
Proceedings of Recent Advances in Natural Language Processing, pages 978–988
Sep 1–3, 2021.

https://doi.org/10.26615/978-954-452-072-4_111

978

Not All Linearizations Are Equally Data-Hungry
in Sequence Labeling Parsing

Alberto Muñoz-Ortiz1, Michalina Strzyz 1,2, David Vilares1
1Universidade da Coruña, CITIC, Spain

2Priberam Labs, Portugal
alberto.munoz.ortiz@udc.es

michalina.strzyz@priberam.pt, david.vilares@udc.es

Abstract

Different linearizations have been proposed to
cast dependency parsing as sequence labeling
and solve the task as: (i) a head selection prob-
lem, (ii) finding a representation of the token
arcs as bracket strings, or (iii) associating par-
tial transition sequences of a transition-based
parser to words. Yet, there is little understand-
ing about how these linearizations behave in
low-resource setups. Here, we first study their
data efficiency, simulating data-restricted se-
tups from a diverse set of rich-resource tree-
banks. Second, we test whether such differ-
ences manifest in truly low-resource setups.
The results show that head selection encodings
are more data-efficient and perform better in
an ideal (gold) framework, but that such ad-
vantage greatly vanishes in favour of bracket-
ing formats when the running setup resembles
a real-world low-resource configuration.

1 Introduction

Dependency parsing (Mel’cuk et al., 1988; Kübler
et al., 2009) has achieved clear improvements in
recent years, to the point that graph-based (Martins
et al., 2013; Dozat et al., 2017) and transition-based
(Ma et al., 2018; Fernández-González and Gómez-
Rodrı́guez, 2019) parsers are already very accurate
on certain setups, such as English news. In this
line, Berzak et al. (2016) have pointed out that the
performance on these setups is already on par with
that expected from experienced human annotators.

Thus, the efforts have started to focus on re-
lated problems such as parsing different domains
or multi-lingual scenarios (Sato et al., 2017; Song
et al., 2019; Ammar et al., 2016), creating faster
models (Volokh, 2013; Chen and Manning, 2014),
designing low-resource and cross-lingual parsing
techniques (Tiedemann et al., 2014; Zhang et al.,
2019), or infusing syntactic knowledge into models
(Strubell et al., 2018; Rotman and Reichart, 2019).

This work will lie in the intersection between
fast parsing and low-resource languages. Recent
work has proposed encodings to cast parsing as
sequence labeling (Spoustová and Spousta, 2010;
Strzyz et al., 2019; Gómez-Rodrı́guez et al., 2020;
Li et al., 2018; Kiperwasser and Ballesteros, 2018).
This approach computes a linearized tree of a sen-
tence of length n in n tagging actions, providing
a good speed/accuracy trade-off. Also, it offers
a naı̈ve way to infuse syntactic information as an
embedding or feature (Ma et al., 2019; Wang et al.,
2019). Such encodings have been evaluated on En-
glish and multi-lingual setups, but there is no study
about their behaviour on low-resource setups, and
what strengths and weaknesses they might exhibit.

Contribution We study the behaviour of lin-
earizations for dependency parsing as sequence
labeling in low-resource setups. First, we explore
their data efficiency, i.e. if they can exploit their
full potential with less supervised data. To do so,
we simulate different data-restricted setups from
a diverse set of rich-resource treebanks. Second,
we shed light about their performance on truly
low-resource treebanks. The goal is to determine
whether tendencies from the experiments in the
previous phase hold when the language is truly
low-resource and when secondary effects of real-
world low-resource setups, such as using predicted
part-of-speech (PoS) tags or no PoS tags, impact
more certain types of linearizations.

2 Related work

Low-resource parsing has been explored from
perspectives such as unsupervised parsing, data
augmentation, cross-lingual learning, or data-
efficiency of models. For instance, on unsupervised
parsing, Klein and Manning (2004) and Spitkovsky
et al. (2010) have worked on generative models to
determine whether to continue or stop attaching de-

979

pendents to a token, while others (Le and Zuidema,
2015; Mohananey et al., 2020) have studied how to
use self-training for unsupervised parsing.

On data augmentation, McClosky et al. (2006)
used self-training to annotate extra data, while oth-
ers have focused on linguistically motivated ap-
proaches to augment treebanks. This is the case
of Vania et al. (2019) or Dehouck and Gómez-
Rodrı́guez (2020), who have proposed methods
to replace subtrees within a given sentence.

On cross-lingual learning, authors such as
Søgaard (2011) or McDonald et al. (2011) trained
delexicalized parsers in a source rich-resource tree-
bank, which are then used to parse a low-resource
target language. Falenska and Çetinoğlu (2017)
explored lexicalized versus delexicalized parsers
and compared them on low-resource treebanks, de-
pending on factors such as the treebank size and
the PoS tags performance. Wang and Eisner (2018)
created synthetic treebanks that resemble the tar-
get language by permuting constituents of distant
treebanks. Naseem et al. (2012) and Täckström
et al. (2013) tackled this same issue, but from the
model side, training on rich-resource languages in
such way the model learns to detect the aspects of
the source languages that are relevant for the target
language. Recently, Mulcaire et al. (2019) used a
LSTM to build a polyglot language model, which
is then used to train on top of it a parser that shows
cross-lingual abilities in zero-shot setups.

