score for distillation
performance. Then the prediction model can be
trained to predict the distillation ratio based on fea-
tures of the dataset/task as well as the features of
each candidate distillation pipeline. Here we train
our AutoDistiller performance prediction model
via AutoGluon-Tabular, a simple AutoML tool for
supervised learning (Erickson et al., 2020). To the
best of our knowledge, our proposed method is the
first attempt towards automated KD in NLP.

4 Experimental Setup

To study the importance of each component de-
scribed in the previous section, we randomly sam-
ple Distiller configurations in the designed search
space while fixing the optimizer and other unre-
lated hyper-parameters. We apply each sampled
distillation configuration on a diverse set of NLP
tasks and different teacher/student architectures.
All experiments are evaluated on GLUE (Wang
et al., 2019b) and SQuAD v1.1 (Rajpurkar et al.,
2016) that contain classification, regression, and
sentence tagging tasks. Here, we view the question
answering problem in SQuAD v1.1 as finding the
correct answer span from the given context, which
is essentially a sentence tagging task. We adopt
the same metrics for these tasks as in the original
papers (Wang et al., 2019b; Rajpurkar et al., 2016).

Since Turc et al. (2019) finds initializ-
ing students with pretrained weights is bet-
ter for distillation, we initialize student mod-
els with either weights obtained from task-
agnostic distillation (Jiao et al., 2020) or pre-
trained from scratch (Turc et al., 2019). Three
different pretrained models BERTBASE (Devlin
et al., 2019), RoBERTaLARGE (Liu et al., 2019)

and ELECTRALARGE (Clark et al., 2020) are
considered as teacher models in our experi-
ments after task-specific fine-tuning. As student
models, we consider options like TinyBERT4,
ELECTRASMALL, as well as other models detailed
in Table 6 in Appendix.

Existing implementations of data augmentation
in KD for NLP generally first generate an aug-
mented dataset that is K times larger than the orig-
inal one and then apply the distillation algorithm
over the augmented dataset. Such implementation
separates the process of DA from KD, leading to a
time/storage-consuming and inflexible KD pipeline.
In Distiller, we instead apply DA dynamically dur-
ing training. In addition, we use the teacher net-
work to compute the soft label ŷ assigned to any
augmented sample x̂.

To analyze the importance of different compo-
nents in Distiller, we adopted fANOVA (Hutter
et al., 2014), an algorithm for quantifying the im-
portance of individual hyper-parameters as well
as their interactions in determining down-stream
performance. We use fANOVA to evaluate the im-
portance of the four components in Distiller as well
as their pairwise combinations: data augmentation,
intermediate distillation objective, layer mapping
strategy, and prediction layer distillation objective.

5 Experimental Results

Under the previously described experimental setup,
we conducted a random search over Distiller con-
figurations on each dataset and collected more than
1300 data points in total. Each collected data point
contains a particular Distiller configuration, the
dataset/task, the teacher/student architectures, and
the final performance of the student model. Ana-
lyzing the data reveals three major findings:

1. Design of the intermediate distillation module
is the most important choice among all factors
studied in Distiller.

2. Among different loss functions for intermedi-
ate distillation, MI-α performs the best.

3. DA provides a large boost when the dataset or
the student model is small.

Additionally, we observe that the best distillation
policy varies among datasets/tasks as shown in Ta-
ble 9 in Appendix. Thus we train a meta-learning
model, AutoDistiller, that can recommend a good
distillation policy on any new NLP dataset based
on which configurations tended to work well for
similar datasets in our study.
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Table 1: Comparison of evaluation results on GLUE test set. BERTBASE (G) and BERTBASE (T) indicate the fine-
tuned BERTBASE from (Devlin et al., 2019) and the teacher model trained by ourselves, respectively. BERT-EMD4

and MI-α are both initialized from TinyBERT4, the difference is that BERT-EMD4 is trained with “EMD” as
intermediate layer mapping strategy and MSE as intermediate loss, our MI-α model is trained with “Skip” as
intermediate layer mapping strategy and MI-α as intermediate loss.

