
Proceedings of the Second Workshop on Scholarly Document Processing, pages 124–129
June 10, 2021. ©2021 Association for Computational Linguistics

124

Overview and Insights from the SCIVER Shared Task
on Scientific Claim Verification

David Wadden
University of Washington

dwadden@cs.washington.edu

Kyle Lo
Allen Institute for AI

kylel@allenai.org

Abstract

We present an overview of the SCIVER
shared task, presented at the 2nd Schol-
arly Document Processing (SDP) workshop at
NAACL 2021. In this shared task, systems
were provided a scientific claim and a cor-
pus of research abstracts, and asked to identify
which articles SUPPORT or REFUTE the claim
as well as provide evidentiary sentences justi-
fying those labels. 11 teams made a total of
14 submissions to the shared task leaderboard,
leading to an improvement of more than +23
F1 on the primary task evaluation metric. In
addition to surveying the participating systems,
we provide several insights into modeling ap-
proaches to support continued progress and fu-
ture research on the important and challenging
task of scientific claim verification.

1 Introduction

Due to both rapid growth in scientific publications
and the proliferation of mis- and dis-information
online, there is a growing need for automated sys-
tems that can assist humans in assessing the ve-
racity of scientific claims with evidence found in
the research literature. For the SCIVER shared
task, systems are given a claim about a scientific
entity and a corpus of abstracts from peer-reviewed
research articles, and are asked to identify the ar-
ticles in the corpus that SUPPORT or REFUTE the
claim; each prediction is required to be accompa-
nied with evidentiary sentences, or rationales, from
the abstract that justify the labeling decision.

This task poses various challenges to systems.
For example, entailment relationships between
claims and evidences found in scientific writing are
often complex, and understanding them to arrive
at a correct SUPPORT or REFUTE labeling deci-
sion may require reasoning about numerical quan-
tities, increases and decreases in measurements,
or causal chains. Furthermore, since annotations
require scientific expertise, training data for this

task are scarce. As a result, systems must employ
techniques to overcome the lack of training data,
such as domain adaptation or transfer learning.

Here, we report the results on the SCIVER
shared task. A total of 11 teams made 14 sub-
missions to the shared task leaderboard, leading to
a collective improvement of +23 F1 on the primary
evaluation metric, compared to previous baselines.
The remainder of this report is organized as follows:
In §2, we describe the shared task setup, including
the choice of dataset, task definition, and evaluation
metrics. In §3, we provide an overview of the sys-
tems submitted for the task, and highlight unique
features of individual systems. In §4, we present
the results from the shared task evaluation. Finally,
in §5, we identify several insights into modeling
approaches demonstrated by participating systems.

2 Shared task description

We briefly describe the dataset, task, and evaluation.
Additional details on the data collection process
and evaluation metrics can be found in Wadden
et al. (2020).

Dataset We use the SCIFACT dataset from Wad-
den et al. (2020). SCIFACT consists of 1,409 claims
with train, dev, and test splits of 809, 300, and 300
claims respectively. The full train and dev sets and
test claims were publicly available six weeks prior
to opening the submission portal; gold evidences
and labels in the test set are not released publicly.
Each claim is an assertion about a single biomedi-
cal entity or process, curated by a biomedical ex-
pert. These claims are verified by other biomedical
experts against a corpus of 5,183 abstracts from
peer-reviewed biomedical research articles. For
each claim, relevant abstracts are those annotated
with evidentiary sentences that SUPPORT or RE-
FUTE the claim.

Task Given an input claim, the task is to (i) iden-
tify all abstracts in the corpus that are relevant to
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System Name Team affiliations Associated paper

VerT5erini University of Waterloo Pradeep et al. (2021)
ParagraphJoint UT Dallas / Chan Zuckerburg Initiative / UCLA Li et al. (2021)
Law & Econ ETH Zurich Stammbach and Ash (2020)
QMUL-SDS Queen Mary University of London Zeng and Zubiaga (2021)
first_1 Ping An of China -
SciKGAT Tsinghua University / Microsoft Research Liu et al. (2020a)
bioBert for sciFact - -
JC_UKP TU Darmstadt -
sum_rationale UC Irvine -
base_3_4 - -
pasic_scibert_tfidf Ping An International Smart City -

VERISCI Allen Institute for AI Wadden et al. (2020)

Table 1: Systems that submitted to the SCIVER leaderboard. Alongside system names are affiliations of the
associated team (if applicable) and any papers associated with the submission (if applicable).

the claim, (ii) label the relation of each relevant ab-
stract to the claim as either SUPPORTS or REFUTES,
and (iii) identify a set of evidentiary sentences (i.e.
rationales) to justify each label.