On data-efficiency, research work has explored
the impact of the use of different amounts of data,
motivated by the lack of annotated data or by the
lack of quality of it. For instance, Lacroix et al.
(2016a) showed how a transition-based parser with
a dynamic oracle can be used without any modifica-
tions to parse partially annotated data. They found
that this setup is useful to train low-resource parsers
on sentence-aligned texts, from a rich-resource tree-
bank to an automatically translated low-resource
language, where only precisely aligned tokens are
used for the projection in the target dataset. Lacroix
et al. (2016b) studied the effect that pre-processing
and post-processing has in annotation projection,
and concluded that quality should prevail over
quantity. Related to training with restricted data,
Anderson and Gómez-Rodrı́guez (2020) showed
that when distilling a graph-based parser for faster
inference time, models with smaller treebanks suf-
fered less. Dehouck et al. (2020) also distilled mod-
els for Enhanced Universal Dependencies (EUD)

parsing with different amounts of data, observ-
ing that less training data usually translated into
slightly lower performance, while offering better
energy consumption. Garcia et al. (2018) showed,
in the context of Romance languages, that peeking
samples from related languages and adapting them
to the target language is useful to train a model
that performs on par with one trained on fully (but
still limited) manually annotated data. Restricted
to constituent parsing, Shi et al. (2020) analyzed
the role of the dev data in unsupervised parsing.
They pointed out that many unsupervised parsers
use the score on the dev set as a signal for hyper-
parameter updates, and show that by using a hand-
ful of samples from that development set to train
a counterpart supervised model, the results outper-
formed those of the unsupervised setup. Finally,
there is work describing the impact that the size of
the parsing training data has on downstream tasks
that use syntactic information as part of the input
(Sagae et al., 2008; Gómez-Rodrı́guez et al., 2019).

3 Preliminaries

In what follows, we review the existing families of
encodings for parsing as sequence labeling (§3.1)
and the models that we will be using (§3.2).

3.1 Encodings for sequence labeling
dependency parsing

Sequence labeling assigns one output label to ev-
ery input token. Many problems are cast as se-
quence labeling due to its fast and simple nature,
like PoS tagging, chunking, super tagging, named-
entity recognition, semantic role labeling, and pars-
ing. For dependency parsing, to create a linearized
tree it suffices to assign each word wi a discrete la-
bel of the form (xi, li), where li is the dependency
type and xi encodes a subset of the arcs of the tree
related to such word. Although only labels seen
in the training data can be predicted, Strzyz et al.
(2020) show that the coverage is almost complete.
We distinguish three families of encodings, which
we now review (see also Figure 1).

Head-selection encodings (Spoustová and
Spousta, 2010; Li et al., 2018; Strzyz et al., 2019).
Each word label component xi encodes its head as
an index or an (abstracted) offset. This can be done
by labeling the target word with the (absolute)
index of its head token, or by using a relative
offset that accounts for the difference between the
dependent and head indexes. In this work, we

980

ROOT Ons demokrasie is gesond .
Our democracy is healthy

rph +1@NOUN +1@ADJ +1@ADJ -1@ROOT -1@AUX

rxb . <\ < </\\ >

2pb . . <\ . < . <\\ /* . >*

ahtb SH LA SH SH LA LA SH RA SH

ctb SH SH LA SH SH LA LA SH NOARC

NOARC RA RA

Figure 1: Example of the linearizations used in this
work in a sentence from the AfrikaansAfriBooms treebank.
Dependency types are omitted for simplicity.

chose a relative PoS-based encoding (rph) that
has shown to perform consistently better among
the linerarizations of this family. Here, xi is a tuple
(pi, oi), such that if oi > 0 the head of wi is the
oith word to the right of wi whose PoS tag is pi; if
oi < 0, the head of wi is the oith word to the left
of wi whose PoS tag is pi. Among its advantages,
we find the capacity to encode any non-projective
tree and words being directly and only linked to
its head, but on the other hand it is dependent on
external factors (e.g. PoS tags).1

Bracketing-based encodings (Yli-Jyrä and
Gómez-Rodrı́guez, 2017). Each xi encodes a
sort of incoming and outgoing arcs of a given
word and its neighbors, represented as bracket
strings. More particularly, in Strzyz et al. (2019)
each xi is a string that follows the expression
(<)?((\)*|(/)*)(>)?, where < means that
wi−1 has an incoming arc from the right, k times
\ means that wi has k outgoing arcs towards the
left, k times / means that wi−1 has k outgoing
arcs to the right, and > means that wi has an arc
coming from the left. This encoding produces a
compressed label set while not relying on external
features, such as PoS tags. However, when it
comes to non-projectivity, it can only analyze
crossing arcs in opposite directions. To counteract
this, it is possible to define a linearization using a
second independent pair of brackets (denoted with
‘*’) to encode a 2-planar tree (Strzyz et al., 2020).2

In this work we are considering experiments with
both the restricted non-projective (rxb) and the

1Other head-selection variants encode arcs based on word
properties different than PoS tags (Lacroix, 2019).

2An x-planar tree can be separated into x planes, where
the arcs belonging to the same plane do not cross.

2-planar bracketing encodings (2pb).

Transition-based encodings (Gómez-
Rodrı́guez et al., 2020). Each xi encodes a
sub-sequence of the transitions to be generated
by a left-to-right transition-based parser. Given
a sequence of transitions t = t1, ..., tm with
exactly n read transitions3, it splits t into n chunks
and assigns the ith chunk to the ith word. Its
main advantage is more abstract, allowing to
automatically derive encodings relying on any
left-to-right transition based parser (including
dependency, constituency and semantic parsers).
According to Gómez-Rodrı́guez et al. (2020),
they produce worse results than the bracketing
encodings, but we include them in this work for
completeness. In particular, we consider mappings
from arc-hybrid (Kuhlmann et al., 2011) (ahtb)
and Covington (2001) (ctb), which are projec-
tive and non-projective transition-based algorithms.

To post-process corrupted predicted labels, we fol-
low the heuristics described in each encoding paper.

3.2 Sequence labeling framework
Notes Let w be a sequence of words
[w1, w2, ..., w|w|], then ~w is a sequence of
word vectors that will be used as the input to
our models. Each ~wi will be a concatenation
of: (i) a word embedding, (ii) a second word
embedding computed through a char-LSTM, (iii)
and optionally a PoS tag embedding (we will
discuss more about this last point in §4).