Model #Params MNLI-m MNLI-mm QQP QNLI SST-2 CoLA MRPC RTE STS-B AVG
(393k) (393k) (364k) (108k) (67k) (8.5k) (3.5k) (2.5k) (5.7k)

BERTBASE (G) 110M 84.6 83.4 71.2 90.5 93.5 52.1 88.9 66.4 85.8 79.6
BERTBASE (T) 110M 84.5 83.6 71.7 90.9 93.4 49.3 87.0 67.3 84.7 79.2
BERT-PKD4 (Sun et al., 2019) 52M 79.9 79.3 70.2 85.1 89.4 24.8 82.6 62.3 82.3 72.9
BERT-EMD4 (Li et al., 2020) 14M 82.1 80.6 69.3 87.2 91.0 25.6 87.6 66.2 82.3 74.7
MI-α (α = 0.9, ours) 14M 81.9 80.6 69.8 87.4 91.5 25.9 87.0 67.4 84.0 75.1

Figure 2: As assessed via fANOVA, we report the indi-
vidual importance of the four Distiller components in
this figure and importance of interactions between any
two of the four components in Figure 6 in Appendix.
Four components are: linter for intermediate distillation
objective, lpred for prediction layer objective, a for data
augmentation and m for layer mapping strategy. Av-
erage importance for each component (across tasks) is
listed in the legend.

5.1 Importance of Distiller Components

Figure 2 illustrates that the objective function for
intermediate distillation lpred has the highest indi-
vidual importance out of all components in Dis-
tiller, and the combination of the intermediate dis-
tillation objective and layer mapping strategy has
the highest joint importance. Thus these are the
components one should most critically focus on
when selecting a particular KD pipeline. One hypo-
thetical explanation is that the teacher can provide
token-level supervision to the student via intermedi-
ate distillation, which can better guide the learning
process of the student. Our finding is also con-
sistent with the previous observations (Sun et al.,
2019; Li et al., 2020).

5.2 MI-α for Intermediate Distillation

We submitted our MI-α model predictions to the
official GLUE leaderboard to obtain test set results
and also report the average scores over all tasks
(the “AVG” column) as summarized in Table 1.
The results show that the student model distilled

Table 2: Ablation study of distillation performance on
SQuAD v1.1 dev set. The first line shows the per-
formance of the BERTBASE teacher. ELECTRASMALL,
TinyBERT6 and TinyBERT4 are three student net-
works. ELECTRASMALL (FT) means to fine-tune with-
out KD. TinyBERT6

† and TinyBERT4
† are results ob-

tained from Jiao et al. (2020). Models that end with
“(MSE)” are trained with the MSE loss. “+ MI-α”
means to distill the student with MI-α (α=0.9) as the
intermediate loss function. “+ mixup” means to further
apply the mixup augmentation.

Model SQuAD v1.1
EM F1

BERTBASE (T) 80.9 88.2
ELECTRASMALL (FT) 75.3 83.5
ELECTRASMALL (MSE) 79.2 86.8
+ MI-α 79.0 86.8
+ mixup, MSE 80.1 87.4
+ mixup, MI-α 80.2 87.6
TinyBERT6

† (Jiao et al., 2020) 79.7 87.5
TinyBERT6 (MSE) 77.8 85.5
+ MI-α 80.0 87.8
+ mixup, MSE 78.6 86.2
+ mixup, MI-α 81.1 88.6
TinyBERT4

† (Jiao et al., 2020) 72.7 82.1
TinyBERT4 (MSE) 72.7 81.7
+ MI-α 71.7 81.2
+ mixup, MSE 72.4 81.4
+ mixup, MI-α 71.9 82.5

via the MI-α objective function outperforms
previous student models distilled via MSE or PKD
loss. To further verify the effectiveness of MI-α,
we compare how different choices of linter affect
the distillation performance. In detail, we first pick
the top 5 best Distiller strategies according to the
evaluation scores for every task and then count how
many times each intermediate objective function
appears in these strategies. Figure 3 shows that
MI-α appears more frequently than all other ob-
jectives on both classification and regression tasks.
And the results for SQuAD v1.1 in Table 2 indi-
cate the MI-α also works well for sentence tagging.



126

Figure 3: Intermediate objective functions used in the
top-5 performing KD configurations on each dataset.
The average count of each objective function is listed
in the legend. Configurations are detailed in Appendix.
Table 3: Student performance with(out) augmentation
(augmenter initialized as CA+RA+mixup). We report
the relative improvement for rows starting with “+
aug”.