Evaluation Systems are evaluated by their F1
score for correctly identifying relevant abstracts.
We report two evaluation metrics: abstract-level F1
rewards a system for identifying and labeling ab-
stracts correctly. A system may predict up to three
evidentiary sentences for each abstract. As long
as these three sentences contain a gold rationale,
the system is scored as correct; this is similar to
the FEVER score from (Thorne et al., 2018). In
contrast, sentence-level F1 rewards a system for
identifying and labeling individual evidentiary sen-
tences correctly, similar to the “conditional score”
introduced in Thorne et al. (2021). Unlike abstract-
level evaluation, this metric penalizes models for
over-predicting evidentiary sentences. In practice,
we find that systems rank similarly in terms of
sentence-level and abstract-level performance.

Model Submissions Submissions were made
through a publicly-available online leaderboard1.
To prevent overfitting on the test set, teams were
permitted to make one submission per week. The
leaderboard was available for seven weeks before
final submissions were due.

3 Overview of systems

Table 1 presents the submitted systems. As the on-
line leaderboard is still accepting new submissions,
we only include in this report the systems that were
present by the shared task submission deadline.

1https://leaderboard.allenai.org/
scifact

3.1 Modeling approaches

All systems for which model descriptions are avail-
able use a three-stage pipeline consisting of (1) re-
trieval of relevant abstracts, (2) selection of eviden-
tiary sentences from retrieved abstracts, and (3) la-
bel prediction using the identified rationales. Many
teams introduced improvements to these three com-
ponents, which we summarize here.

Abstract retrieval Most systems rely on “bag-
of-words” approaches such as TF-IDF or BM25
(Robertson and Zaragoza, 2009) to retrieve an
initial set of candidate abstracts. In contrast,
PARAGRAPHJOINT computes the distance between
“dense” claim and abstract representations using
BioSentVec (Chen et al., 2019).

Some systems further refine the initial set
of retrieved abstracts using a neural model:
VERT5ERINI uses T5 (Raffel et al., 2020) while
SCIKGAT uses BERT (Devlin et al., 2019) to re-
rank retrieved candidates. QMUL-SDS uses a
BioBERT (Lee et al., 2020) text classifier for can-
didate filtering.

Evidence selection Systems take one of two ap-
proaches: single-sentence systems predict whether
a given sentence was evidence based on the claim
and the sentence alone. VERT5ERINI uses T5,
QMUL-SDS uses BioBERT and SCIKGAT uses
BERT to produce representations for each claim-
sentence pair.

The full-document systems encode the claim to-
gether with the entire abstract, and make predic-
tions for each sentence based on this full-document
encoding2. The PARAGRAPHJOINT model inter-

2Abstracts longer than 512 tokens are shortened by trun-
cating long sentences

https://leaderboard.allenai.org/scifact
https://leaderboard.allenai.org/scifact
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leaves [SEP] tokens between sentences, encodes
the entire abstract using RoBERTa (Liu et al.,
2019), and finally obtains sentence representations
through self-attention pooling over words within
each sentence. The Law & Econ model treats ratio-
nale selection as a sequence tagging task, using a
SciBERT (Beltagy et al., 2019) token-level tagger:
any sentence with at least one predicted positive
token is taken as evidence.

Label prediction Systems predict SUPPORT,
REFUTE, or NEI (Not Enough Info) labels by con-
catenating the claim and all selected evidentiary
sentences and feeding it through a neural three-way
text classifier. Unless otherwise noted, systems
tend to use the same model class for evidence se-
lection and label prediction stages (e.g., for both
pipeline stages, VERT5ERINI use T5 and PARA-
GRAPHJOINT use RoBERTa).

The SCIKGAT system, which uses BERT for
evidence selection, switches to using a kernel graph
attention network (Liu et al., 2020b) for aggre-
gating sentences for label prediction. We note
the PARAGRAPHJOINT team report experimenting
with a similar approach but opt not to use it in their
final system due to lack of positive results (Li et al.,
2021).

The QMUL-SDS system switches from
BioBERT to RoBERTa for the label prediction
stage. Furthermore, the model improves classifica-
tion performance using a two-stage approach – first
classifying abstracts as either Containing Evidence
or Not, and then classifying evidence-containing
abstracts as Supported or Not.

