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Abstract
Online users today are exposed to mislead-
ing and propagandistic news articles and me-
dia posts on a daily basis. To counter thus,
a number of approaches have been designed
aiming to achieve a healthier and safer online
news and media consumption. Automatic sys-
tems are able to support humans in detecting
such content; yet, a major impediment to their
broad adoption is that besides being accurate,
the decisions of such systems need also to be
interpretable in order to be trusted and widely
adopted by users. Since misleading and pro-
pagandistic content influences readers through
the use of a number of deception techniques,
we propose to detect and to show the use of
such techniques as a way to offer interpretabil-
ity. In particular, we define qualitatively de-
scriptive features and we analyze their suitabil-
ity for detecting deception techniques. We fur-
ther show that our interpretable features can
be easily combined with pre-trained language
models, yielding state-of-the-art results.

1 Introduction

With the rise of the Internet and social media, there
was also a rise of fake (Nguyen et al., 2020), biased
(Baly et al., 2020a,b), hyperpartisan (Potthast et al.,
2018), and propagandistic content (Da San Martino
et al., 2019b). In 2016, news got weaponized, aim-
ing to influence the US Presidential election and
the Brexit referendum, making the general public
concerned about the dangers of the proliferation of
fake news (Howard and Kollanyi, 2016; Faris et al.,
2017; Lazer et al., 2018; Vosoughi et al., 2018;
Bovet and Makse, 2019).

There ware two reasons for this. First, disinfor-
mation disguised as news created the illusion that
the information is reliable, and thus people tended
to lower their barrier of doubt compared to when
information came from other types of sources.

∗ Work conducted while the author was at MIT CSAIL.

Figure 1: Comparison of propaganda prediction in-
terpretability using existing methods. Our proposed
method helps users to interpret propaganda predictions
across various dimensions, e.g., is there a lot of pos-
itive/negative sentiment (can signal the use of loaded
language, which appeals to emotions), are the target
sentence and the document body related to the title,
does the sentence agree/disagree with the title, etc.
Each symbol in the top bar chart represents an infor-
mation source for propaganda detection.

Second, the rise of citizen journalism led to the
proliferation of various online media, and the ve-
racity of information became an issue. In practice,
the effort required to fact-check the news, and its
bias and propaganda remained the same or even
got more complex, compared to traditional media,
since the news was re-edited and passed through
other media channels.

Propaganda aims to influence the audi-
ence with the aim of advancing a specific
agenda (Da San Martino et al., 2020b). Detecting
it is tricky and arguably more difficult than finding
false information in an article. This is because
propagandistic articles are not intended to simply
make up a story with objective errors, but instead
use a variety of techniques to convince people,
such as selectively conveying facts or appealing to
emotions (Jowett and O’Donnell, 2012).
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While many techniques are ethically question-
able, we can think of propaganda techniques as
rhetorical expressions that effectively convey the
author’s opinion (O’Shaughnessy, 2004). Due to
these characteristics, propagandistic articles are of-
ten produced primarily for political purposes (but
are also very common in commercial advertise-
ment), which directly affect our lives, and are com-
monly found even in major news media outlets,
which are generally considered credible.

The importance of detecting propaganda in
the news has been recently emphasized, and re-
search is being conducted from various perspec-
tives (Rashkin et al., 2017; Barrón-Cedeno et al.,
2019a; Da San Martino et al., 2019b). However,
while previous work has done reasonable job at de-
tecting propaganda, it has largely ignored the ques-
tion of why the content is propagandistic, i.e., there
is a lack of interpretability of the system decisions,
and in many cases, there is a lack of interpretability
of the model as well, i.e., it is hard to understand
what the model actually does even for its creators.

Interpretability is indispensable if propaganda
detection systems are to be trusted and accepted
by the users. According to the confirmation bias
theory (Nickerson, 1998), people easily accept new
information that is consistent with their beliefs, but
are less likely to do so when it contradicts what they
already know. Thus, even if a model can correctly
predict which news is propagandistic, if it fails to
explain the reason for that, people are more likely
to reject the results and to stick to what they want to
believe. In order to address this issue, we propose
a new formulation of the propaganda detection task
and a model that can explain the prediction results.
Figure 1 compares the coverage of the explanations
for pre-existing methods vs. our proposal.

Our contributions can be summarized as follows:

• We study how a number of information
sources relate to the presence and the absence
of propaganda in a piece of text.

• Based on this, we propose a general frame-
work for interpretable propaganda detection.

