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Abstract

To date, most abstractive summarisation mod-
els have relied on variants of the negative log-
likelihood (NLL) as their training objective. In
some cases, reinforcement learning has been
added to train the models with an objective
that is closer to their evaluation measures (e.g.
ROUGE). However, the reward function to
be used within the reinforcement learning ap-
proach can play a key role for performance
and is still partially unexplored. For this rea-
son, in this paper, we propose two reward
functions for the task of abstractive summari-
sation: the first function, referred to as RwB-
Hinge, dynamically selects the samples for the
gradient update. The second function, nick-
named RISK, leverages a small pool of strong
candidates to inform the reward. In the ex-
periments, we probe the proposed approach
by fine-tuning an NLL pre-trained model over
nine summarisation datasets of diverse size
and nature. The experimental results show a
consistent improvement over the negative log-
likelihood baselines.

1 Introduction

The current state-of-the-art neural text summarisa-
tion models have been refined to excel at either the
extractive or abstractive styles, or even both (Zhang
et al., 2020a; Lewis et al., 2020; Raffel et al., 2020).
Along with contemporary summarisation datasets
(Narayan et al., 2018a; Grusky et al., 2018; Fab-
bri et al., 2019), the advent of large pre-trained
language models, and their subsequent derivations
(Liu and Lapata, 2019; Park, 2020), has allowed
summarisation to become a more practical and rea-
sonable task to implement, without compromising,
and often improving, the accuracy. However, these
models usually employ the standard negative log-
likelihood (NLL) as their training objective, which
aims to maximise the likelihood of each token in a
given ground-truth reference. Despite its efficacy,

the NLL fails to account for synonymous tokens
and other potentially valid variations, and strongly
biases the model towards the ground-truth refer-
ence (Ranzato et al., 2016). Furthermore, the NLL
operates as a token-level objective during training,
which promotes an inconsistent comparison with
sequence-level evaluation metrics, such as ROUGE
(Lin, 2004).

In order to address the inconsistency between
token-level training and sequence-level evaluation,
reinforcement learning (RL) has been adopted in
summarisation and other language generation tasks
to afford the optimization of sequence-level met-
rics during training (Paulus et al., 2018; Pasunuru
and Bansal, 2018). Reinforcement learning has
proved successful at improving the accuracy of
language generation tasks, such as summarisation
(Paulus et al., 2018; Arumae and Liu, 2018; Pa-
sunuru and Bansal, 2018) and machine transla-
tion (Ranzato et al., 2016; Edunov et al., 2018).
However, balancing exploration and exploitation
remains imperative to the successful choice of an
effective reward. When standard RL techniques,
such as REINFORCE (Williams, 1992), are imple-
mented in natural language generation tasks, the
required expectation becomes intractable due to
large vocabulary sizes. Therefore, the application
of REINFORCE is typically reduced to calculating
the approximate expectation with respect to only
a single predicted sequence. To teach the model
to understand the importance of sample variation
among synonymous tokens, we instead choose to
implement an objective function which includes
multiple predicted sequences, allowing for a sce-
nario in which several valid candidate summaries
can be considered. Another consideration is that
the success of techniques such as REINFORCE
strongly depends on the use of an effective and
appropriate reward. Designing such a reward, one
which enables the model to manipulate multiple



2

sequences and yet provides a positive and informa-
tive outcome in the process, is therefore necessary
for producing better results. This allows us to mod-
ify the reinforcement learning framework in such a
way that enforces only a higher weighting to those
predicted sequences which obtain a higher reward.
As such, we apply two techniques to summarisa-
tion; RwB-Hinge, which applies a hinge-loss modi-
fication to the classical REINFORCE with baseline
(Rennie et al., 2017) to selectively apply the model
gradients, and Expected Risk Minimization (RISK)
(Edunov et al., 2018), which leverages a small pool
of strong sampled candidates to smartly inform the
reward function. We aptly refer to our framework
as RewardsOfSum, to hint at the exploration of suit-
able reward functions for summarisation. Empiri-
cally, we show that the two proposed variants per-
form better than standard negative log-likelihood
baselines over a range of datasets of diverse size
and nature.

2 Related Work

In recent years, there has been some work in sum-
marisation to separate from the traditional nega-
tive log-likelihood (NLL) objective function, and
mollify its dependency on ground-truth references.
Several implementations of reinforcement learning
in summarisation involved optimizing discrete met-
rics, such as the standard ROUGE (Paulus et al.,
2018; Narayan et al., 2018b). Others have intro-
duced novel rewards into the reinforcement learn-
ing framework, such as question-focused rewards
(Arumae and Liu, 2018), saliency and entailment
rewards (Pasunuru and Bansal, 2018), and even
distributional semantic rewards (Li et al., 2019).
Gao et al. (2020) also present a novel unsupervised
metric for summarisation which correlates highly
with discrete evaluation metrics if adopted in a re-
inforcement learning approach.