Model #Params CoLA MRPC RTE STS-B AVG
mcc f1/acc acc spearman/pearson

BERTBASE (T) 110M 55.0 89.6/85.0 65.0 88.4/88.6 78.6
TinyBERT6 67M 51.3 92.5/89.7 75.5 89.6/89.8 81.4
+ aug +0.1 -1.1/-1.8 -3.3 +0.2/+0.2 -1.0
BERTMEDIUM 41M 44.1 89.3/84.8 65.3 88.3/88.6 76.7
+ aug +5.3 -0.4/-0.7 +4.4 +0.6/+0.5 +1.6
BERTSMALL 29M 37.4 86.8/80.6 64.6 87.7/88.0 74.2
+ aug +5.0 +0.1/+0.8 +0.4 +0.3/+0.2 +1.1
TinyBERT4 14M 23.6 88.9/83.8 67.1 88.0/88.1 73.3
+ aug +7.9 +0.3/+0.0 +2.2 +0.7/+0.7 +2.0
ELECTRASMALL 14M 42.8 88.3/83.8 66.4 87.4/87.5 76.0
+ aug +16.2 +3.4/+3.7 +1.8 +1.0/+1.0 +4.5
BERTMINI 11M 11.2 86.1/80.1 62.8 87.1/87.2 69.1
+ aug +23.2 +0.0/-0.1 +3.3 +0.2/+0.0 +4.4
BERTTINY 4M 6.0 83.2/73.3 60.0 84.0/83.6 65.0
+ aug +6.6 +1.7/+3.7 +4.3 +0.1/+0.7 +2.9

5.3 Benefits of Data Augmentation

Data augmentation in KD provides the student ad-
ditional opportunities to learn from the teacher, es-
pecially for datasets of limited size. Thus, our
experiments investigate the effect of DA on four
data-limited tasks: CoLA, MRPC, RTE and STS-B.
We also study whether students with different archi-
tectures/sizes benefit dissimilarly from DA. Table
3 demonstrates that DA generally provides a boost
to student performance and is especially beneficial
for small models (BERTMINI and BERTTINY).

5.4 Performance of AutoDistiller

Recall that we train our AutoDistiller performance
prediction model on the previously collected ex-
perimental results via AutoGluon-Tabular. Once
trained, AutoDistiller can recommend distillation
pipelines for any down-stream dataset/task by fix-
ing the dataset/task features and searching for con-
figurations that maximize the predicted distillation
ratio. AutoDistiller operates on features that rep-
resent the dataset domain, the task type, and the
task complexity, which are detailed in Appendix.

Figure 4: Distillation ratio of AutoDistiller (AD) top-5
KD strategies vs. 5 randomly selected strategies, for a
fine-tuned BERTBASE teacher and TinyBERT4 student.
Higher ratio indicates better distillation performance.
Mean and standard deviation of the four groups of ra-
tios are listed in the legend.

We evaluate the performance of AutoDistiller on
the 8 GLUE datasets via a leave-one-dataset-out
cross-validation protocol. Figure 5 in Appendix
shows that AutoDistiller achieves positive Spear-
man’s correlation coefficients for most datasets.

Finally, we applied AutoDistiller on two un-
seen datasets “BoolQ” (Wang et al., 2019a) and
“cloth” (Shi et al., 2021) not considered in our pre-
vious experiments. We compared the distillation
ratio obtained by each of the top-N strategies sug-
gested by AutoDistiller with the distillation ratio
from each of N randomly selected strategies. The
best strategy suggested by AutoDistiller achieves
accuracy of 74.2 on “BoolQ” and 70.1 on “cloth”,
close or superior to the teacher performance (73.4
on “BoolQ” and “71.2” on cloth). Figure 4 shows
that AutoDistiller significantly outperforms random
search, indicating its promise for automated KD.

6 Conclusion

We provided a systematic study of KD algorithms
in NLP to understand the importance of different
components in the KD pipeline for various NLP
tasks. Using data collected from our study, we fit a
AutoDistiller to predict student performance under
each KD pipeline based on dataset features, which
is helpful for automatically selecting which KD
pipeline to use for a new dataset. Here we unified
the existing intermediate distillation objectives as
maximizing the lower bounds of MI, leading to a
new MI-α objective based on tighter bounds, which
performs better on many datasets.
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Appendix – Distiller: A Systematic Study of Model Distillation Methods
in Natural Language Processing

A Relationship with Other Distillation
Methods

Distiller is a generic meta-framework that encom-
passes various KD pipelines used in previous work.
For example, Distiller with the following config-
urations corresponds to the KD pipeline used in
each of the cited works: lpred = CE, linter = MSE,
mi,j = Skip, a = CA (Jiao et al., 2020); lpred =
CE, linter = MSE, mi,j = EMD (Li et al., 2020);
lpred = CE, a = Mixup (Liang et al., 2021).