• We demonstrate that our framework is comple-
mentary to and can be combined with large-
scale pre-trained transformers, yielding siz-
able improvements over the state of the art.

2 Task Setup

Given a document d that consists of n sentences
d = {di}ni=1, each sentence should be classified as
belonging to one of 18 propaganda techniques or
as being non-propaganda. The exact definition of
propaganda can be subtly different depending on
the social environment and the individual’s growth
background, and thus it is not surprising that the
propaganda techniques defined in the literature dif-
fer (Miller, 1939; Jowett and O’Donnell, 2012;
Hobbs and McGee, 2014; Torok, 2015; Weston,
2018). The techniques we use in this paper are
shown in Table 1. Da San Martino et al. (2019b)
derived the propaganda techniques from the liter-
ature: they selected 18 techniques and manually
annotated 451 news articles with a total of 20,110
sentences. This dataset1 has fragment-level labels
that can span over multiple sentences and can over-
lap with other labeled spans.

This granular labeling went beyond our scope
and we had to restructure the data. First, we di-
vided the data into sentences. Second, in order to
reduce the complexity of the task, we changed the
multi-label setup to a multi-class one by ignoring
duplicate labels and only allowing one technique
per sentence (the first one), breaking ties at ran-
dom. As a result, we obtained 20,111 sentences
labeled with a non-propaganda class or with one of
18 propaganda techniques. Based on this data, we
built a system for predicting the use of propaganda
techniques at the sentence level, and we provided
the semantic and the structural information related
to propaganda techniques as the basis of the results.

3 Proposed Method

Our method can detect the propaganda for each
sentence in a document, and can explain what pro-
paganda technique was used with interpretable se-
mantic and syntactic features. We further propose
novel features conceived in the study of human
behavioral characteristics. More detail below.

3.1 People Do Not Read Full Articles
Behavior studies have shown that people read less
than 50% of the articles they find online, and often
stop reading after the first few sentences, or even af-
ter the title (Manjoo, 2013). Indeed, we found that
77.5% of our articles use propaganda techniques in
the first five sentences, 65% do so in the first three
sentences, and 31.07% do so in the title.

1http://propaganda.math.unipd.it/

http://propaganda.math.unipd.it/
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Techniques Definition

Name Calling give an object an insulting label
Repetition inject the same message over and over
Slogans use a brief and memorable phrase
Appeal to Fear plant fear against other alternatives
Doubt questioning the credibility
Exaggeration exaggerate or minimize something
Flag-Waving appeal to patriotism
LL appeal to emotions or stereotypes
RtoH the disgusted group likes the idea
Bandwagon appeal to popularity
CO assume a simple cause for the outcome
OIC use obscure expressions to confuse
AA use authority’s support as evidence
B&W Fallacy present only two options among many
TC discourage meaningful discussion
Red Herring introduce irrelevant material to distract
Straw Men refute a nonexistent argument
Whataboutism discredit an opponent’s position

Table 1: List of propaganda techniques and brief def-
initions. LL: Loaded Language, RtoH: Reduction to
Hitlerum, CO: Casual Oversimplification, OIC: Obfus-
cation, Intentional vagueness, Confusion, AA: Appeal
to Authority, TC: Thought-terminating Clichés.

We used three types of features (f rp, f sim, f stn)
to account for these observations, which we de-
scribe below.

3.1.1 Relative Position of the Sentence
We define the relative position of a sentence as
f rp
i = i/n, where i is the sequence number of the

sentence, and n is the total number of sentences in
the article.

3.1.2 Topic Similarity and Stance with
Respect to the Title

The title of an article typically contains the topic
and also the author’s view of that topic. Thus, we
hypothesize that propaganda should also focus on
the topic expressed in the title.

We represent the relationship between the tar-
get sentence and the title by measuring the se-
mantic similarity f sim

i between them as the co-
sine between the sentence-BERT representations
(φ(x)) (Reimers and Gurevych, 2019) of the target
sentence di and of the title d1.

f sim
i =

φ(d1) · φ(di)
|φ(d1)||φ(di)|

(1)

We further model the stance of a target sentence
with respect to the title f stn

i using a distribution
over five classes: related, unrelated, agree, dis-
agree, and discuss. For this, we use a BERT model
(Fang et al., 2019) fine-tuned on the Fake News
Challenge dataset (Hanselowski et al., 2018).