On the other hand, there has been much work
in leveraging large, pre-trained language models
(LM) (Devlin et al., 2019; Lewis et al., 2020; Raf-
fel et al., 2020) to improve the quality and perfor-
mance of summarisation models. Utilizing pre-
trained language models requires significantly less
engineering effort to continually improve over state-
of-the-art baselines. Typically, these approaches
include using novel pre-training objectives (Zhang
et al., 2020a; Raffel et al., 2020; Zhu et al., 2020)
or implementing successful reinforcement learning
techniques (Bae et al., 2019). Li et al. (2019) found

that optimizing semantic rewards in reinforcement
learning, using BERTScore (Zhang et al., 2020b),
does not necessarily correlate with the ROUGE
score at test time. As such, the choice of reward in
a reinforcement learning approach should attempt
to carefully align with the evaluation metric.

How best to inform the reward via the reward
function, is critical to the performance of mod-
els in an RL framework. In our work, we aim to
stray from the typical sole NLL objective, and by
leveraging a pre-trained language model in a rein-
forcement learning framework, explore different
RL-based reward functions for summarisation.

3 Proposed Reinforcement Learning
Training

In order to improve over the negative log-likelihood
baseline models, we aim to implement a reinforce-
ment learning framework that adopts the standard
evaluation metric, ROUGE, as a reward during
training. We aim to keep consistent with previ-
ous implementations of reinforcement learning in
summarisation, and assume ROUGE-L F1 to be
the reward metric in the following work.

In Sections 3.1 and 3.2, we consider the follow-
ing standard notations: x is defined as an input
source document, y∗, ŷ, and ys are referred to as
the ground-truth reference, argmax prediction, and
sampled sequence, respectively, and r(y) refers to
the reward of sequence y, computed with respect
to the ground-truth reference, y∗. By exploiting a
combination of sampling and predictions, we aim
to enhance training diversity in the vein of the work
of Li and Jurafsky (2016); Li et al. (2016); Holtz-
man et al. (2020).

3.1 RwB-Hinge

We adopt the standard self-critical policy gradient
objective (Rennie et al., 2017), notably applied to
summarisation by Paulus et al. (2018):

α = −[r(ys)− r(ŷ)] (1)

LRwB = α

n
′∑

t=1

log p(yst |y1, . . . , yt−1, x) (2)

In (1), ys and ŷ denote a sampled sequence and
the argmax prediction of the current model, respec-
tively. The reward of the argmax, r(ŷ), is used as
a “baseline” for the reward of the sample, r(ys). It
is easy to see that if r(ys)− r(ŷ) > 0, the sign of
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this loss is negative, treating ys as a “good” pre-
diction and leading to an increase of its probability.
Conversely, if the sign is positive, ys is deemed as
a “bad” prediction and its probability is decreased.

However, in abstractive summarisation it is not
trivial to discriminate between a good and a bad
summary when the reward score is in an interme-
diate range. To avoid inappropriately penalising
acceptable predictions, we propose incorporating a
hinge loss in (1):

α = −max [0, (r(ys)− r(ŷ))] (3)

The hinge loss allows the model to limit the
gradient updates to only the predictions that are
considered as good. In this way, we avoid the risk
of unstable training updates and hope to afford a
clearer trajectory towards a well-trained model.

3.2 Expected RISK Minimization
We also utilise a classical structured loss function
that has been shown to perform well in sequence-
to-sequence learning tasks (Edunov et al., 2018):

LRISK =
∑

y∈U(x)

−r(y) · p(y|x, θ) (4)

In (4), y represents one of multiple candidate
summaries, sampled or predicted with the meth-
ods defined in Section 4.2 (e.g. argmax, Gumbel-
Softmax (Jang et al., 2017)), that form the total
candidate summary set U(x). The conditional
probability of the predicted summary is noted as
p(y|x, θ).

This conditional probability is defined in (5),
where m is the number of tokens in the summary.
The sum of logarithms in (6) is divided by the total
number of tokens in the sequence, and is scaled
back using an exponential function, allowing each
candidate summary to be compared fairly in the
objective function and avoiding underflow.

p(y|x, θ) = f(y, x, θ)∑
y′∈U(x)

f(y′ , x, θ) (5)

η =
m∑
j=1

logp(uj |u1, . . . , uj−1, x, θ) (6)

f(y, x, θ) = exp[
η

m
] (7)

By using this objective function, the model is
taught to assign higher probability to the candidate

summaries that obtain higher rewards. This objec-
tive does not require a baseline or hinge loss to se-
lect the predictions, since using multiple candidates
already exposes the model to different, potentially
valid predictions. Edunov et al. (2018) demon-
strates the effectiveness of this approach at sentence
level for both neural machine translation and sum-
marisation. For the summarisation task, Edunov
et al. (2018) compute the reward at sentence-level
since their dataset has single-sentence references.
However, as the reward function is agnostic to sin-
gle or multi-sentence predictions, we can easily
translate the RISK objective function to be used at
summary level.

3.3 Overall Training Objective

Similar to previous reinforcement learning imple-
mentations (Paulus et al., 2018; Li et al., 2019),
we, too, utilise a mixed learning objective function,
as shown in (8). This mixed approach helps the
model to not deviate too much from the reference
summaries, given a γ balancing coefficient chosen
with a strict validation criterion (Appendix A). The
LRL term refers to either the RwB-Hinge or RISK
training objective function.