3.2 Model training techniques

We summarize several helpful techniques that
teams used to improve model training when de-
veloping their systems.

Transfer learning VERT5ERINI, Law & Econ,
PARAGRAPHJOINT, and SCIKGAT models were
first trained on the FEVER dataset (Thorne et al.,
2018) before training on SCIFACT. In contrast,
QMUL-SDS was only trained on SCIFACT. SCIK-
GAT performed additional language model pre-
training on data from the CORD-19 dataset (Wang
et al., 2020).

Negative sampling Teams devised a number of
strategies to expose the model to “negative samples”
– abstracts that do not contain evidence relevant
to a given claim. The VERT5ERINI team used

non-evidence sentences from relevant abstracts as
negative samples.

The PARAGRAPHJOINT team used irrelevant ab-
stracts with high lexical similarity to “gold” rele-
vant abstracts as additional negatives. Their system
was trained using 12 negative abstracts per posi-
tive abstract, allowing it to maintain high precision
while retrieving a larger number of candidate ab-
stracts for each claim. This system also used sched-
uled sampling, in which the label predictor is given
gold rationales early in training and gradually tran-
sitions to using predicted rationales; this was found
to increase model robustness.

Along similar lines, the QMUL-SDS team
trained their evidence selection and label prediction
components with retrieved abstracts rather than just
using gold abstracts.

Dev set usage Both VERT5ERINI and PARA-
GRAPHJOINT teams found it beneficial to perform
initial hyperparameter selection on the dev set, and
then train a final model on the train and dev sets
combined. This is unsurprising given the moderate
size of the SCIFACT training set.

4 Results

Table 2 presents performance of all submissions
on the public leaderboard during the seven week
shared task period. VERT5ERINI performs best on
sentence-level evaluation, achieving an improve-
ment of +23.87 F1 (+60.4%) for sentence-level
evaluation relative to the VERISCI baseline. PARA-
GRAPHJOINT performs best on abstract-level eval-
uation, improving over the VERISCI by +20.66 F1
(+44.4%). Using the dev set as additional training
data provides a substantial boost; this strategy alone
improves VERT5ERINI performance by roughly
+5 F1. While VERT5ERINI achieves higher recall,
PARAGRAPHJOINT has higher precision; this is
likely because PARAGRAPHJOINT was exposed to
more negative samples during training.

5 Insights

A number of participating teams reported perfor-
mance on individual pipeline components in publi-
cations associated with their systems (see Table 1).
Based on their reports and discussions with shared
task participants, we highlight findings on several
modeling decisions that have had significant impact
on results in the shared task.3

3Metrics reported in this section are self-reported by par-
ticipants and have not been verified by the task organizers.
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Sentence-level Abstract-level
Selection+Label Label+Rationale

Submission P R F1 P R F1

VerT5erini (Neural) (Train+Dev) 60.59 66.49 63.40 62.85 71.62 66.95
ParagraphJoint 68.94 54.59 60.94 73.66 61.71 67.16
VerT5erini (Neural) 60.00 57.57 58.76 61.47 63.96 62.69
Law & Econ 56.63 55.41 56.01 62.80 58.56 60.61
VerT5erini (BM25) 58.33 52.97 55.52 60.28 58.11 59.17
QMUL-SDS 66.17 47.57 55.35 72.97 48.65 58.38
first_1 65.06 47.30 54.77 65.36 52.70 58.35
SciKGAT 61.15 42.97 50.48 76.09 47.30 58.33
bioBert for sciFact 54.87 45.68 49.85 58.29 49.10 53.30
JC_UKP 40.69 41.35 41.02 50.24 47.75 48.96
sum_rationale 34.45 47.30 39.86 42.38 51.35 46.44
sum_rationale 28.45 52.97 37.02 35.34 55.41 43.16
base_3_4 5.87 55.95 10.63 9.54 50.45 16.05
pasic_scibert_tfidf 7.95 14.32 10.22 10.11 16.22 12.46

VERISCI 38.56 40.54 39.53 46.61 46.40 46.50
VERISCI Zero-Shot 23.71 31.08 26.90 42.26 31.98 36.41

Table 2: System performance on the SCIVER shared task. Systems are ordered by sentence-level F1. For
VERT5ERINI, (Neural) indicates that a neural re-ranker was used for retrieval, and (Train+Dev) indicates that
the model was trained on both the train and dev sets as described in §3.2.