Level Phrases

Clause S, SBAR, SBARQ, SINV, SQ

Phrase ADJP, ADVP, CONJP, FRAG, INTJ,
LST, NAC, NP, NX, PP, PRN, PRT,
QP, RRC, UCP, VP, WHADJP,
WHAVP, WHADVP, WHNP, WHPP, X

Table 2: The syntactic labels we used as features.

The class unrelated indicates that the sentence is
not related to the claim made in the title, while
agree and disagree refer to the sentence agree-
ing/disagreeing with the title, and finally discuss is
assigned when the topic is the same as that in the
title, but there is no stance. We further introduce
the related class as the union of agree, disagree,
and discuss. We use as features the binary classi-
fication labels and also the probabilities for these
five classes.

3.2 Syntactic and Semantic Information
Some propaganda techniques have specific struc-
tural or semantic characteristics. For example,
Loaded Language can be configured to elicit an
emotional response, usually using an emotional
noun phrase. To model this, we define the follow-
ing three features: fdp, f sent, and fdoc.

3.2.1 Syntactic Information
We used a syntactic parser to extract structural fea-
tures about the target sentence fdp

i . Our hypothesis
is that such information could help to discover tech-
niques that have specific structural characteristics
such as Doubt and Black and White Fallacy. We
considered a total of 27 clause-level classes and
phrase-level labels, including the unknown class.
The set is shown in Table 2.

3.2.2 Sentiment of the Sentence
The sentiment of the sentence f sent

i is another im-
portant feature for detecting propaganda. This is
because many propagandistic articles try to con-
vince the readers by appealing to their emotions
and prejudices. Thus, we extract the sentiment us-
ing a sentiment analyzer trained on social media
data (Hutto and Gilbert, 2014), which gives a prob-
ability distribution over the following three classes:
positive, neutral, and negative. It further outputs
compound, which is a one-dimensional normalized,
weighted composite score. We use all four scores
as features.
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3.2.3 Document-Level Prediction

If the document is likely to be propagandistic, then
each of its sentences is more likely to contain propa-
ganda. To model this, we use as a feature fdoc the
score of the document-level propaganda classifier
Proppy (Barrón-Cedeno et al., 2019a). Note that
Proppy is trained on articles labeled using media-
level labels, i.e., using distant supervision. There-
fore, all articles from a propagandistic source are
considered to be propagandistic.

4 Experimental Results

In this section, we present our experimental setup
for interpretable propaganda detection and the eval-
uation results from our experiments. Specifically,
we perform three sets of experiments: (i) in Sec-
tion 4.1, we quantitatively analyze the effectiveness
of the features we proposed in Section 3; (ii) in Sec-
tions 4.2 and 4.3, we compare our feature-based
model to the state-of-the-art model described in
(Da San Martino et al., 2019b) using the experi-
mental setup from that paper; (iii) in Section 4.4,
we analyze the performance of our model with re-
spect to each of the 18 propaganda techniques.

4.1 Quantitative Analysis of the Proposed
Features

Figure 2 shows the absolute value of the covari-
ance between each of our features f and each
of the 18 propaganda techniques T . We calcu-
lated the values of the features on the training and
on the development datasets, and we standardized
their values. Then, we formulated this as a prob-
lem of calculating the covariance between contin-
uous and Bernoulli random variables as follows:
cov(f ,T ) = p · (1−p) · (E[f |T = 1]−E[f |T =
0]).

The total number of sentences used is 16,137
(for the training and for the development datasets,
combined), among which there are 4,584 propa-
gandistic sentences. In Figure 2, the vertical axis
represents the proposed features, and the horizontal
axis shows the individual propaganda techniques
and the total number of instances thereof. Each
square shows an absolute value of the covariance
between some feature and some propaganda tech-
nique. We show absolute values in order to ignore
the direction of the relationship, and we apply a
threshold of 0.001 in order to remove the negligible
relations from the figure.

Although the most frequent propaganda tech-
niques appear in less than 10% of the examples,
they do show qualitatively meaningful associations.
Indeed, we do not expect a feature to correlate with
multiple techniques, as they are fundamentally dif-
ferent. We believe that having features that strongly
correlate with one technique might be an advance-
ment towards detecting that technique.

We can see that the structural information (fdp)
and the sentiment of a sentence (f sent) are closely
associated with certain propaganda techniques. For
example, Loaded Language has a strong correlation
with features identifying words bearing either a pos-
itive or a negative sentiment. This makes sense as
the authors are more likely to use emotional words
rather than neutral ones, and Loaded Language
aims to elicit an emotional response. Similarly,
Doubt has high correlation with certain syntactic
categories.