Lmixed = γLXENT + (1− γ)LRL (8)

4 Experimental Setup

4.1 Datasets

Inspired by the recent work from Zhang et al.
(2020a), we utilise nine of the summarisation
datasets reported in their paper. The nine datasets
have been chosen based on the different lengths of
their reference summaries, to provide enough of
a variation to demonstrate the applicability of the
presented methods. We split the datasets into three
classes: “short”, “medium”, and “long”. Short
datasets have reference summaries ≤ 64 tokens,
medium datasets > 64 and ≤ 128 tokens, and long
datasets > 128 tokens.

4.2 Sampling Methods

In order to promote exploration across the vocabu-
lary distribution, we employ three simple method-
ologies to provide candidate sequences for our
training objectives.

Argmax: As is the standard with the majority
of sequence generation tasks, a predicted sentence
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Dataset Train Test Dev
AESLC 14.4K 1.9K 1.9K

Gigaword 3.8M 1.9K 189K
XSum 203K 11.3K 11.3K

CNN/DM 287K 11.4K 13.3K
Reddit-TIFU 33.7K 4.2K 4.2K

Newsroom 995K 108K 108K
Pubmed 119K 6.6K 6.6K
ArXiv 203K 6.4K 6.4K

Billsum 18.9K 3.2K 1.2K

Table 1: Statistics on the datasets used in the experi-
ments. Figures are rounded. The top third are short
datasets (≤ 64 tokens references summaries), the mid-
dle third are medium datasets (> 64 and≤ 128 tokens),
and the bottom third are long datasets (> 128 tokens).

can be easily provided by allowing the model to
make hard decisions (e.g. argmax) over the proba-
bility distribution generated by the decoder. This
allows us to use it as a baseline for the following
experiments. In its simplest form the argmax is
defined as:

ŷj = argmax
y

p(y|x, y∗j−1, θ) j = 1, . . . , n (9)

where we use “teacher forcing” for the predictions.
2nd-Best: Similar to the argmax, we employ a

k-best approach to sample the second best-argmax
from the same probability distribution generated
by the decoder. This allows us to choose different,
yet similarly weighted words from the decoder to
introduce variability between produced summaries:

ysj = argmax
k=2

p(y|x, y∗j−1, θ) j = 1, . . . , n

(10)
Gumbel-Softmax: We also utilise a recent re-

parameterization technique known as the Gumbel-
Softmax (Jang et al., 2017) that allows sampling
soft latent categorical variables by transforming
samples from a Gumbel distribution. Compared to
the standard “hard” predictions, this approach is
differentiable and allows controlling the sparsity of
the samples by a temperature parameter, τ :

p̃ij =
exp((log(pij) + gi)/τ∑V

v=1 exp((log(pvj ) + gv)/τ
(11)

In (11), gi is a sample from the zero-mean, unit-
scale Gumbel distribution, pij is the probability dis-

tribution for a given token i at slot j, and the tem-
perature parameter, τ , controls the sparsity of the
output soft variable, p̃ij . In our experiments, we
have set τ to 0.1 to enforce sparsity.

4.3 Baseline Model and Training Runs

The abstractive text summarisation model we use
for our experiments is PEGASUS, a large pre-
trained Transformer encoder-decoder architecture
that has recently reported state-of-the-art results
over a number of datasets. Please refer to Zhang
et al. (2020a) for details. All hyperparameters used
in our experiments can be found in Appendix B.

We employ two training approaches to test the
solidity of the proposed methods. The first is a few-
shot learning approach that adopts limited, fixed
numbers of training samples (1000) and training
iterations (2000) for fine-tuning the model. The
second is a full-data learning approach, that utilises
all available training data, and exhausts the objec-
tive function until convergence over the validation
set. In all experiments, we first fine-tune a pre-
trained PEGASUS model with the NLL, and then
we further fine-tune the NLL model with one of
the proposed approaches. We train the model in
this way to avoid the slow and inefficient training
often associated with policy gradient objectives,
and as a result, adhere to the standard warm-start
NLL training adopted in previous reinforcement
learning-based approaches (Paulus et al., 2018; Li
et al., 2019).

In the following experiments, we refer to PEGA-
SUS as PEG, and its NLL-tuned models with the
suffixes -few_shot and -full_data. The proposed
approaches are in turn noted as RwB-Hinge and
RISK.

Experiment Arg-max 2nd-Best G-S
RwB-Hinge X X

RISK-2 X X
RISK-3 X X X

Table 2: Different experiments and the different sam-
pling methods used in each. Here, RISK-2 and RISK-3
denote the number of samples we utilise in the RISK
objective function; two and three, respectively.

