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Abstract

Contrastive learning has been applied suc-
cessfully to learn vector representations of
text. Previous research demonstrated that
learning high-quality representations benefits
from batch-wise contrastive loss with a large
number of negatives. In practice, the technique
of in-batch negative is used, where for each ex-
ample in a batch, other batch examples’ pos-
itives will be taken as its negatives, avoiding
encoding extra negatives. This, however, still
conditions each example’s loss on all batch
examples and requires fitting the entire large
batch into GPU memory. This paper intro-
duces a gradient caching technique that decou-
ples backpropagation between contrastive loss
and the encoder, removing encoder backward
pass data dependency along the batch dimen-
sion. As a result, gradients can be computed
for one subset of the batch at a time, leading to
almost constant memory usage. 1

1 Introduction

Contrastive learning learns to encode data into an
embedding space such that related data points have
closer representations and unrelated ones have fur-
ther apart ones. Recent works in NLP adopt deep
neural nets as encoders and use unsupervised con-
trastive learning on sentence representation (Giorgi
et al., 2020), text retrieval (Lee et al., 2019),
and language model pre-training tasks (Wu et al.,
2020). Supervised contrastive learning (Khosla
et al., 2020) has also been shown effective in train-
ing dense retrievers (Karpukhin et al., 2020; Qu
et al., 2020). These works typically use batch-wise
contrastive loss, sharing target texts as in-batch
negatives. With such a technique, previous works
have empirically shown that larger batches help
learn better representations. However, computing
loss and updating model parameters with respect

1Our code is at github.com/luyug/GradCache.

to a big batch require encoding all batch data and
storing all activation, so batch size is limited by to-
tal available GPU memory. This limits application
and research of contrastive learning methods under
memory limited setup, e.g. academia. For example,
Lee et al. (2019) pre-train a BERT (Devlin et al.,
2019) passage encoder with a batch size of 4096
while a high-end commercial GPU RTX 2080ti can
only fit a batch of 8. The gradient accumulation
technique, splitting a large batch into chunks and
summing gradients across several backwards, can-
not emulate a large batch as each smaller chunk
has fewer in-batch negatives.

In this paper, we present a simple technique
that thresholds peak memory usage for contrastive
learning to almost constant regardless of the batch
size. For deep contrastive learning, the memory
bottlenecks are at the deep neural network based
encoder. We observe that we can separate the back-
propagation process of contrastive loss into two
parts, from loss to representation, and from repre-
sentation to model parameter, with the latter being
independent across batch examples given the for-
mer, detailed in subsection 3.2. We then show in
subsection 3.3 that by separately pre-computing
the representations’ gradient and store them in a
cache, we can break the update of the encoder into
multiple sub-updates that can fit into the GPU mem-
ory. This pre-computation of gradients allows our
method to produce the exact same gradient update
as training with large batch. Experiments show that
with about 20% increase in runtime, our technique
enables a single consumer-grade GPU to reproduce
the state-of-the-art large batch trained models that
used to require multiple professional GPUs.

2 Related Work

Contrastive Learning First introduced for prob-
ablistic language modeling (Mnih and Teh, 2012),

http://github.com/luyug/GradCache
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Noise Contrastive Estimation (NCE) was later used
by Word2Vec (Mikolov et al., 2013) to learn word
embedding. Recent works use contrastive learning
to unsupervisedly pre-train (Lee et al., 2019; Chang
et al., 2020) as well as supervisedly train dense re-
triever (Karpukhin et al., 2020), where contrastive
loss is used to estimate retrieval probability over
the entire corpus. Inspired by SimCLR (Chen et al.,
2020), constrastive learning is used to learn better
sentence representation (Giorgi et al., 2020) and
pre-trained language model (Wu et al., 2020).

Deep Network Memory Reduction Many ex-
isting techniques deal with large and deep mod-
els. The gradient checkpoint method attempts to
emulate training deep networks by training shal-
lower layers and connecting them with gradient
checkpoints and re-computation (Chen et al., 2016).
Some methods also use reversible activation func-
tions, allowing internal activation in the network to
be recovered throughout back propagation (Gomez
et al., 2017; MacKay et al., 2018). However, their
effectiveness as part of contrastive encoders has
not been confirmed. Recent work also attempts
to remove the redundancy in optimizer tracked pa-
rameters on each GPU (Rajbhandari et al., 2020).
Compared with the aforementioned methods, our
method is designed for scaling over the batch size
dimension for contrastive learning.