There are a number of interesting observations
about the other features. For example, the relative
position of sentences (f rp) is associated with more
than half of the propaganda techniques. Moreover,
the similarity to the title (f sim) and the stance with
respect to the title (f stn) are strongly correlated
with the likelihood that the target sentence is pro-
pagandistic. The features that indicate whether a
sentence is related to the subject of the title are
complementary, and thus the covariances are the
same when absolute values are considered.

4.2 Comparison to Existing Approaches

Table 3 shows a performance comparison for our
model vs. existing models on the sentence-level
propaganda detection dataset (Da San Martino
et al., 2019b). This dataset consists of 451 manu-
ally annotated articles, collected from various me-
dia sources, and a total of 20,111 sentences. Unlike
the experimental setting in the previous sections,
the task here is a binary classification one: given a
sentence, the goal is to predict whether it contains
at least one of the 18 techniques or not. For the
performance comparison, we used BERT (Devlin
et al., 2019), which we fine-tuned for sentence-level
classification using the Multi-Granularity Network
(MGN) (Da San Martino et al., 2019b) architecture
on top of the [CLS] tokens (trained end-to-end),
as this model improves the performance for both
tasks by controlling the word-level prediction using
information from the sentence-level prediction and
vice versa.
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Figure 2: Covariance matrix between the 18 propaganda techniques and the proposed features.
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Model P R F1

fine-tuned BERT1 63.20 53.16 57.74
MGN1 60.41 61.58 60.98

Proposed 40.97 73.27 52.55
Proposed w/ emb 49.41 80.87 61.34
Proposed w/ emb - f stn 49.59 81.44 61.64

Table 3: Comparison of our method to pre-existing
propaganda detection models at the sentence level
for binary classification (propaganda vs. non-
propaganda). The models flagged with 1 are described
in (Da San Martino et al., 2019b).

Ablations Precision Recall F1

All 40.97 73.27 52.55
- f rp 40.87 73.17 52.45
- f sim 40.85 70.87 51.83
- f stn 40.07 69.62 50.86
- fdp 37.85 61.54 46.87
- f sent 30.53 77.69 43.83

Table 4: Ablation study for our model on binary propa-
ganda detection at the sentence level.

We followed the original data split when training
and testing the model, which is 14,137/2,006/3,967
for training/development/testing. We trained a
Support Vector Machine (SVM) model2 using the
above-mentioned features and we optimized the
values of the hyper-parameters on the development
dataset using grid search. We used an RBF kernel
with gamma={1e-3, 1e-4} and C={10,100}.

We can see in Table 3 that our proposed model,
which is based on interpretable features, performs
relatively well when compared to fine-tuned BERT
without direct semantic information about the tar-
get sentence. While our model is not state-of-the-
art by itself, we managed to outperform the existing
models and to improve over the state of the art by
simply adding to it sentence embeddings as fea-
tures (Reimers and Gurevych, 2019), which were
not fine-tuned on propaganda data. However, when
the stance of the sentence and the embedding of the
sentence are used together, performance decreases.
This may be due to the two techniques based on
semantic similarity being somewhat inconsistent.

4.3 Ablation Study

Next, we performed an ablation study of the binary
(propaganda vs. non-propaganda) model discussed
in Section 4.2. The results are presented in Table 4.
The values in the last row of the table, i.e., - f sent,
are obtained by applying the document-level clas-
sifier, i.e., the feature fdoc, to all sentences. We
can see that the structural information about the
sentence (fdp) is the best feature for this task. This
is due to the nature of some propaganda techniques
that must have a specific sentence structure, such
as Doubt. In addition, as described above, since
there are many techniques related to inducing emo-
tional responses in the readers, it can be understood
that the sentiment of a sentence may be a good fea-
ture, e.g., for Loaded Language. These results are
consistent with our findings in Section 4.1 above.
Moreover, the novel features we devised based on
a human behavioral study for propaganda detec-
tion (f rp, f sim, f stn) improved the performance
further. Overall, we can see in the table that all fea-
tures contributed to the performance improvement.

4.4 Detecting the 18 Propaganda Techniques

For the experiments described in the following, we
revert back to the task formulation in Section 2, but
we perform a more detailed analysis of the outcome
of the model: for a given article, the system must
predict whether each sentence uses propaganda
techniques, and if so, which of the 18 techniques
in Table 1 it uses.