5 Results

Tables 3, 4, and 5 show the results of each method
in comparison to the NLL-tuned baseline for the
nine reported datasets. Each table reports the
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Model AESLC Gigaword XSum
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

PEGfew_shot 29.96 14.54 29.17 31.81 13.19 29.12 41.81 18.32 33.50
+ RwB-Hinge 28.69 13.83 27.82 31.83 13.15 29.08 42.47† 18.82† 33.94

+ RISK-2 29.35 14.14 28.39 31.96 13.22 29.27 42.57† 18.71† 33.96†

+ RISK-3 29.28 14.05 28.31 32.10† 13.35† 29.43† 42.66† 19.01† 34.15†

PEGfull_data 32.63 15.84 32.19 33.81 14.26 30.89 41.52 18.21 33.31
+ RwB-Hinge 34.39† 17.58† 33.71† 34.10† 14.52 31.31† 42.87† 19.36 34.56†

+ RISK-2 33.55† 17.01† 32.91† 33.97 14.45 31.18† 42.93† 19.25† 34.67†
+ RISK-3 33.75† 17.03† 33.04† 33.97 14.52 31.14† 42.74† 19.23† 34.60†

Table 3: Results on short datasets: AESLC, Gigaword, and XSum. Here we compare the limited resource
(PEGfew_shot) and full-data (PEGfull_data) approaches with our different implementations. (†) means that the dif-
ferences are statistically significant with respect to the baseline with a p-value < 0.05 over a bootstrap hypothesis
test. Best ROUGE-1/2/L scores are bolded.

Model CNN/DM Reddit-TIFU Newsroom
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

PEGfew_shot 40.65 17.60 37.81 24.84 7.21 20.12 33.33 20.01 29.17
+ RwB-Hinge 40.44 17.44 37.54 25.55† 7.23 20.09 34.03† 20.74† 29.86†

+ RISK-2 40.52 17.48 37.62 25.69† 7.25 20.26 34.26† 21.10† 30.14†

+ RISK-3 40.76 17.63 37.87 25.73† 7.30 20.35 34.40† 21.27† 30.21†

PEGfull_data 40.58 18.15 37.94 23.66 6.72 19.24 36.39 23.90 32.50
+ RwB-Hinge 40.84† 17.74 38.19† 23.95† 6.93 19.69† 36.85† 24.01 33.00†

+ RISK-2 40.88† 17.91 38.19† 24.25† 7.19† 20.00† 36.74 24.01 32.73
+ RISK-3 40.88† 17.91 38.28† 24.70† 7.46† 20.25† 36.04 23.22 32.18

Table 4: Results on medium datasets: CNN/DM, Reddit-TIFU, and Newsroom. Here we compare the limited
resource (PEGfew_shot) and full-data (PEGfull_data) approaches with our different implementations. (†) means that
the differences are statistically significant with respect to the baseline with a p-value < 0.05 over a bootstrap
hypothesis test. Best ROUGE-1/2/L scores are bolded.

Model Pubmed ArXiv Billsum
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

PEGfew_shot 38.28 13.70 23.32 38.08 11.61 22.87 48.27 27.79 35.70
+ RwB-Hinge 40.11† 14.45† 23.88† 38.85† 11.90† 22.88 48.61† 29.35† 36.91†

+ RISK-2 40.19† 14.61† 23.98† 38.98† 12.02† 22.90 48.21 28.34† 35.97
+ RISK-3 40.19† 14.55† 23.95† 38.68† 11.88† 22.81 48.65 28.71† 36.37†

PEGfull_data 40.57 16.05 25.46 38.48 13.33 24.12 52.98 34.44 41.36
+ RwB-Hinge 40.80 16.27 25.41 38.95† 13.69† 24.19 54.30† 36.01† 42.76†

+ RISK-2 40.32 15.85 25.31 38.76 13.55 24.11 53.76† 35.54† 42.37†

+ RISK-3 40.36 15.89 25.26 38.42 13.37 24.12 54.27† 35.80† 42.51†

Table 5: Results on long datasets: Pubmed, ArXiv, and Billsum. Here we compare the limited resource
(PEGfew_shot) and full-data (PEGfull_data) approaches with our different implementations. (†) means that the dif-
ferences are statistically significant with respect to the baseline with a p-value < 0.05 over a bootstrap hypothesis
test. Best ROUGE-1/2/L scores are bolded.

few-shot (top halves) and full-data results (bottom
halves), where the scores have been averaged over
three independently-initialised training runs. Each
fine-tuning method is employed in a mixed loss
framework, as mentioned in (8) in Section 3.3;
the value for the γ hyperparameter has been de-

termined over the validation set as described in Ap-
pendix A. The results show that all the fine-tuning
methods have surpassed the NLL baselines for al-
most all datasets. Several of these improvements
have also passed a bootstrap test for statistical sig-
nificance, which is regarded as a more appropriate
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Figure 1: Comparing the uni-, bi-, and tri-gram novelty for the medium sized datasets. These datasets contain
generated sequences up to 128 tokens in length. The methods are as follows: NLL (baseline), RwB-Hinge, RISK-
2, and RISK-3. The unique average n-gram novelty (n-grams that do not appear in the source text) is shown to
increase across the board compared to the standard NLL baseline.

statistical test for summarisation compared to a
t-test (Dror et al., 2018).