3 Methodologies

In this section, we formally introduce the notations
for contrastive loss and analyze the difficulties of
using it on limited hardware. We then show how
we can use a Gradient Cache technique to factor
the loss so that large batch gradient update can be
broken into several sub-updates.

3.1 Preliminaries
Under a general formulation, given two classes of
data S, T , we want to learn encoders f and g for
each such that, given s ∈ S, t ∈ T , encoded repre-
sentations f(s) and g(t) are close if related and far
apart if not related by some distance measurement.
For large S and T and deep neural network based
f and g, direct training is not tractable, so a com-
mon approach is to use a contrastive loss: sample
anchors S ⊂ S and targets T ⊂ T as a training
batch, where each element si ∈ S has a related
element tri ∈ T as well as zero or more specially
sampled hard negatives. The rest of the random
samples in T will be used as in-batch negatives.

Define loss based on dot product as follows:

L = − 1

|S|
∑
si∈S

log
exp(f(si)

>g(tri)/τ)∑
tj∈T exp(f(si)ᵀg(tj)/τ)

(1)
where each summation term depends on the entire
set T and requires fitting all of them into memory.

We set temperature τ = 1 in the following dis-
cussion for simplicity as in general it only adds a
constant multiplier to the gradient.

3.2 Analysis of Computation
In this section, we give a mathematical analysis
of contrastive loss computation and its gradient.
We show that the back propagation process can be
divided into two parts, from loss to representation,
and from representation to encoder model. The
separation then enables us to devise a technique
that removes data dependency in encoder parameter
update. Suppose the function f is parameterized
with Θ and g is parameterized with Λ.

∂L
∂Θ

=
∑
si∈S

∂L
∂f(si)

∂f(si)

∂Θ
(2)

∂L
∂Λ

=
∑
tj∈T

∂L
∂g(tj)

∂g(tj)

∂Λ
(3)

As an extra notation, denote normalized similarity,

pij =
exp(f(si)

ᵀg(tj))∑
t∈T exp(f(si)ᵀg(t))

(4)

We note that the summation term for a particular si
or ti is a function of the batch, as,

∂L
∂f(si)

= − 1

|S|

g(tri)−
∑
tj∈T

pijg(tj)

 , (5)

∂L
∂g(tj)

= − 1

|S|

εj −∑
si∈S

pijf(si)

 , (6)

where

εj =

{
f(sk) if ∃ k s.t. rk = j

0 otherwise
(7)

which prohibits the use of gradient accumulation.
We make two observations here:

• The partial derivative ∂f(si)
∂Θ depends only on

si and Θ while ∂g(tj)
∂Λ depends only on tj and

Λ; and
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• Computing partial derivatives ∂L
∂f(si)

and
∂L

∂g(tj) requires only encoded representations,
but not Θ or Λ.

These observations mean back propagation of
f(si) for data si can be run independently with
its own computation graph and activation if the
numerical value of the partial derivative ∂L

∂si
is

known. Meanwhile the derivation of ∂L
∂si

requires
only numerical values of two sets of representa-
tion vectors F = {f(s1), f(s2), .., f(s|S|)} and
G = {g(t1), g(t2), ..., g(t|T |)}. A similar argu-
ment holds true for g, where we can use represen-
tation vectors to compute ∂L

∂tj
and back propagate

for each g(tj) independently. In the next section,
we will describe how to scale up batch size by pre-
computing these representation vectors.

3.3 Gradient Cache Technique
Given a large batch that does not fit into the avail-
able GPU memory for training, we first divide it
into a set of sub-batches each of which can fit
into memory for gradient computation, denoted as
S = {Ŝ1, Ŝ2, ..},T = {T̂1, T̂2, ..}. The full-batch
gradient update is computed by the following steps.

Step1: Graph-less Forward Before gradient
computation, we first run an extra encoder forward
pass for each batch instance to get its representa-
tion. Importantly, this forward pass runs without
constructing the computation graph. We collect
and store all representations computed.