Table 5 shows the performance of our model
on this task. We can see in the rightmost column
that some techniques appear only in a very limited
number of examples, which explains the very low
results for them, e.g., for Red Herring and Straw
Man. In an attempt to counterbalance the lack of
gold labels for some of the techniques, we used
sentence embeddings with the proposed features to
capture more semantic information. Since this task
is more challenging than the binary classification
problem, we can intuitively expect a performance
reduction, resulting in a weighted average F1 score
of 42.88. However, this formulation of the problem
has the advantage of providing more granular pre-
dictions, thus enriching the propaganda detection
results.

2Ran on Intel Xeon E5-1620 CPU @ 3.60GHz x 4; 16GiB
DDR3 RAM @ 1600MHz.
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Techniques P R F1 #

Non-propaganda 94.37 36.62 52.77 2,927
Name Calling 14.16 21.92 17.20 146
Repetition 4.60 5.59 5.05 143
Slogans 3.75 20.69 6.35 29
Appeal to F. 12.99 38.37 19.41 86
Doubt 5.97 34.85 10.20 66
Exaggeration 6.06 20.90 9.40 67
Flag-Waving 10.98 44.62 17.63 65
Loaded L. 32.80 20.13 24.95 303
Reduction 8.00 22.22 11.76 9
Bandwagon 0.00 0.00 0.00 3
Casual O. 4.03 27.27 7.02 22
O, I, C 0.00 0.00 0.00 5
Appeal to A. 1.32 13.04 2.39 23
B&W fallacy 0.89 4.55 1.49 22
T. clichés 3.67 44.44 6.78 18
Red Herring 0.00 0.00 0.00 11
Straw Men 0.00 0.00 0.00 1
Whataboutism 2.54 14.29 4.32 21
weighted avg 73.59 32.80 42.88 3,967

Table 5: Performance of our proposed method for the
task of detecting the 18 propaganda techniques, as eval-
uated at the sentence level.

5 Related Work

Research on propaganda detection has focused on
analyzing textual content (Barrón-Cedeno et al.,
2019b; Rashkin et al., 2017; Da San Martino
et al., 2019b,a; Yu et al., 2019; Da San Martino
et al., 2020b). Rashkin et al. (2017) developed the
TSHP-17 corpus, which uses document-level an-
notation with four classes: trusted, satire, hoax,
and propaganda. They trained a model using word
n-gram representation and reported that the model
performed well only on articles from sources that
the system was trained on. Barrón-Cedeno et al.
(2019b) developed the QProp corpus with two la-
bels: propaganda vs. non-propaganda. They also
experimented on TSHP-17 and QProp corpora,
where for the TSHP-17 corpus, they binarized
the labels: propaganda vs. any of the other three
categories. Similarly, Habernal et al. (2017, 2018)
developed a corpus with 1.3k arguments annotated
with five fallacies, including ad hominem, red her-
ring, and irrelevant authority, which directly relate
to propaganda techniques. Moreover, Saleh et al.
(2019) studied the connection between hyperparti-
sanship and propaganda.

A more fine-grained propaganda analysis was
proposed by Da San Martino et al. (2019b), who
developed a corpus of news articles annotated with
18 propaganda techniques which was used in two
shared tasks: at SemEval-2020 (Da San Martino
et al., 2020a) and at NLP4IF-2020 (Da San Mar-
tino et al., 2019a). Subsequently, the Prta system
was released (Da San Martino et al., 2020c), and
improved models were proposed, addressing the
limitations of transformers (Chernyavskiy et al.,
2021). The Prta system was used to perform a
study of COVID-19 disinformation and associated
propaganda techniques in Bulgaria (Nakov et al.,
2021a) and Qatar (Nakov et al., 2021b). Finally,
multimodal content was explored in memes using
22 fine-grained propaganda techniques (Dimitrov
et al., 2021a), which was also used in a SemEval-
2021 shared task (Dimitrov et al., 2021b).

6 Conclusion and Future Work

We proposed a model for interpretable propaganda
detection, which can explain which sentence in an
input news article is propagandistic by pointing
out the propaganda techniques used, and why the
model has predicted it to be propagandistic. To
this end, we devised novel features motivated by
human behavior studies, quantitatively deduced the
relationship between semantic or syntactic features
and propaganda techniques, and selected the fea-
tures that were important for detecting propaganda
techniques. Finally, we showed that our proposed
method can be combined with a pre-trained lan-
guage model to yield new state-of-the-art results.

In future work, we plan to expand the dataset
by creating a platform to guide annotators. The
dataset will be updated continuously and released
for research purposes.3 We also plan to release an
interpretable online system, with the aim to foster
a healthier and safer online news environment.
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