Figure 1 compares the effect that each fine-
tuning method has had over the production of novel
n-grams during test time (a property nicknamed as
n-gram novelty). For medium sized datasets in
particular, the reinforcement learning approaches
appear to, on average, facilitate the production of
more distinct uni-, bi-, and tri-grams at test time,
compared to the NLL baseline. Whilst n-gram nov-
elty is typically used in summarisation to showcase
test-time summary abstractiveness, the results in
Figure 1 highlight that training with objectives that
promote sample variation leads to models capable
of producing more novel n-grams (up to 13.8 pp in
tri-gram novelty over CNN/DM). This is supported
by the qualitative example in Table 6 which shows
that the proposed fine-tuning methods can achieve
greater diversity of summary predictions, whilst
still improving over the baseline NLL ROUGE
scores. It seems that the proposed fine-tuning meth-
ods have allowed the model to effectively weigh
the predicted summaries during training, and when
combined with the “stable” NLL in a mixed-loss ap-
proach, this has been able to produce well-rounded
predictions, diverse enough to stray from the origi-
nal baseline and the reference summaries.

In addition, Figure 2 shows a performance com-
parison with respect to the length of the refer-
ence summaries for the full-data approach over
a medium size dataset (CNN/DM). We see that our
fine-tuning methods have led, on average, to higher

Figure 2: Comparison of each method for the full-data
approach over a medium size dataset (CNN/DM). The
methods are as follows: NLL (baseline), RwB-Hinge,
RISK-2, and RISK-3. We see that the reinforcement
learning approaches have led, on average, to higher
ROUGE-L scores for the longer summaries compared
to the NLL baseline.

ROUGE-L scores for the longer summaries (up
to 2.3 ROUGE-L points for summaries between
80-100 tokens, and up to 6.2 points for summaries
over 100 tokens). Likely, the proposed methods
have been able to amend the reported tendency of
the NLL models to curtail the prediction of long
summaries.

Comparing multiple fine-tuning methods is use-
ful for showcasing the improvements that rein-
forcement learning can play on a generation task
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Source Document

Dougie Freedman is on the verge of agreeing a new two-year deal to remain at Nottingham Forest. Freedman has stabilised
Forest since he replaced cult hero Stuart Pearce and the club’s owners are pleased with the job he has done at the City Ground.
Dougie Freedman is set to sign a new deal at Nottingham Forest. Freedman has impressed at the City Ground since replacing
Stuart Pearce in February. They made an audacious attempt on the play-off places when Freedman replaced Pearce but have
tailed off in recent weeks. That has not prevented Forest’s ownership making moves to secure Freedman on a contract for the
next two seasons.

Reference

Nottingham Forest are close to extending Dougie Freedman’s contract. The Forest boss took over from former manager
Stuart Pearce in February. Freedman has since lead the club to ninth in the Championship.

NLL (40.00/30.43/32.85)

Dougie Freedman set to sign new deal at Nottingham Forest. Freedman has stabilised Forest since he replaced Stuart Pearce.
Forest’s owners are pleased with Freedman’s job.

RwB-Hinge (49.00/36.24/34.43)

Dougie Freedman is set to sign a new two-year deal at Nottingham Forest. The City Ground boss has stabilised the club
since he replaced Stuart Pearce. Forest’s owners are pleased with Freedman’s job at the club.

RISK-2 (50.66/44.59/44.00)

Dougie Freedman set to sign a new two-year deal at Nottingham Forest. Freedman has stabilised Forest since he replaced
Stuart Pearce in February. Forest made an audacious attempt at the play-off places when Freedman replaced Pearce.

RISK-3 (49.33/40.54/40.00)

Dougie Freedman set to sign new deal at Nottingham Forest. Freedman has stabilised the club since he replaced Stuart
Pearce in February. The club’s owners are pleased with the job Freedman has done at the City Ground.

Table 6: Example of the performance of each method from the CNN/DailyMail dataset for the full-data approach,
compared to the reference summary and NLL baseline. Words highlighted in blue indicate that they are not present
in the baseline NLL summary. Here we choose a typical method that aligns the best with the average NLL baseline
score, and compare how the methods pit against it. We see that there is a relative increase in ROUGE scores, whilst
diversifying the output.

Dataset Approach RwB-Hinge RISK-2 RISK-3

XSum (short) Few-Shot 43.90/20.18/35.59 44.03/20.28/35.75 43.80/20.30/35.76
Full-Data 42.97/19.45/34.73 42.92/19.53/34.73 43.23/19.25/35.06

Newsroom (medium) Few-Shot 35.47/22.31/31.11 36.20/23.11/31.81 35.96/22.87/31.62
Full-Data 38.17/25.37/34.12 37.02/24.36/33.21 37.08/25.11/33.22

Billsum (long) Few-Shot 49.08/29.96/37.63 48.19/28.84/36.68 49.23/29.62/37.06
Full-Data 54.48/36.49/43.43 53.51/35.24/42.49 54.10/35.39/42.50

Table 7: Scores on the validation set for short, medium, and long datasets to determine the best method for each size
class. RISK, on average, appears to work best for short/medium sized datasets (up to 128 tokens), and RwB-Hinge
works better for longer datasets (over 128 tokens).