B Proof of Theorem 3.1

We denote the Mutual Information (MI) between
two random variables X and Y as I(X;Y ). Based
on the results on variational bounds of MI (Poole
et al., 2019), we derived that optimizing common
knowledge distillation objectives, including Mean
Squared Error (MSE), L2 distance, and cosine sim-
ilarity between X and Y , can be viewed as maxi-
mizing certain lower bounds of I(X;Y ).

Lemma B.1 (ITUBA) . Assume that f(x, y) is an
arbitrary neural network that takes x and y as
inputs and outputs a scalar and a(y) > 0. The
lower bound of x and y can be estimated by:

I(X;Y ) ≥ Ep(x,y)[log
ef(x,y)

a(y)
]− Ep(x)p(y)[

ef(x,y)

a(y)
]

, ITUBA

Proof.
Based on the definition of MI, we have:

I(X;Y ) = Ep(x,y)[log
p(x|y)
p(x)

]

= Ep(x,y)[log
p(y|x)
p(y)

]

(5)

Replacing the intractable conditional distribution
p(x|y) with a tractable variational distribution
q(x|y) yields a lower bound on MI due to the non-
negativity of the KL divergence:

I(X;Y ) = Ep(x,y)[log
q(x|y)
p(x)

] + Ep(x,y)[log
p(x|y)
q(x|y)

]

= Ep(x,y)[log
q(x|y)
p(x)

] + Ep(y)[KL(p(x|y)||q(x|y))]

(6)

≥ Ep(x,y)[log q(x|y)] +H(X)

where H(X) is the entropy of X .
We choose an energy-based variational family that
uses a critic f(x, y) and scaled by the data density
p(x):

q(x|y) = p(x)

Z(y)
ef(x,y), Z(y) = Ep(x)[e

f(x,y)]

(7)
Substituting this distribution into (6) gives a lower
bound on MI:

I(X;Y ) ≥ Ep(x,y)[f(x, y)]− Ep(y)[logZ(y)]
However, this objective is still intractable. To form
a tractable bound, we can upper bound the log
partition function by this inequality: log(x) ≤ x

a +
log(a) − 1 for all x, a > 0. Apply this inequality
to get:

I(X;Y ) ≥ Ep(x,y)[f(x, y)]− Ep(y)[logZ(y)]

≥ Ep(x,y)[f(x, y)]

− Ep(y)[
Ep(x)[e

f(x,y)]

a(y)
+ log a(y)− 1]

= Ep(x,y)[f(x, y)]− Ep(x,y)[log a(y)]

− Ep(x)p(y)[
ef(x,y)

a(y)
] + 1

≥ Ep(x,y)[log
ef(x,y)

a(y)
]− Ep(x)p(y)[

ef(x,y)

a(y)
]

(8)

This bound holds for any a(y) > 0

Theorem 1. Minimizing the MSE, L2, PKD
loss, and maximizing the cosine similarity between
two random variables x,y can be viewed as maxi-
mizing lower bounds of I(X;Y ). In knowledge
distillation, x and y are hidden states generated by
student model and teacher model.

Proof. We prove this theorem by construct-
ing f(x, y) and a(y) in Lemma B.1 for each loss
function.

MSE LMSE(x, y) = ||x − y||22, let f(x, y) =
−||x− y||22, a(y) = 1, we have:

I(X;Y ) ≥ Ep(x,y)[log e
−||x−y||22 ]− Ep(x)p(y)[e

−||x−y||22 ]

≥ Ep(x,y)[log e
−||x−y||22 ]− Ep(x)p(y)[e

0
]

= Ep(x,y)[log e
−||x−y||22 ]− 1

= Ep(x,y)[−||x− y||
2
2]− 1.

Thus, minimizing the MSE loss between x and
y can be viewed as maximizing the lower bound of
I(X;Y ).
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PKD Loss LPKD(x, y) = || x
||x||2 −

y
||y||2 ||

2
2, let

f(x, y) = −|| x
||x||2 −

y
||y||2 ||

2
2, we have:

I(X;Y ) ≥ Ep(x,y)[log e
−|| x
||x||2

− y
||y||2

||22 ]

− Ep(x)p(y)[e
−|| x
||x||2

− y
||y||2

||22 ]

≥ Ep(x,y)[log e
−|| x
||x||2

− y
||y||2

||22 ]− Ep(x)p(y)[e
0
]

= Ep(x,y)[log e
−|| x
||x||2

− y
||y||2

||22 ]− 1

= Ep(x,y)[−||
x

||x||2
−

y

||y||2
||22]− 1.