Step2: Representation Gradient Computation
and Caching We then compute the contrastive
loss for the batch based on the representation from
Step1 and have a corresponding computation graph
constructed. Despite the mathematical derivation,
automatic differentiation system is used in actual
implementation, which automatically supports vari-
ations of contrastive loss. A backward pass is
then run to populate gradients for each represen-
tation. Note that the encoder is not included in
this gradient computation. Let ui = ∂L

∂f(si)
and

vi = ∂L
∂g(ti)

, we take these gradient tensors and
store them as a Representation Gradient Cache,
[u1,u2, ..,v1,v2, ..].

Step3: Sub-batch Gradient Accumulation We
run encoder forward one sub-batch at a time to
compute representations and build the correspond-
ing computation graph. We take the sub-batch’s
representation gradients from the cache and run

back propagation through the encoder. Gradients
are accumulated for encoder parameters across all
sub-batches. Effectively for f we have,

∂L
∂Θ

=
∑
Ŝj∈S

∑
si∈Ŝj

∂L
∂f(si)

∂f(si)

∂Θ

=
∑
Ŝj∈S

∑
si∈Ŝj

ui
∂f(si)

∂Θ

(8)

where the outer summation enumerates each sub-
batch and the entire internal summation corre-
sponds to one step of accumulation. Similarly, for
g, gradients accumulate based on,

∂L
∂Λ

=
∑
T̂j∈T

∑
ti∈T̂j

vi
∂g(ti)

∂Λ
(9)

Here we can see the equivalence with direct large
batch update by combining the two summations.

Step4: Optimization When all sub-batches are
processed, we can step the optimizer to update
model parameters as if the full batch is processed
in a single forward-backward pass.

Compared to directly updating with the full
batch, which requires memory linear to the number
of examples, our method fixes the number of exam-
ples in each encoder gradient computation to be the
size of sub-batch and therefore requires constant
memory for encoder forward-backward pass. The
extra data pieces introduced by our method that re-
main persistent across steps are the representations
and their corresponding gradients with the former
turned into the latter after representation gradient
computation. Consequently, in a general case with
data from S and T each represented with d dimen-
sion vectors, we only need to store (|S|d + |T |d)
floating points in the cache on top of the computa-
tion graph. To remind our readers, this is several
orders smaller than million-size model parameters.

3.4 Multi-GPU Training
When training on multiple GPUs, we need to com-
pute the gradients with all examples across all
GPUs. This requires a single additional cross GPU
communication after Step1 when all representa-
tions are computed. We use an all-gather opera-
tion to make all representations available on all
GPUs. Denote Fn, Gn representations on n-th
GPU and a total of N device. Step2 runs with
gathered representations F all = F 1 ∪ .. ∪ FN and
Gall = G1 ∪ ..∪GN . While F all and Gall are used
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Method Top-5 Top-20 Top-100

DPR - 78.4 85.4

Sequential 59.3 71.9 80.9
Accumulation 64.3 77.2 84.9

Cache 68.6 79.3 86.0
- BSZ = 512 68.3 79.9 86.6

Table 1: Retrieval: We compare top-5/20/100 hit accu-
racy of small batch update (Sequential), accumulated
small batch (Accumulation) and gradient cache (Cache)
systems with DPR reference.

to compute loss, the n-th GPU only computes gra-
dient of its local representations Fn, Gn and stores
them into cache. No communication happens in
Step3, when each GPU independently computes
gradient for local representations. Step4 will then
perform gradient reduction across GPUs as with
standard parallel training.

4 Experiments

To examine the reliability and computation cost of
our method, we implement our method into dense
passage retriever (DPR; Karpukhin et al. (2020))2.
We use gradient cache to compute DPR’s super-
vised contrastive loss on a single GPU. Following
DPR paper, we measure top hit accuracy on the Nat-
ural Question Dataset (Kwiatkowski et al., 2019)
for different methods. We then examine the train-
ing speed of various batch sizes.

4.1 Retrieval Accuracy

Compared Systems 1) DPR: the reference num-
ber taken from the original paper trained on 8
GPUs, 2) Sequential: update with max batch size
that fits into 1 GPU, 3) Accumulation: similar
to Sequential but accumulate gradients and up-
date until number of examples matches DPR setup,
4) Cache: training with DPR setup using our gra-
dient cache on 1 GPU. We attempted to run with
gradient checkpointing but found it cannot scale to
standard DPR batch size on our hardware.