Dataset RwB: No Hinge-Loss RwB: with Hinge-Loss
XSum (short) 42.82/19.32/34.43 42.97/19.45/34.73

Newsroom (medium) 38.97/26.38/35.00 38.17/25.37/34.12
Billsum (long) 53.04/34.87/42.14 54.48/36.49/43.43

Table 8: Comparisons between REINFORCE with baseline with and without the hinge-loss modification on the
validation set for short, medium, and long datasets, to validate the use of the hinge-loss modification in our method.
This is run over the full-data baselines, and shows that for the majority of dataset classes, the adopted hinge-loss
modification leads to improvements in performance.

like summarisation. However, no single method
has outperformed all others over all the datasets
and in both the few-shot and full-data approaches.
Whilst all methods have achieved interesting im-

provements over the baseline figures, we have run
a comparison over the validation set to see if their
relative rankings could be a reliable indicator of the
relative rankings of the test set scores reported in



8

Tables 3, 4, and 5. Table 7 shows the results for one
dataset per class size, showing that for the short
and medium size datasets (≤ 128 tokens), either
of the RISK methods could be chosen to fine-tune
the model. This contrasts to the longer datasets
where the hinge-loss modification has achieved the
best results. In both cases, the results are in good
agreement with those on the test sets.

Lastly, in Table 8, we further validate our use
of the hinge-loss adaptation to the classical RE-
INFORCE with baseline method – a staple in the
reinforcement learning literature of language gen-
eration tasks (Paulus et al., 2018). Over the same
three datasets of Table 7, we see that in the ma-
jority of instances the hinge-loss modification has
been distinctively better than the standard approach.
This confirms our intuition that the adoption of a
hinge loss to restrict the gradient updates to “good”
predictions only is beneficial to the improvement
of ROUGE scores.

6 Conclusion

In this paper, we have proposed two variants to the
reinforcement learning approaches typically used
in sequence-to-sequence learning tasks. The two
proposed approaches – nicknamed RwB-Hinge and
RISK – have been designed to improve the rein-
forcement learning rewards by selecting and diver-
sifying the predictions used during the fine-tuning
of the model. In a set of automated summarisa-
tion experiments over nine, diverse datasets, the
approaches have consistently led to improved per-
formance, and also diversified the generated sum-
maries. We note that, despite its commonplace use
for summarisation evaluation, utilizing ROUGE
as reinforcement learning reward does not easily
translate into improved performance. For this rea-
son, in the near future we plan to explore other
contemporary score functions, such as BERTScore
(Zhang et al., 2020b), in an attempt to build more
effective rewards.

References

Kristjan Arumae and Fei Liu. 2018. Reinforced extrac-
tive summarization with question-focused rewards.
In Proceedings of ACL 2018, Student Research
Workshop, pages 105–111, Melbourne, Australia.
Association for Computational Linguistics.

Sanghwan Bae, Taeuk Kim, Jihoon Kim, and Sang-
goo Lee. 2019. Summary level training of sentence

rewriting for abstractive summarization. In Proceed-
ings of the 2nd Workshop on New Frontiers in Sum-
marization, pages 10–20, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhiker’s guide to testing statis-
tical significance in natural language processing.

Sergey Edunov, Myle Ott, Michael Auli, David Grang-
ier, and Marc’Aurelio Ranzato. 2018. Classical
structured prediction losses for sequence to se-
quence learning. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
355–364, New Orleans, Louisiana. Association for
Computational Linguistics.

Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and
Dragomir Radev. 2019. Multi-news: A large-scale
multi-document summarization dataset and abstrac-
tive hierarchical model. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 1074–1084, Florence, Italy.
Association for Computational Linguistics.

Yang Gao, Wei Zhao, and Steffen Eger. 2020. SU-
PERT: Towards new frontiers in unsupervised evalu-
ation metrics for multi-document summarization. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1347–
1354, Online. Association for Computational Lin-
guistics.

Max Grusky, Mor Naaman, and Yoav Artzi. 2018.
Newsroom: A dataset of 1.3 million summaries with
diverse extractive strategies. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 708–719, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learn-
ing Representations.

Eric Jang, Shixiang Gu, and Ben Poole. 2017. Cate-
gorical reparameterization with gumbel-softmax. In
International Conference on Learning Representa-
tions.

https://doi.org/10.18653/v1/P18-3015
https://doi.org/10.18653/v1/P18-3015
https://doi.org/10.18653/v1/D19-5402
https://doi.org/10.18653/v1/D19-5402
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://aclweb.org/anthology/P18-1128
http://aclweb.org/anthology/P18-1128
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/P19-1102
https://doi.org/10.18653/v1/2020.acl-main.124
https://doi.org/10.18653/v1/2020.acl-main.124
https://doi.org/10.18653/v1/2020.acl-main.124
https://doi.org/10.18653/v1/N18-1065
https://doi.org/10.18653/v1/N18-1065
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1611.01144


9

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Jiwei Li and Dan Jurafsky. 2016. Mutual information
and diverse decoding improve neural machine trans-
lation. CoRR, abs/1601.00372.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. A sim-
ple, fast diverse decoding algorithm for neural gen-
eration. CoRR, abs/1611.08562.