We use bidirectional long short-term memory net-
works (biLSTMs; Hochreiter and Schmidhuber,
1997; Schuster and Paliwal, 1997) to train our se-
quence labeling parsers. BiLSTMs are a strong
baseline used in recent work across a number
of tasks (Yang and Zhang, 2018; Reimers and
Gurevych, 2017). More particularly, we use two
layers of biLSTMs, and each hidden vector ~hi from
the last biLSTM layer (associated to each input vec-
tor ~wi) is fed to separate feed-forward networks that
are in charge of predicting each of the label compo-
nents of the linearization (i.e. xi and li) using soft-
maxes, relying on hard-sharing multi-task learning
(MTL; Caruana, 1997; Ruder, 2017). Following

3In left-to-right parsers, a read transition is an action that
puts a word from the buffer into the stack. For algorithms such
as the arc-standard or arc-hybrid this is only the shift ac-
tion, while in the arc-eager both the shift and right-arc
actions are read transitions. See also (Nivre, 2008).

981

§3.1, for all the encodings, except the 2-planar en-
coding, we will use a 2-task MTL setup: one task
will predict xi according to each encoding specifics,
and the other one will predict the dependency type,
li. For the 2-planar bracketing encoding, which
uses a second pair of brackets to predict the arcs
from the second plane, we use instead a 3-task MTL
setup, where the difference is that the prediction
of xi is split into two tasks: one that predicts the
first plane brackets and another task that predicts
the brackets from the second plane.4

It is worth noting that for this particular work we
skipped computational expensive models, such as
BERT (Devlin et al., 2019). There are three main
reasons for this. First, the experiments in this paper
imply training a total of 760 parsing models (see
more details in §4), making the training on BERT
(or variants) less practical. Second, there is not
a multilingual or specific-language BERT model
for all languages, and this could be the source of
uncontrolled variables that could have an impact on
the performance, and thereof on the conclusions.5

Third, even under the assumption of all language-
specific BERT models being available, these are
pre-trained on different data that add extra noise,
which could be undesirable for our purpose.

4 Methodology and experiments

We design two studies, detailed in §4.1 and 4.2:

1. We explore if some encodings are more data-
efficient than others. To do so, we will sim-
ulate data-restricted setups, selecting rich-
resource languages and using partial data. The
goal is to test if some encodings are learnable
with fewer data, or if other ones could obtain a
better performance instead, but only under the
assumption of very large data being available.

2. We focus on truly low-resource setups. This
can be seen as a confirmation experiment to
see if the findings under data-restricted setups
hold for under-studied languages, and to con-
firm what sequence labeling linearizations are
more recommendable under these conditions.

4We used 3 tasks because it establishes a more fair com-
parison in terms of label sparsity and follows previous work.

5Also, for the case of multilingual models, there is liter-
ature that concludes different about what makes a language
beneficial for other under a BERT-based framework. For in-
stance, Wu and Dredze (2019) conclude that sharing a large
amount sub-word pieces is important, while authors such as
Pires et al. (2019) or Artetxe et al. (2020) state otherwise.

Experimental setups For experiments 1 and 2,
we consider three setups that might have a different
impact across the encodings:

1. Gold PoS tags setup: We train and run the
models under an ideal framework that uses
gold PoS tags as part of the input. The rea-
son is that encodings such as rph rely on PoS
tags to rebuild the linearized tree. This way,
using gold PoS tags helps estimate the opti-
mal data-efficiency and learnability of these
parsers under perfect (but unreal) conditions.

2. Predicted PoS tags setup: Setup 1 cannot truly
reflect the performance that the encodings
would obtain under real-world data-restricted
conditions. Predicted PoS tags will be less
helpful because their quality will degrade.
This issue can affect more to the rph encod-
ing, since it requires them to rebuild the tree
from the labels, and miss-predicted PoS tags
could propagate errors during decoding. Here,
we train taggers for each treebank, using the
same architecture used for the parsers. To be
coherent with the data-restricted setups, tag-
gers will be trained on the same amount of
data used for the parsers. Appendix A dis-
cusses the PoS taggers performance.

3. No PoS tags setup: We train the models with-
out using any PoS tags as part of the input. It is
worth noting that the setup is somewhat forced
for the rph encoding, since we will still need
to externally run the taggers to obtain the PoS
tags and rebuild the tree. Yet, we include the
PoS-based encoding for completeness, and to
have a better understanding about how differ-
ent families of encodings suffer from not (or
minimally) using PoS tags. For instance, that
is a simple way to obtain simpler and faster
parsing models, as part of the pipeline does
not need to be executed, and the input vectors
to the models will be smaller, translating into
faster executions too. Also, in low-resource
setups, PoS tags might not be available or the
tagging models are not accurate enough to
help deep learning models (Zhou et al., 2020;
Anderson and Gómez-Rodrı́guez, 2021).

4.1 Experiment 1: Encodings data-efficiency
Data We chose 11 treebanks from UD2.7
(Zeman et al., 2020) with more than 10 000
training sentences: GermanHDT, CzechPDT,

982

RussianSynTagRus, Classical ChineseKyoto,
PersianPDT, EstonianEDT, RomanianNonstandard,
KoreanKaist, Ancient GreekPROIEL, HindiHDTB and
LatvianLVTB. They consider different families,
scripts and levels of non-projectivity (see Appendix
B). To simulate data-restricted setups, we created
training subsets of 100, 500, 1 000, 5 000 and
10 000 samples, as well as the total training set.
The training sets were shuffled before the division.

Setup To assess the data-efficiency, we proceed
as follows. As the rph encoding has showed
the strongest performance in previous work for
multi-lingual setups (Strzyz et al., 2019; Gómez-
Rodrı́guez et al., 2020), we are taking these models
as the reference and an a priori upper bound. Then,
we compute the difference of the mean UAS (across
the 11 treebanks) between the rph and each of the
other linearizations, for all the models trained up to
10 000 sentences. The goal is to determine which
encodings suffer more when training with limited
data and monitor to what extent the tendency holds
as more data is introduced. We compute the statis-
tically significant difference between the rph and
the other encodings, using the p-value (p < 0.05)
of a paired t-test on the scores distribution, follow-
ing recommended practices for dependency parsing
(Dror et al., 2018). Finally, we show specific results
for the models trained on the whole treebanks. In
this work, we will report UAS over LAS, since the
differences in the encodings lie in how they encode
the dependency arcs and not their types.