(9)

Thus, minimizing the PKD loss between x and
y can be viewed as maximizing the lower bound of
I(X;Y ).

L2 Loss LL2(x, y) = ||x− y||2, let f(x, y) =
−||x− y||2, a(y)=1, we have:

I(X;Y ) ≥ Ep(x,y)[log e
−||x−y||2 ]− Ep(x)p(y)[e

−||x−y||2 ]

≥ Ep(x,y)[log e
−||x−y||2 ]− Ep(x)p(y)[e

0
]

= Ep(x,y)[log e
−||x−y||2 ]− 1

= Ep(x,y)[−||x− y||2]− 1

Thus, minimizing L2 loss between x and y
is equivalent to maximizing the lower bound of
I(X,Y ).

Cosine Similarity The cosine similarity be-
tween two hidden states x and y is calculated as

x·y
||x||×||y|| , let f(x, y) = x·y

||x||×||y|| − 1, a(y) = 1

I(X,Y ) ≥ Ep(x,y)[log e
x·y

||x||×||y|| −1
]− Ep(x)p(y)[e

x·y
||x||×||y|| −1

]

≥ Ep(x,y)[log e
x·y

||x||×||y|| −1
]− Ep(x)p(y)[e

0
]

=
1

e
Ep(x,y)[log e

x·y
||x||×||y|| ]− 1

=
1

e
Ep(x,y)[

x · y
||x|| × ||y||

]− 1

Thus, maximizing cosine similarity between x and
y can be viewed as maximizing mutual information
between x and y.

C Architecture of Teacher and Student
Networks

In Table 1, we use two baseline models
BERT-PKD4 and BERT-EMD4. As described in
the original paper (Sun et al., 2019), we initialize
BERT-PKD4 with the first 4 layers of parameters
from pretrained BERTBASE. BERT-EMD4 is ini-
tialized from TinyBERT4 so they have the same
architecture. We list the detailed configurations of
the teacher and student architectures investigated
in our study in Table 6.

Figure 5: Evaluating held-out AutoDistiller predictions
on GLUE via leave-one-out estimates. We use dataset-
level cross-validation that holds out each GLUE dataset
from AutoDistiller training. For each held-out dataset,
the legend lists Spearman’s rank correlation between
the predicted vs. actual distillation ratio across differ-
ent KD pipelines. The average Spearman’s rank corre-
lation value across the 8 datasets is 0.33.

D Benefits of Intermediate Distillation

Table 5 shows the experimental results of distilla-
tion with(out) intermediate distillation across differ-
ent tasks/datasets. All the experiments are trained
20 epochs and the intermediate distillation consti-
tutes of “Skip” as intermediate mapping strategy
and CE as intermediate distillation object.

E Dataset Embedding

As features for the AutoDistiller model, we extract
features from datasets and represent them as a fixed
dimension embedding. Details are shown in Table
7.

Figure 6: Importance of interactions between hyper-
parameters.
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Table 4: Comparison of evaluation results on GLUE test set. We compare the distillation performance when us-
ing MLP and Transformer as critic functions in MI-α respectively. BERTBASE (T) indicates the teacher model
trained by ourselves. Both of the students are initialized with TinyBERT4 (Jiao et al., 2020) and distilled
with “Skip” as intermediate layer mapping strategy and MI-α as intermediate objective functions. The differ-
ence is, TinyBERT4 (MLP) is trained with a 4-layer MLP with hidden state of 512 as critic function while
TinyBERT4 (Transformer) uses a 2-layer Transformer with feed-forward hidden size 256. The result shows that a
small Transformer architecture performs as a better critic function than an MLP in MI-α especially when the task
is a token-level task (SQuAD v1.1).

Model MNLI-m MNLI-mm QQP QNLI SST-2 CoLA MRPC RTE STS-B SQuAD v1.1 AVG
(393k) (393k) (364k) (108k) (67k) (8.5k) (3.5k) (2.5k) (5.7k) (108k)

BERTBASE (T) 84.5 83.6 71.7 90.9 93.4 49.3 87.0 67.3 84.7 88.2 80.0
TinyBERT4 (MLP) 81.7 80.6 69.7 87.6 91.6 24.9 87.0 67.4 81.9 70.1 74.3
TinyBERT4 (Transformer) 81.9 80.6 69.8 87.4 91.5 25.9 87.0 67.4 84.0 71.7 74.7

Table 5: Comparison of evaluation results on GLUE dev set. We compare the distillation performance with(out) in-
termediate distillation. A BERTBASE model is used as the teacher and TinyBERT4 is the student. TinyBERT4 (KD)
represents using a vanilla knowledge distillation (student only learns from the outputs of teacher) and “+interme-
diate distillation” represents using vanilla KD and intermediate distillation.