Implementations All runs start with the same
random seed and follow DPR training hyperparam-
eters except batch size. Cache uses a batch size of
128 same as DPR and runs with a sub-batch size
of 16 for questions and 8 for passages. We also
run Cache with a batch size of 512 (BSZ=512) to

2Our implementation is at: https://github.com/
luyug/GC-DPR
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Figure 1: We compare training speed versus the num-
ber of examples per update for gradient cache (Cache)
and gradient accumulation (Accumulation).

examine the behavior of even larger batches. Se-
quential uses a batch size of 8, the largest that fits
into memory. Accumulation will accumulate 16 of
size-8 batches. Each question is paired with a posi-
tive and a BM25 negative passage. All experiments
use a single RTX 2080ti.

Results Accuracy results are shown in Table 1.
We observe that Cache performs better than DPR
reference due to randomness in training. Further in-
creasing batch size to 512 can bring in some advan-
tage at top 20/100. Accumulation and Sequential
results confirm the importance of a bigger batch
and more negatives. For Accumulation which tries
to match the batch size but has fewer negatives,
we see a drop in performance which is larger to-
wards the top. In the sequential case, a smaller
batch incurs higher variance, and the performance
further drops. In summary, our Cache method im-
proves over standard methods and matches the per-
formance of large batch training.

4.2 Training Speed

In Figure 1, we compare update speed of gradient
cache and accumulation with per update example
number of {64, 128, 256, 512, 1024, 2048, 4096}.
We observe gradient cache method can steadily
scale up to larger batch update and uses 20% more
time for representation pre-computation. This extra
cost enables it to create an update of a much larger
batch critical for the best performance, as shown
by previous experiments and many early works.
While the original DPR reports a training time of
roughly one day on 8 V100 GPUs, in practice, with
improved data loading, our gradient cache code can
train a dense retriever in a practical 31 hours on
a single RTX2080ti. We also find gradient check-
point only runs up to batch of 64 and consumes

https://github.com/luyug/GC-DPR
https://github.com/luyug/GC-DPR
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twice the amount of time than accumulation3.

5 Extend to Deep Distance Function

Previous discussion assumes a simple parameter-
less dot product similarity. In general it can also be
deep distance function Φ richly parameterized by
Ω, formally,

dij = d(si, tj) = Φ(f(si), g(tj)) (10)

This can still scale by introducing an extra Distance
Gradient Cache. In the first forward we collect
all representations as well as all distances. We
compute loss with dijs and back propagate to get
wij = ∂L

∂dij
, and store them in Distance Gradient

Cache, [w00, w01, .., w10, ..]. We can then update
Ω in a sub-batch manner,

∂L
∂Ω

=
∑
Ŝ∈S

∑
T̂∈T

∑
si∈Ŝ

∑
tj∈T̂

wij
∂Φ(f(si), g(tj))

∂Ω

(11)
Additionally, we simultaneously compute with the
constructed computation graph ∂dij

∂f(si)
and ∂dij

∂g(tj)

and accumulate across batches,

ui =
∂L

∂f(si)
=

∑
j

wij
∂dij
∂f(si)

(12)

and,

vj =
∂L

∂g(tj)
=

∑
i

wij
∂dij
∂g(tj)

(13)

with which we can build up the Representation
Gradient Cache. When all representations’ gra-
dients are computed and stored, encoder gradi-
ent can be computed with Step3 described in sub-
section 3.3. In philosophy this method links up
two caches. Note this covers early interaction
f(s) = s, g(t) = t as a special case.

6 Conclusion

In this paper, we introduce a gradient cache tech-
nique that breaks GPU memory limitations for
large batch contrastive learning. We propose to con-
struct a representation gradient cache that removes
in-batch data dependency in encoder optimization.
Our method produces the exact same gradient up-
date as training with a large batch. We show the

3We used the gradient checkpoint implemented in Hug-
gingface transformers package

method is efficient and capable of preserving accu-
racy on resource-limited hardware. We believe a
critical contribution of our work is providing a large
population in the NLP community with access to
batch-wise contrastive learning. While many previ-
ous works come from people with industry-grade
hardware, researchers with limited hardware can
now use our technique to reproduce state-of-the-art
models and further advance the research without
being constrained by available GPU memory.
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