Results Tables 1, 2 and 3 show the difference of
the mean UAS for each encoding with respect to
the rph one; for the gold PoS tags, predicted PoS
tags and no PoS tags setups, respectively. For the
gold PoS tags setup, the rph encoding performs
better than the bracketing (rxb and 2pb) and the
transition-based (ahtb and ctb) encodings, for all
the training splits. Yet, the gap narrows as the
number of training sentence increases. For the
predicted PoS tags setup, the relative PoS-based
encoding performs better for the smallest set of
100 sentences, but slightly worse for the sets of
500 and 1 000 sentences with respect to rxb and
2pb. With more data, the tendency resembles the
one from the gold PoS tags setup. Third, for the
setup without PoS tags, the tendency reverses. The
bracketing encodings perform better, particularly
for the smallest test sets, but the gap narrows as the
number of training sentences increases.

Sentences rph rxb 2pb ahtb ctb

100 68.34 -2.15 -2.42 -5.82 -9.96
500 76.94 -1.58 -1.5 -5.21 -9.35
1 000 80.29 -1.42 -1.43 -5.16 -8.9
5 000 86.54 -1.16 -1.26 -3.62 -7.04
10 000 88.26 -0.8 -0.72 -3.52 -5.67

Table 1: Average UAS difference for the subsets of the
rich-resource treebanks under the gold PoS tags setup.
Blue and yellow cells show the UAS increase and de-
crease with respect to the rph encoding, respectively.

Sentences rph rxb 2pb ahtb ctb

100 41.87 -0.42 -0.19 -1.9 -3.59
500 63.45 -0.01 0.14 -1.96 -5.73
10̇00 68.10 0.25 0.17 -2.44 -5.53
5 000 78.56 -0.62 -0.63 -2.53 -5.44
10 000 82.29 -0.37 -0.36 -2.49 -4.44

Table 2: Average UAS difference for the subsets of the
rich-resource treebanks under the predicted PoS tags
setup.

Sentences rph rxb 2pb ahtb ctb

100 35.60 9.06 9.31 7.57 4.83
500 58.63 3.04 2.45 0.99 -2.26
1 000 63.99 3.59 3.42 0.83 -2.24
5 000 75.57 1.47 1.55 -0.19 -3.07
10 000 79.90 1.22 1.54 -0.87 -2.93

Table 3: Average UAS difference for the subsets of the
rich-resource treebanks under the no PoS tags setup.

Discussion The results from the experiments
shed light about differences existing across differ-
ent encodings and running configurations. First,
under an ideal, gold environment, the rph encod-
ing makes a better use of limited data than the
bracketing and transition-based encodings. Sec-
ond, the predicted PoS tag setup shows that the
performance of the PoS taggers can have a sig-
nificant impact on the performance for the rph

encoding. More interestingly, weaknesses from
different encodings seem to manifest to different
extents depending on the amount of training data.
For instance, when training data is scarce (100 sen-
tences), bracketing encodings still cannot outper-
form the rph encoding, despite the lower perfor-
mance of the PoS taggers. However, when working
with setups ranging from 500 to 1000 sentences,
there is a slight advantage of the bracketing en-
codings with respect to rph, suggesting that with
this amount of data, bracketing encodings could
be the preferable choice, since they seem able to
exploit their potential in a better way than the rph

encoding can exploit not fully accurate PoS tags.
With more training samples, the relative PoS-based

983

encoding is again the best performing model across
the board. In §4.2 we will discuss deeper how
for truly low-resources languages the advantage in
favour of bracketing representations exacerbates
more for the predicted and no PoS tags setups.

rph rxb 2pb ahtb ctb

grc 83.09 79.89−− 81.7− 78.57−− 79.86−−

lzh 90.21 89.56− 89.24− 89.04−− 89.18−

cs 91.61 90.49−− 90.91−− 88.18−− 85.64−−

et 85.62 84.79− 84.91− 81.86−− 81.11−−

de 96.69 95.95−− 96.38−− 95.15−− 86.51−−

hi 94.69 94.09−− 94.43− 93.05−− 85.02−−

ko 87.26 86.24−− 86.52− 85.68−− 84.06−−

lv 85.3 83.88− 84.01− 80.88−− 81.38−−

fa 92.61 92.07− 92.44− 90.45−− 87.09−−

ro 90.49 89.68− 89.63−− 87.39−− 86.38−−

ru 91.23 90.1−− 90.1−− 88.19−− 84.96−−

Avg 89.89 88.79 89.12 87.13 84.65

Table 4: UAS for the rich-resource treebanks, using the
whole training set and the gold PoS tags setup. The red
(- -) and green cells (++) show that a given encoding per-
formed worse or better than the rph model, and that the
difference is statistically significant. Lime and yellow
cells mean that there is no a significant difference be-
tween a given encoding and the rph, appending a + or
a − when they performed better or worse than the rph.

rph rxb 2pb ahtb ctb

grc 80.2 77.61−− 79.21− 76.49−− 77.71−

lzh 79.93 79.8− 79.42− 79.41− 79.54−

cs 90.04 88.93−− 89.34−− 86.67−− 84.25−−

et 81.07 80.36− 80.34− 77.71−− 76.95−−

de 95.85 95.14−− 95.54−− 94.34−− 85.79−−

hi 92.22 91.76− 92.21− 90.72−− 83.24−−

ko 84.25 83.44− 83.42− 82.98−− 81.25−−

lv 70.65 71.98++ 71.08+ 68.9− 68.97−

fa 90.39 89.8− 90.32− 88.27−− 85.28−−

ro 87.32 86.64− 86.49− 84.44−− 83.5−−

ru 88.71 88.13− 88.24− 85.93−− 82.96−−

Avg 85.51 84.87 85.06 83.26 80.86

Table 5: UAS for the rich-resource treebanks, using the
whole training set and the predicted PoS tags setup.