Siyao Li, Deren Lei, Pengda Qin, and William Yang
Wang. 2019. Deep reinforcement learning with dis-
tributional semantic rewards for abstractive summa-
rization. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
6038–6044, Hong Kong, China. Association for
Computational Linguistics.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Yang Liu and Mirella Lapata. 2019. Text summariza-
tion with pretrained encoders. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3730–3740, Hong Kong,
China. Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018a. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1797–1807, Brussels, Bel-
gium. Association for Computational Linguistics.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018b. Ranking sentences for extractive summariza-
tion with reinforcement learning. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 1747–1759, New Orleans, Louisiana.
Association for Computational Linguistics.

Jong Won Park. 2020. Continual bert: Continual learn-
ing for adaptive extractive summarization of covid-
19 literature. In Proceedings of the 2020 NLP-
COVID Workshop at the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Ramakanth Pasunuru and Mohit Bansal. 2018. Multi-
reward reinforced summarization with saliency and
entailment. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 646–
653, New Orleans, Louisiana. Association for Com-
putational Linguistics.

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In International Conference on Learn-
ing Representations.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In 4th Inter-
national Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and
V. Goel. 2017. Self-critical sequence training for im-
age captioning. In 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
1179–1195.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Mach. Learn., 8(3–4):229–256.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020a. PEGASUS: Pre-training with ex-
tracted gap-sentences for abstractive summarization.
In Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 11328–11339.
PMLR.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020b. Bertscore:
Evaluating text generation with bert. In Interna-
tional Conference on Learning Representations.

Chenguang Zhu, Ziyi Yang, Robert Gmyr, Michael
Zeng, and Xuedong Huang. 2020. Make lead bias
in your favor: Zero-shot abstractive news summa-
rization. In International Conference on Learning
Representations.

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/1601.00372
http://arxiv.org/abs/1601.00372
http://arxiv.org/abs/1601.00372
http://arxiv.org/abs/1611.08562
http://arxiv.org/abs/1611.08562
http://arxiv.org/abs/1611.08562
https://doi.org/10.18653/v1/D19-1623
https://doi.org/10.18653/v1/D19-1623
https://doi.org/10.18653/v1/D19-1623
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D19-1387
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/N18-1158
https://doi.org/10.18653/v1/N18-1158
http://arxiv.org/abs/2007.03405
http://arxiv.org/abs/2007.03405
http://arxiv.org/abs/2007.03405
https://doi.org/10.18653/v1/N18-2102
https://doi.org/10.18653/v1/N18-2102
https://doi.org/10.18653/v1/N18-2102
https://openreview.net/forum?id=HkAClQgA-
https://openreview.net/forum?id=HkAClQgA-
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
https://doi.org/10.1109/CVPR.2017.131
https://doi.org/10.1109/CVPR.2017.131
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1912.11602
http://arxiv.org/abs/1912.11602
http://arxiv.org/abs/1912.11602


10

A Validation Scores

To determine an appropriate γ term for our mixed loss implementation, we have run tests with different
values over the validation set for each dataset. To determine the best value, we have utilised the standard
REINFORCE (Williams, 1992) approach combined linearly with the negative log-likelihood. We have
chosen to optimise REINFORCE here since, being a close relative, but not the same as the algorithms we
have used during training, it may help to eschew overfitting. In the interest of time, we have utilised the
validation scores of a single seed to determine the γ values.
For the few-shot implementation in Table A.1, we have fixed the number of examples to fine-tune on
(1,000) and the number of training iterations (2,000) exactly as in the standard baseline approach defined
in Section 4. For the full-data approach in Table A.3, we have utilised all the training data, but, again in
the interest of time, we have capped the number of training iterations to either: a) the same training time
as the exhausted NLL tests reported in Table B.2, or b) 10,000 training iterations if the NLL training time
exceeded 15,000 training iterations.

Tables A.2 and A.4 show the best γ values from the validation runs for all datasets. For datasets where
there was no clear winner in Tables A.1 and A.3, we have compromised over the best values (highlighted
in blue).

Table A.1: Validation scores of the baseline PEGASUS model, fine-tuned on a 1000 training examples for 2000
training iterations (few-shot). Best scores are highlighted.

Dataset 0.1 0.3 0.5 0.7 0.9
AESLC 28.96/13.12/28.49 30.26/14.55/29.49 31.21/15.22/30.26 30.46/14.65/29.70 31.25/15.64/30.42
ArXiv 28.06/7.99/20.70 33.01/10.58/21.24 29.49/9.32/21.12 33.46/10.46/22.55 33.43/10.55/22.26

Billsum 41.61/28.08/34.65 40.37/28.07/34.17 40.16/28.19/34.27 39.56/28.11/34.16 42.64/29.36/35.73
CNN/DM 40.30/18.37/28.33 39.47/17.41/27.79 39.79/18.03/27.91 40.44/17.81/28.12 40.98/18.06/28.09
Gigaword 39.24/16.81/35.65 38.97/17.42/35.94 39.92/17.56/36.45 40.27/17.96/36.91 40.91/18.48/37.42
Newsroom 36.61/25.35/33.15 36.93/25.39/33.25 36.36/24.57/32.68 38.07/26.15/34.23 35.98/23.53/32.12
Pubmed 31.74/10.69/19.50 33.44/11.37/21.35 34.96/12.07/21.62 37.35/13.02/22.14 36.57/12.99/22.47

Reddit-TIFU 19.43/4.45/15.74 24.87/6.56/20.08 25.00/6.19/19.99 25.73/6.85/20.55 26.50/6.90/20.86
XSum 41.19/17.59/32.90 41.28/17.48/32.27 41.79/17.97/32.65 42.30/18.80/34.11 43.43/19.58/34.76

Table A.2: A summary of the corresponding gamma weights determined from the above few-shot validation tests.