Model MNLI-m MNLI-mm QQP QNLI SST-2 CoLA MRPC RTE STS-B SQuAD v1.1 AVG
(393k) (393k) (364k) (108k) (67k) (8.5k) (3.5k) (2.5k) (5.7k) (108k)
acc acc f1/acc acc acc mcc f1/acc acc spearman/pearson f1/em

BERTBASE (T) 84.1 84.7 88.0/91.1 91.7 93.0 55.0 89.6/85.0 65.0 88.4/88.6 88.2/80.9 83.8
TinyBERT4 (KD) 80.1 80.3 86.4/89.7 85.8 89.1 16.1 89.6/85.3 66.8 88.4/88.5 77.3/66.8 77.9
+intermediate distillation 80.7 81.3 87.0/90.2 86.8 90.0 21.3 89.3/84.8 65.3 88.2/88.4 79.4/69.4 78.7

Table 6: Network architectures of the teacher and stu-
dent models used in the paper.

Model #Params hunits nlayers hmid nheads

Teacher architectures
RoBERTaLARGE 335M 1024 24 4096 16
ELECTRALARGE 335M 1024 24 4096 16
BERTBASE 110M 768 12 3072 12

Student architectures
TinyBERT6 67M 768 6 3072 12
BERT-PKD4 52M 768 4 3072 12
BERTMEDIUM 41M 512 8 2048 8
BERTSMALL 29M 512 4 2048 8
TinyBERT4 14M 312 4 1200 12
ELECTRASMALL 14M 256 12 1024 4
BERTMINI 11M 256 4 1024 4
BERTTINY 4M 128 2 512 2

F How much does larger/better teacher
help?

Table 8 shows the performance of different stu-
dents distilled from teachers of different sizes and
pretraining schemes. From the results, we found
that although the teacher ELECTRALARGE has the
best performance on average score, most of the
students of ELECTRALARGE performs worse than
students of RoBERTaLARGE. ELECTRASMALL is
the only student that performs the best with
ELECTRALARGE as teacher, that may be attributed
to ELECTRASMALL and ELECTRALARGE are pre-
trained on the same pretraining task, so they have
a similar knowledge representation scheme. And

also, for datasets (MNLI, QQP, QNLI and SST-2)
which have abundant amount of data, students of
BERTBASE perform better.

G Computing Details

All the experiments are performed on a single
machine with 4 NVIDIA T4 GPUs. For hyper-
parameters in Equation 1, our experiments suggest
that setting β1 and β2 to 1 produces the best overall
performance so we fix their values to 1 in subse-
quent results. γ1 and γ2 are set to 0.5 when DA is
used (otherwise β2, γ1 and γ2 are set to 0). For con-
trolled experiments, unless specified explicitly, we
fix linter as MI-α (α = 0.9) and the layer mapping
as “Skip”. Critic functions in MI-α are powered by
a two-layer Transformer(hmid = 256, nheads = 8)
and the comparison of using Transformer and MLP
to estimate critic functions is described in Table 4.
To reduce the hyper-parameter search space, we fix
the batch size as 16 and the learning rate as 5e-5
for all experiments. We used automated mix pre-
cision for training. Maximum sequence length is
set to 128 for sentence-pair tasks in GLUE, 64 for
single sentence tasks and 320 for SQuAD. Most of
the experiments are trained for 20 epochs except
50 epochs for the challenging task CoLA and 30
epochs for SQuAD.
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Table 7: We extract features from downstream datasets so that every task can be represented as a fixed-dimension
embedding. The extracted embedding can be fed into AutoDistiller as dense features. In this table, we describe
how the embedding is acquired.

Feature Description

Context Embedding

Every document can be represented as a weighted average of the GloVe vectors,
where the weights are defined by the TF-IDF scheme.
Each down-stream dataset is viewed as a “document” in the TF-IDF scheme.
Precisely, the embedding of a dataset s is vs = 1

|s| IDFwvw,
where |s| denotes the number of words in the dataset,
and IDFw := log 1+N

1+Nw
is the inverse document frequency of word w.