Tables 4, 5 and 6 show the UAS on the full train-
ing sets of the rich-resource treebanks for the gold
PoS tags, predicted PoS tags, and no PoS tags se-
tups. The goal is to show if under large amounts
of data some of the encodings could perform on
par with rph, since Tables 1 and 2 indicated that
differences in performance across encodings de-
creased when the number of training samples in-
crease. Although performance across encodings
becomes closer, their ranking remains the same.

rph rxb 2pb ahtb ctb

grc 77.84 77.41− 79.16+ 75.64− 76.99−

lzh 79.99 81.02+ 80.75+ 81.11++ 81.42++

cs 88.67 88.2− 88.64− 85.8−− 84.23−−

et 77.85 79.69++ 79.99++ 77.15− 76.27−

de 94.51 95.09++ 95.41++ 94.18− 83.54−−

hi 89.43 91.7++ 91.98++ 90.72++ 82.86−−

ko 79.39 82.18++ 82.15++ 81.88++ 80.3++

lv 62.56 71.17++ 72.38++ 66.78++ 69.38++

fa 89.14 90.39++ 90.48++ 88.49− 84.54−−

ro 85.28 86.41+ 86.94++ 84.25− 83.04−−

ru 83.35 83.98++ 84.5++ 83.42++ 80.26−−

Avg 82.55 84.29 84.76 82.67 80.26

Table 6: UAS for the rich-resource treebanks, using the
whole training set and the no PoS tags setup.

rph rxb 2pb ahtb ctb

af 88.02 85.7−− 85.48−− 81.84−− 78.6−−

cop 88.73 88.43− 88.72− 85.5−− 84.35−−

fo 84.04 83.76− 84.09+ 81.78−− 79.53−−

hu 79.75 76.14−− 76.13−− 71.66−− 64.27−−

lt 51.98 50.28− 50.19− 45.0− 46.6−

mt 81.81 81.05− 80.82− 76.78−− 74.98−−

mr 77.43 76.46− 75.97− 76.94− 73.54−

ta 74.96 73.1− 71.9− 71.74− 66.01−−

te 90.01 91.26+ 90.43+ 90.01+ 89.46−

wo 86.19 84.64−− 84.51−− 80.65−− 77.43−−

Avg 80.29 79.08 78.82 76.19 73.48

Table 7: UAS for the low-resource treebanks for the
gold PoS tags setup.

4.2 Experiment 2: Encodings performance
on truly low-resource languages

Data We choose the 10 smallest treebanks6

(in terms of training sentences) that had
a dev set: LithuanianHSE, MarathiUFAL,
HungarianSzeged, TeluguMTG, TamilTTB,
FaroeseFarPaHC, CopticScriptorium, MalteseMUDT,
WolofWTB and AfrikaansAfriBooms (see Appendix
B). Their sizes range between 153 and 1350
training sentences, most being around or between
500 and 1 000 (see Appendix C).

Setup We rerun a subset of the experiments from
§4.1, to check if the results follow the same trends,
and conclusions are therefore similar.

Results Tables 7, 8 and 9 show the UAS for each
encoding and treebank for the gold PoS tags setup,
the predicted PoS tags setup and the no PoS tags
setup, respectively. Again, under perfect condi-
tions, the relative PoS-based encoding performs
overall better, except for Telugu, which seems to

6Code switching treebanks and small treebanks of rich-
resource languages were not considered.

984

rph rxb 2pb ahtb ctb

af 81.84 80.29− 79.9− 77.3−− 73.61−−

cop 85.77 86.25+ 85.92+ 83.14−− 81.84−−

fo 77.04 76.97− 77.52+ 75.23− 74.24−

hu 70.52 68.51− 68.77− 64.98−− 58.37−−

lt 30.28 34.53+ 33.11+ 31.23+ 29.91−

mt 74.6 75.64+ 75.07+ 71.17−− 70.35−−

mr 66.99 67.96+ 67.23+ 68.93+ 67.23+

ta 57.11 60.73+ 57.57+ 58.77+ 55.51−

te 86.41 87.93+ 87.93+ 86.96+ 86.69+

wo 76.88 76.4− 76.3− 73.24−− 70.84−−

Avg 70.74 71.52 70.93 69.10 66.86

Table 8: UAS for the low-resource treebanks for the
predicted PoS tags setup.

rph rxb 2pb ahtb ctb

af 79.86 80.78+ 80.07+ 75.47−− 73.76−−

cop 84.36 85.76+ 85.13+ 83.07− 81.28−−

fo 73.98 77.08++ 77.04++ 75.07+ 73.67−

hu 63.63 65.21+ 64.8+ 62.04− 56.17−−

lt 26.89 34.62++ 35.38++ 34.06++ 32.92+

mt 70.95 75.5++ 75.3++ 71.69+ 70.32−

mr 64.08 66.75+ 67.96+ 69.66+ 64.56+

ta 52.79 60.03++ 56.61+ 59.58++ 54.95+

te 85.44 88.49+ 88.63+ 87.1+ 86.82+

wo 73.11 77.17++ 76.95++ 74.01+ 70.86−

Avg 67.51 71.14 70.79 69.18 66.53

Table 9: UAS for the low-resource treebanks for the no
PoS tags setup.

be an outlier. For the predicted PoS tags setup, the
bracketing-based encodings perform consistently
better for most of the treebanks. For the no PoS
tags setup, the bracketing-based encodings obtain,
on average, more than 3 points than the relative
PoS-head selection encoding, which even performs
worse than the transition-based encodings.