AESLC ArXiv Billsum CNN/DM Gigaword Newsroom Pubmed Reddit-TIFU XSum
0.9 0.7 0.9 0.9 0.9 0.7 0.7 0.9 0.9

Table A.3: Validation scores of the baseline PEGASUS model, fine-tuned on all training examples provided with
the dataset for as many training iterations as either; the NLL baseline tests in Section 4, or 10,000 training iterations
for longer datasets (ArXiv, Billsum, Pubmed). Best scores are highlighted.

Dataset 0.1 0.3 0.5 0.7 0.9
AESLC 28.66/11.52/28.35 32.81/15.45/32.48 33.39/15.77/32.98 33.23/16.36/32.75 34.94/17.17/34.11
ArXiv 5.71/0.00/5.56 1.76/0.23/1.70 1.61/0.04/1.59 10.08/1.40/9.09 13.19/2.46/11.59

Billsum 6.50/1.50/6.45 9.85/4.51/9.42 15.50/6.31/13.04 32.78/17.36/25.92 38.98/22.84/30.62
CNN/DM 3.50/0.004/0.35 15.37/5.75/14.91 24.36/8.12/22.58 29.17/11.46/27.44 35.56/14.87/33.29
Gigaword 28.48/11.90/27.23 39.89/18.35/37.28 41.61/18.89/38.49 43.67/20.51/40.30 42.68/19.34/39.26
Newsroom 31.48/21.03/28.32 27.73/15.08/24.05 26.78/13.79/22.84 33.92/20.89/30.19 35.56/22.58/31.77
Pubmed 1.04/0.12/1.03 0.29/0.00/0.29 0.77/0.08/0.76 6.34/1.78/5.12 10.98/2.29/8.96

Reddit-TIFU 1.08/0.06/1.08 11.59/1.43/10.45 9.15/1.24/8.63 14.71/2.58/12.59 23.25/5.79/18.94
XSum 23.04/6.44/17.45 34.02/12.04/25.35 35.56/12.61/26.10 38.84/15.98/30.94 41.60/18.16/33.43
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Table A.4: A summary of the corresponding gamma weights determined from the above full-data validation tests.

AESLC ArXiv Billsum CNN/DM Gigaword Newsroom Pubmed Reddit-TIFU XSum
0.9 0.9 0.9 0.9 0.7 0.9 0.9 0.9 0.9

B Model Hyperparameters

In our experiments, we have utilised the same hyperparameters used in the original PEGASUS paper
(Zhang et al., 2020a). The exception to this is our use of a smaller batch size, constrained by computational
resources. As batch size we have used 1, which has resulted in a drop in performance compared to that
of the original paper. However, our fine-tuning approach is ensured to converge through the use of a
convergence criterion. This is defined by a validation run that evaluates the model every 1000 training
iterations, and monitors the progression of the validation loss over the entire training run. A model is
deemed ‘converged’ if its validation loss does not decrease over 3000 training iterations.

Table B.1: Model hyperparameters used in the few-shot experiments. All values except the fine-tuning steps are
also used in the full-data approach.

Dataset Learning Rate Label Smoothing Fine-Tuning Steps Batch Size Beam Size Max Input Tokens Max Target Tokens
AESLC 5e-4 0.1 2000 1 1 512 32
ArXiv 5e-4 0.1 2000 1 1 1024 256

Billsum 5e-4 0.1 2000 1 1 1024 256
CNN/DM 5e-4 0.1 2000 1 1 1024 128
Gigaword 5e-4 0.1 2000 1 1 128 32
Newsroom 5e-4 0.1 2000 1 1 512 128
Pubmed 5e-4 0.1 2000 1 1 1024 256

Reddit-TIFU 5e-4 0.1 2000 1 1 1024 128
XSum 5e-4 0.1 2000 1 1 512 64

Table B.2: Model fine-tuning steps used in the full-data experiments. The NLL and all fine-tuning tests (except
the validation tests), were validated every 1000 training iterations on a separate validation set, with the validation
loss monitored over the run. An early stopping criterion was in place to stop training if the validation loss had not
declined in 3000 consecutive training iterations. All methods have been averaged over three seed runs, whereas
for the validation run we report results from a single run.

Dataset NLL Validation RwB-Hinge RISK-2 RISK-3
AESLC 7k 7k 5k 5.3k 5.3k
ArXiv 43k 10k 7k 7k 7k

Billsum 44k 10k 5k 5k 4.6k
CNN/DM 12k 12k 6.6k 6.6k 7.6k
Gigaword 10k 10k 5.6k 6k 6k
Newsroom 10k 10k 6.3k 6.6k 6.3k
Pubmed 55k 10k 5.6k 6k 6k

Reddit-TIFU 10k 10k 7k 7k 6.5k
XSum 8k 8k 6k 5.3k 6k