N is the total number of datasets, and Nw denotes the number of datasets containing w.
Intuitively, this feature represents the content of datasets.

Task Embedding
For the dataset, we collect their literal descriptions, usually one or two sentences.
Then aggregate GloVe vectors of every words in these sentences and get a description embedding.
This feature is used to represent what is the NLP task and how the data is formatted.

Baseline Score

We use a lite Bi-LSTM model as the baseline model and finetune it
on the down-stream dataset.
This feature aims to measure the difficulty of each task by measuring
how well a simple architecture can perform on the specific dataset.

Teacher Score
The fine-tuned teacher score on the dataset. Comparing teacher score to aforementioned
baseline score tells how much boost can a complex model has on this dataset.

Number of Examples How many training samples in the dataset.

Table 8: Performance comparison with different teacher and student models. We abbreviate three teacher models
BERTBASE, RoBERTaLARGE and ELECTRALARGE as B, R, E. Results are evaluated on GLUE dev set and best
results are in-bold.

Model #Params Teacher MNLI-m MNLI-mm QQP QNLI SST-2 CoLA MRPC RTE STS-B AVG
acc acc f1 acc acc acc mcc f1 acc acc spearman pearson

BERTBASE (T) 110M 84.1 84.7 88.0 91.1 91.7 93.0 55.0 89.6 85.0 65.0 88.4 88.6 83.7
RoBERTaLARGE (T) 335M 90.2 90.1 89.6 92.1 94.7 96.3 64.6 91.3 88.0 78.7 91.7 91.8 88.3
ELECTRALARGE (T) 335M 90.5 90.4 90.3 92.8 95.1 96.6 67.4 91.7 88.5 84.5 88.7 88.9 88.8
BERTBASE 110M R 84.5 84.6 88.6 91.5 91.7 93.2 59.3 91.6 88.0 66.4 89.0 89.4 84.8

E 84.4 84.6 88.8 91.7 91.6 92.8 59.5 91.9 88.7 69.3 89.1 89.6 85.2
TinyBERT6 67M B 83.9 84.0 88.1 91.2 91.3 91.6 50.5 90.3 86.5 75.5 89.4 89.4 84.3

R 83.5 83.5 88.0 91.2 90.8 92.2 48.0 91.9 88.7 72.6 89.9 90.0 84.2
E 83.0 83.0 87.8 91.0 90.6 91.3 48.6 91.6 88.5 76.2 89.1 89.3 84.2

BERTMEDIUM 41M B 82.6 83.0 87.9 91.0 90.0 90.8 48.3 88.9 84.1 65.0 88.2 88.4 82.4
R 80.9 81.4 87.6 90.8 89.0 91.4 50.5 88.9 84.6 64.3 88.2 88.6 82.2
E 81.0 81.3 87.5 90.7 89.0 90.9 51.0 89.5 85.3 64.3 88.0 88.2 82.2

BERTSMALL 29M B 81.0 81.0 87.4 90.6 87.3 90.5 43.1 87.8 82.4 63.5 87.0 87.2 80.7
R 78.7 78.6 87.0 90.4 87.0 88.6 41.2 89.1 84.1 64.3 87.1 87.3 80.3
E 78.6 78.8 87.2 90.5 87.0 89.3 43.0 88.7 84.1 63.9 86.8 87.1 80.4

TinyBERT4 14M B 81.1 81.6 87.2 90.4 87.4 90.6 12.3 89.4 85.0 66.4 87.7 87.8 78.9
R 80.0 80.7 86.5 90.0 86.0 89.4 24.6 90.4 86.5 67.9 88.0 88.1 79.8
E 80.0 80.2 86.2 89.6 85.9 88.9 21.8 90.9 86.8 68.6 87.6 87.6 79.5

ELECTRASMALL 14M B 82.7 83.8 87.8 90.9 89.7 91.3 60.6 91.3 87.7 60.6 87.4 87.5 83.5
R 82.3 83.2 88.1 91.2 89.5 90.6 58.6 91.3 87.5 67.5 87.6 87.8 83.8
E 82.0 82.7 88.5 91.5 89.3 91.4 60.6 92.3 89.0 69.7 86.6 86.7 84.2

BERTMINI 11M B 78.5 79.7 86.6 90.0 84.9 87.8 20.1 87.0 81.6 61.0 86.2 86.1 77.5
R 76.6 77.3 86.0 90.0 84.6 85.9 32.2 86.6 81.1 65.3 86.2 86.3 78.2
E 76.3 77.1 85.9 89.5 84.2 85.9 33.8 87.0 81.6 65.0 85.7 85.5 78.1