Discussion These experiments help elaborate on
the findings of §4.1. With respect to the ideal gold
PoS tags setup, things do not change much, and
the relative PoS-based encoding performs over-
all better. Still, this should not be taken as a
ground truth about how the encodings will per-
form in real-world setups. For instance, for the
predicted PoS tags setup, the bracketing-based en-
codings perform consistently better in most of the
treebanks. This reinforces some of the suspicions
found in the experiments of Table 2, where training
on rich-resource languages, but with limited data,
revealed that bracketing encodings performed bet-
ter, although just slightly. Also, it is worth noting
that most of the low-resource treebanks tested in
this work have a number of training sentences in
the range where the bracketing-based encodings

performed better for the predicted PoS tags setup
in Table 2, i.e. from 500 to 1 000 sentences (see
Appendix C). Yet, the better performance of brack-
eting encodings is more evident when running on
real low-resource treebanks. This does not only
suggest that the bracketing encodings are better for
real low-resource sequence labeling parsing, but it
could also pose more general limitations for other
low-resource NLP tasks that are evaluated only on
‘faked’ low-resource setups, and that could lead to
incomplete or even misleading conclusions.

Overall, the results suggest that bracketing en-
codings are the most suitable linearizations for real
low-resource sequence labeling parsing.

5 Conclusion

We have studied sequence labeling encodings
for dependency parsing in low-resource setups.
First, we explored which encodings are more data-
efficient under different conditions that include the
use of gold PoS tags, predicted PoS tags and no
PoS tags as part of the input. By restricting training
data for rich-resource treebanks, we observe that al-
though bracketing encodings are less data-efficient
than head-selection ones under ideal conditions,
this disadvantage can vanish when the input condi-
tions are not gold and data is limited. Second, we
studied their performance under the same running
configurations, but on truly low-resource languages.
These results show more clearly the greatest utility
of bracketing encodings over the rest of the ones
when training data is limited and the quality of ex-
ternal factors, such as PoS tags, is affected by the
low-resource nature of the problem.

Acknowledgements

This work is supported by a 2020 Leonardo Grant
for Researchers and Cultural Creators from the FB-
BVA.7 The work also receives funding from the
European Research Council (FASTPARSE, grant
agreement No 714150), from ERDF/MICINN-
AEI (ANSWER-ASAP, TIN2017-85160-C2-1-
R, SCANNER, PID2020-113230RB-C21), from
Xunta de Galicia (ED431C 2020/11), and from
Centro de Investigación de Galicia ‘CITIC’, funded
by Xunta de Galicia and the European Union (Eu-
ropean Regional Development Fund- Galicia 2014-
2020 Program) by grant ED431G 2019/01.

7FBBVA accepts no responsibility for the opinions, state-
ments and contents included in the project and/or the results
thereof, which are entirely the responsibility of the authors.

985

References
Waleed Ammar, George Mulcaire, Miguel Ballesteros,

Chris Dyer, and Noah A Smith. 2016. Many lan-
guages, one parser. Transactions of the Association
for Computational Linguistics, 4:431–444.

Mark Anderson and Carlos Gómez-Rodrı́guez. 2020.
Distilling neural networks for greener and faster de-
pendency parsing. In Proceedings of the 16th In-
ternational Conference on Parsing Technologies and
the IWPT 2020 Shared Task on Parsing into En-
hanced Universal Dependencies, pages 2–13, On-
line. Association for Computational Linguistics.

Mark Anderson and Carlos Gómez-Rodrı́guez. 2021.
What taggers fail to learn, parsers need the most.
arXiv preprint arXiv:2104.01083.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the cross-lingual transferability of mono-
lingual representations. In Proceedings of the 58th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 4623–4637, Online. Asso-
ciation for Computational Linguistics.

Yevgeni Berzak, Yan Huang, Andrei Barbu, Anna Ko-
rhonen, and Boris Katz. 2016. Anchoring and agree-
ment in syntactic annotations. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2215–2224, Austin,
Texas. Association for Computational Linguistics.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750, Doha, Qatar. Association
for Computational Linguistics.

Michael A Covington. 2001. A fundamental algorithm
for dependency parsing. In Proceedings of the 39th
annual ACM southeast conference, volume 1. Cite-
seer.

Mathieu Dehouck, Mark Anderson, and Carlos Gómez-
Rodrı́guez. 2020. Efficient EUD parsing. In Pro-
ceedings of the 16th International Conference on
Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Dependen-
cies, pages 192–205, Online. Association for Com-
putational Linguistics.

Mathieu Dehouck and Carlos Gómez-Rodrı́guez. 2020.
Data augmentation via subtree swapping for de-
pendency parsing of low-resource languages. In
Proceedings of the 28th International Conference
on Computational Linguistics, pages 3818–3830,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of

deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20–30, Vancouver, Canada. Association for
Computational Linguistics.

Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Re-
ichart. 2018. The hitchhiker’s guide to testing statis-
tical significance in natural language processing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1383–1392, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Agnieszka Falenska and Özlem Çetinoğlu. 2017. Lexi-
calized vs. delexicalized parsing in low-resource sce-
narios. In Proceedings of the 15th International
Conference on Parsing Technologies, pages 18–24,
Pisa, Italy. Association for Computational Linguis-
tics.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2019. Left-to-right dependency parsing
with pointer networks. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 710–716, Minneapolis, Minnesota.
Association for Computational Linguistics.

Marcos Garcia, Carlos Gómez-Rodrı́guez, and
Miguel A Alonso. 2018. New treebank or repur-
posed? on the feasibility of cross-lingual parsing
of romance languages with universal dependencies.
Natural Language Engineering, 24(1):91–122.

Carlos Gómez-Rodrı́guez, Iago Alonso-Alonso, and
David Vilares. 2019. How important is syntactic
parsing accuracy? an empirical evaluation on rule-
based sentiment analysis. Artificial Intelligence Re-
view, 52(3):2081–2097.