Neural refinement of abstract candidates

The original VERISCI model uses TF-IDF to re-
trieve the top k = 3 documents for each claim,
but shared task participants have demonstrated
substantial improvement over “bag-of-words” re-
trievers using neural refinement. For instance, the
VERT5ERINI neural re-ranker improves Recall@3
from the TF-IDF score of 69.4 to 86.6, a +24.8%
increase. The QMUL-SDS system, which uses
a binary classifier to filter for relevant abstracts,
achieves an F1 of 74.2, while TF-IDF with a Top-3
strategy for identifying relevant abstracts only gets
26.3 F1.

Can we simply replace the bag-of-words compo-
nent with retrieval based on pre-trained dense rep-
resentations of? Not yet. The PARAGRAPHJOINT

team, which entirely replaced bag-of-words with
dense embeddings obtained using BioSentVec
(Chen et al., 2019), showed that abstract retrieval
performance is slightly worse than simple TF-IDF,
with a Recall@3 of 67.0. The QMUL-SDS team
also informally reported negative results experi-
menting with pre-trained DPR (Karpukhin et al.,
2020), another dense retrieval technique. These
shared task findings comparing bag-of-words, neu-
ral refinement, and dense-only retrieval on SCI-
FACT abstract retrieval have also been demon-

Furthermore, metrics reported in this section are not directly
comparable to those in Table 2 as the main results evaluate
end-to-end system performance while the metrics reported
here are ablations with respect to a pipeline component.

strated in other work (see Table 2 in Thakur et al.
(2021)). Adapting pre-trained dense retrieval mod-
els to SCIFACT remains an interesting area for fu-
ture work.

Surrounding context for evidence selection

PARAGRAPHJOINT and Law & Econ demonstrate
positive results when incorporating full-abstract
context during evidence selection, compared to
independent assessment of each sentence. In an
ablative analysis using oracle abstracts, the PARA-
GRAPHJOINT team reports that incorporating full-
abstract context increases evidence selection per-
formance from 65.3 F1 to between 68.8 and 71.7
F1, relative improvements of +5.4% to +9.8%.

Reliance on larger models

These shared task results demonstrate the unreason-
able effectiveness of simply using larger models to
improve performance. In particular, VERT5ERINI

achieves substantial improvements while preserv-
ing much of the model architecture from the origi-
nal VERISCI baseline, but swapping in the larger
T5 model. In an ablative experiment using gold
evidence, the VERT5ERINI team reports that a la-
bel predictor that uses T5-3B achieves a perfor-
mance of 88.2 F1, compared to 80.2 F1 when using
RoBERTa-large, a +10.0% relative improvement.
They observe similar improvements on evidence
selection as well. In fact, Wadden et al. (2020)
even reports higher performance by RoBERTa-
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large than SciBERT, where the former has 3 times
more parameters, despite the latter being trained
on in-domain data.

Still, PARAGRAPHJOINT demonstrates a sur-
prising result in achieving performance compet-
itive to VERT5ERINI using RoBERTa-large (355M
parameters, ≈10% of T5-3B size), showing that
other modeling strategies (e.g. negative sampling)
can have significantly benefit system performance
while keeping computational burden low. First,
this result suggests the need for an improved evalu-
ation setup for the SCIVER task that accounts for
model weight classes for submissions and making
comparisons. Second, we postulate the need for
a follow-up study investigating whether specific
modeling strategies employed by smaller models
would still translate to significant improvements
when using larger models like T5.

6 Conclusion

The SCIVER shared task on scientific claim veri-
fication received 14 submissions from 11 teams.
The submitted systems achieved substantial im-
provements on all three stages of the scientific
claim verification pipeline – abstract retrieval, evi-
dentiary sentence identification, and label predic-
tion – improving on the previous state-of-the-art
by 60% and 44% on the two primary evaluation
metrics. We’ve surveyed the various approaches
taken by participants and discussed several findings
that have emerged from this shared task. Look-
ing forward, the strong performance of systems
on SCIVER suggests it may be time to explore
other more ambitious challenges on the path to-
ward building real-world scientific claim verifica-
tion systems. For instance, future work could study
retrieval from a much larger scientific corpus, ap-
proaches to consolidate evidence from multiple
documents while taking into account the strength
and credibility of different evidence sources, or
techniques for building efficient systems that can
approximate performance of the top submissions
at a fraction of the cost.
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