BERTTINY 4M B 72.8 73.4 83.5 87.2 81.3 83.9 0.0 84.5 75.7 58.5 81.4 79.9 71.8
R 71.5 72.0 82.9 86.7 80.2 83.1 6.2 84.9 76.2 60.3 81.9 79.9 72.1
E 71.2 71.8 82.9 87.0 80.0 82.8 6.7 85.2 77.0 62.8 78.4 77.3 71.9

H Distiller Search Space

Here we recap the full search space considered for
each stage of the KD pipeline in Distiller:

• linter ∈ {MSE, L2, Cos, PKD, MI-α (α = 0.1,
0.5, or 0.9)}

• lpred ∈ {MSE, CE}

• {mi,j} ∈ {Skip, Last, EMD}

• Augmentation policy a is one or combina-
tions of elementary augmentation operations
in {CA, RA, BT, Mixup}.

I Top Configurations in Distiller

Here we list the top 5 configurations from the Dis-
tiller search space that performed best on each
dataset in Table 9.
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Table 9: Top 5 configurations to distill a BERTBASE teacher to a TinyBERT4 student on every dataset. To reduce
the search space, we only compare configurations that don’t use data augmentation. As Hyper-parameter α is only
valid for MI-α, the value of α is set to N for other intermediate loss in the table.

Task Intermediate Loss α Layer Mapping Strategy KD Loss #Example Score
MNLI MI-α 0.9 EMD MSE 393000 81.7
MNLI MI-α 0.1 EMD MSE 393000 81.7
MNLI MI-α 0.5 Skip MSE 393000 81.7
MNLI MSE N EMD MSE 393000 81.6
MNLI MSE N Skip MSE 393000 81.6
QQP MI-α 0.9 EMD MSE 364000 90.2
QQP MI-α 0.1 EMD MSE 364000 90.2
QQP CE N Skip MSE 364000 90.2
QQP MI-α 0.1 EMD MSE 364000 90.1
QQP MI-α 0.1 Skip MSE 364000 90.1
QNLI CE N Last MSE 105000 87.4
QNLI MI-α 0.5 Skip MSE 105000 87.4
QNLI MI-α 0.5 Last CE 105000 87.3
QNLI MI-α 0.9 Skip CE 105000 87.2
QNLI MI-α 0.1 Skip CE 105000 87.1
SST-2 Cos N Last MSE 67000 90.6
SST-2 MSE N Skip CE 67000 90.5
SST-2 MI-α 0.1 Last CE 67000 90.3
SST-2 CE N Skip MSE 67000 90.3
SST-2 MI-α 0.9 Skip CE 67000 90.3
CoLA MI-α 0.1 EMD MSE 8500 22.3
CoLA MI-α 0.5 EMD MSE 8500 21.6
CoLA MI-α 0.5 EMD CE 8500 21.1
CoLA MI-α 0.1 Last MSE 8500 21.1
CoLA MI-α 0.5 Skip MSE 8500 21.0
MRPC MI-α 0.1 EMD CE 3700 90.3
MRPC MI-α 0.5 EMD CE 3700 90.2
MRPC CE N Skip CE 3700 89.9
MRPC MI-α 0.9 EMD CE 3700 89.9
MRPC CE N Last MSE 3700 89.7
RTE MI-α 0.1 Skip CE 2500 70.8
RTE MI-α 0.9 Skip CE 2500 70.4
RTE MI-α 0.5 Skip CE 2500 70.0
RTE MI-α 0.1 Last CE 2500 70.0
RTE MI-α 0.5 Last CE 2500 69.3
STS-B MI-α 0.9 Skip MSE 7000 88.0
STS-B MI-α 0.5 Skip MSE 7000 88.0
STS-B MI-α 0.9 EMD MSE 7000 87.9
STS-B MI-α 0.1 Last MSE 7000 87.9
STS-B PKD N Skip MSE 7000 87.9
SQuAD v1.1 MSE N Skip MSE 130000 72.6
SQuAD v1.1 CE N Skip MSE 130000 72.4
SQuAD v1.1 MSE N EMD MSE 130000 72.3
SQuAD v1.1 MI-α 0.9 Skip CE 130000 71.9
SQuAD v1.1 MI-α 0.9 Skip CE 130000 71.7