Carlos Gómez-Rodrı́guez, Michalina Strzyz, and
David Vilares. 2020. A unifying theory of transition-
based and sequence labeling parsing. In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 3776–3793, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

https://aclanthology.org/Q16-1031
https://aclanthology.org/Q16-1031
https://doi.org/10.18653/v1/2020.iwpt-1.2
https://doi.org/10.18653/v1/2020.iwpt-1.2
https://arxiv.org/abs/2104.01083
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/2020.acl-main.421
https://doi.org/10.18653/v1/D16-1239
https://doi.org/10.18653/v1/D16-1239
https://link.springer.com/article/10.1023/A:1007379606734
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.7335&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.136.7335&rep=rep1&type=pdf
https://doi.org/10.18653/v1/2020.iwpt-1.20
https://www.aclweb.org/anthology/2020.coling-main.339
https://www.aclweb.org/anthology/2020.coling-main.339
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/K17-3002
https://doi.org/10.18653/v1/P18-1128
https://doi.org/10.18653/v1/P18-1128
https://www.aclweb.org/anthology/W17-6303
https://www.aclweb.org/anthology/W17-6303
https://www.aclweb.org/anthology/W17-6303
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://ruc.udc.es/dspace/handle/2183/19896
https://ruc.udc.es/dspace/handle/2183/19896
https://ruc.udc.es/dspace/handle/2183/19896
https://link.springer.com/article/10.1007/s10462-017-9584-0
https://link.springer.com/article/10.1007/s10462-017-9584-0
https://link.springer.com/article/10.1007/s10462-017-9584-0
https://www.aclweb.org/anthology/2020.coling-main.336
https://www.aclweb.org/anthology/2020.coling-main.336
https://direct.mit.edu/neco/article/9/8/1735/6109/Long-Short-Term-Memory

986

Eliyahu Kiperwasser and Miguel Ballesteros. 2018.
Scheduled multi-task learning: From syntax to trans-
lation. Transactions of the Association for Computa-
tional Linguistics, 6:225–240.

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: Models of de-
pendency and constituency. In Proceedings of the
42nd Annual Meeting of the Association for Com-
putational Linguistics (ACL-04), pages 478–485,
Barcelona, Spain.

Sandra Kübler, Ryan McDonald, and Joakim Nivre.
2009. Dependency parsing. Synthesis lectures on
human language technologies, 1(1):1–127.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 673–682, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Ophélie Lacroix. 2019. Dependency parsing as
sequence labeling with head-based encoding and
multi-task learning. In Proceedings of the Fifth In-
ternational Conference on Dependency Linguistics
(Depling, SyntaxFest 2019), pages 136–143.

Ophélie Lacroix, Lauriane Aufrant, Guillaume Wis-
niewski, and François Yvon. 2016a. Frustratingly
easy cross-lingual transfer for transition-based de-
pendency parsing. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1058–1063, San Diego,
California. Association for Computational Linguis-
tics.

Ophélie Lacroix, Guillaume Wisniewski, and François
Yvon. 2016b. Cross-lingual dependency transfer :
What matters? assessing the impact of pre- and post-
processing. In Proceedings of the Workshop on Mul-
tilingual and Cross-lingual Methods in NLP, pages
20–29, San Diego, California. Association for Com-
putational Linguistics.

Phong Le and Willem Zuidema. 2015. Unsupervised
dependency parsing: Let’s use supervised parsers.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 651–661, Denver, Colorado. Association for
Computational Linguistics.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 3203–3214, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Chunpeng Ma, Akihiro Tamura, Masao Utiyama, Ei-
ichiro Sumita, and Tiejun Zhao. 2019. Improving
neural machine translation with neural syntactic dis-
tance. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2032–2037, Minneapolis, Minnesota. Association
for Computational Linguistics.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414, Melbourne, Australia.
Association for Computational Linguistics.

André FT Martins, Miguel B Almeida, and Noah A
Smith. 2013. Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
617–622.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Reranking and self-training for parser adapta-
tion. In Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th An-
nual Meeting of the Association for Computational
Linguistics, pages 337–344, Sydney, Australia. As-
sociation for Computational Linguistics.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 62–72, Edinburgh, Scotland, UK. Association
for Computational Linguistics.

Igor Aleksandrovic Mel’cuk et al. 1988. Dependency
syntax: theory and practice. SUNY press.

Anhad Mohananey, Katharina Kann, and Samuel R.
Bowman. 2020. Self-training for unsupervised pars-
ing with PRPN. In Proceedings of the 16th Interna-
tional Conference on Parsing Technologies and the
IWPT 2020 Shared Task on Parsing into Enhanced
Universal Dependencies, pages 105–110, Online.
Association for Computational Linguistics.

Phoebe Mulcaire, Jungo Kasai, and Noah A. Smith.
2019. Low-resource parsing with crosslingual con-
textualized representations. In Proceedings of the
23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 304–315, Hong
Kong, China. Association for Computational Lin-
guistics.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 629–637, Jeju Is-
land, Korea. Association for Computational Linguis-
tics.

https://doi.org/10.1162/tacl_a_00017
https://doi.org/10.1162/tacl_a_00017
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://www.aclweb.org/anthology/P11-1068
https://www.aclweb.org/anthology/P11-1068
https://aclanthology.org/W19-7716
https://aclanthology.org/W19-7716
https://aclanthology.org/W19-7716
https://doi.org/10.18653/v1/N16-1121
https://doi.org/10.18653/v1/N16-1121
https://doi.org/10.18653/v1/N16-1121
https://doi.org/10.18653/v1/W16-1203
https://doi.org/10.18653/v1/W16-1203
https://doi.org/10.18653/v1/W16-1203
https://doi.org/10.3115/v1/N15-1067
https://doi.org/10.3115/v1/N15-1067
https://www.aclweb.org/anthology/C18-1271
https://doi.org/10.18653/v1/N19-1205
https://doi.org/10.18653/v1/N19-1205
https://doi.org/10.18653/v1/N19-1205
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
https://aclanthology.org/P13-2109
https://aclanthology.org/P13-2109
https://doi.org/10.3115/1220175.1220218
https://doi.org/10.3115/1220175.1220218
https://www.aclweb.org/anthology/D11-1006
https://www.aclweb.org/anthology/D11-1006
https://doi.org/10.18653/v1/2020.iwpt-1.11
https://doi.org/10.18653/v1/2020.iwpt-1.11
https://doi.org/10.18653/v1/K19-1029
https://doi.org/10.18653/v1/K19-1029
https://www.aclweb.org/anthology/P12-1066
https://www.aclweb.org/anthology/P12-1066

987

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics, 34(4):513–553.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4996–
5001, Florence, Italy. Association for Computa-
tional Linguistics.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of LSTM-networks for sequence tagging. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
338–348, Copenhagen, Denmark. Association for
Computational Linguistics.

Guy Rotman and Roi Reichart. 2019. Deep contextual-
ized self-training for low resource dependency pars-
ing. Transactions of the Association for Computa-
tional Linguistics, 7:695–713.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Kenji Sagae, Yusuke Miyao, Rune Saetre, and Jun’ichi
Tsujii. 2008. Evaluating the effects of treebank size
in a practical application for parsing. In Software En-
gineering, Testing, and Quality Assurance for Natu-
ral Language Processing, pages 14–20, Columbus,
Ohio. Association for Computational Linguistics.

Motoki Sato, Hitoshi Manabe, Hiroshi Noji, and Yuji
Matsumoto. 2017. Adversarial training for cross-
domain Universal Dependency parsing. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 71–79, Vancouver, Canada. Association for
Computational Linguistics.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE transactions
on Signal Processing, 45(11):2673–2681.

Haoyue Shi, Karen Livescu, and Kevin Gimpel. 2020.
On the role of supervision in unsupervised con-
stituency parsing. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7611–7621, Online. As-
sociation for Computational Linguistics.

Anders Søgaard. 2011. Data point selection for cross-
language adaptation of dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 682–686, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Linfeng Song, Yue Zhang, Daniel Gildea, Mo Yu,
Zhiguo Wang, et al. 2019. Leveraging dependency

forest for neural medical relation extraction. In Pro-
ceedings of the 2019 Conference on Empirical Meth-
ods in Natural Language Processing and the 9th In-
ternational Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 208–218.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2010. From baby steps to leapfrog: How
“less is more” in unsupervised dependency parsing.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter
of the Association for Computational Linguistics,
pages 751–759, Los Angeles, California. Associa-
tion for Computational Linguistics.

Drahomı́ra Spoustová and Miroslav Spousta. 2010. De-
pendency parsing as a sequence labeling task. The
Prague Bulletin of Mathematical Linguistics, 94:7.

Emma Strubell, Patrick Verga, Daniel Andor,
David Weiss, and Andrew McCallum. 2018.
Linguistically-informed self-attention for semantic
role labeling. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 5027–5038, Brussels, Belgium.
Association for Computational Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gómez-
Rodrı́guez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 717–723, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gómez-
Rodrı́guez. 2020. Bracketing encodings for 2-planar
dependency parsing. In Proceedings of the 28th In-
ternational Conference on Computational Linguis-
tics, pages 2472–2484, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Oscar Täckström, Ryan McDonald, and Joakim Nivre.
2013. Target language adaptation of discrimina-
tive transfer parsers. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1061–1071, Atlanta,
Georgia. Association for Computational Linguistics.

Jörg Tiedemann, Željko Agić, and Joakim Nivre. 2014.
Treebank translation for cross-lingual parser induc-
tion. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning,
pages 130–140.

Clara Vania, Yova Kementchedjhieva, Anders Søgaard,
and Adam Lopez. 2019. A systematic comparison
of methods for low-resource dependency parsing on
genuinely low-resource languages. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 1105–1116, Hong

https://aclanthology.org/J08-4003
https://aclanthology.org/J08-4003
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.1162/tacl_a_00294
https://doi.org/10.1162/tacl_a_00294
https://doi.org/10.1162/tacl_a_00294
https://arxiv.org/abs/1706.05098
https://arxiv.org/abs/1706.05098
https://www.aclweb.org/anthology/W08-0504
https://www.aclweb.org/anthology/W08-0504
https://doi.org/10.18653/v1/K17-3007
https://doi.org/10.18653/v1/K17-3007
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=650093
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=650093
https://doi.org/10.18653/v1/2020.emnlp-main.614
https://doi.org/10.18653/v1/2020.emnlp-main.614
https://www.aclweb.org/anthology/P11-2120
https://www.aclweb.org/anthology/P11-2120
https://aclanthology.org/D19-1020
https://aclanthology.org/D19-1020
https://www.aclweb.org/anthology/N10-1116
https://www.aclweb.org/anthology/N10-1116
https://ufal.mff.cuni.cz/pbml/94/art-johanka.pdf
https://ufal.mff.cuni.cz/pbml/94/art-johanka.pdf
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.18653/v1/D18-1548
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://www.aclweb.org/anthology/2020.coling-main.223
https://www.aclweb.org/anthology/2020.coling-main.223
https://www.aclweb.org/anthology/N13-1126
https://www.aclweb.org/anthology/N13-1126
https://aclanthology.org/W14-1614/
https://aclanthology.org/W14-1614/
https://doi.org/10.18653/v1/D19-1102
https://doi.org/10.18653/v1/D19-1102
https://doi.org/10.18653/v1/D19-1102

988

Kong, China. Association for Computational Lin-
guistics.

Alexander Volokh. 2013. Performance-oriented depen-
dency parsing.

Dingquan Wang and Jason Eisner. 2018. Synthetic data
made to order: The case of parsing. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1325–1337,
Brussels, Belgium. Association for Computational
Linguistics.

Yufei Wang, Mark Johnson, Stephen Wan, Yifang Sun,
and Wei Wang. 2019. How to best use syntax in se-
mantic role labelling. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5338–5343, Florence, Italy. Asso-
ciation for Computational Linguistics.

Shijie Wu and Mark Dredze. 2019. Beto, bentz, be-
cas: The surprising cross-lingual effectiveness of
BERT. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
833–844, Hong Kong, China. Association for Com-
putational Linguistics.

Jie Yang and Yue Zhang. 2018. NCRF++: An open-
source neural sequence labeling toolkit. In Proceed-
ings of ACL 2018, System Demonstrations, pages
74–79, Melbourne, Australia. Association for Com-
putational Linguistics.

Anssi Yli-Jyrä and Carlos Gómez-Rodrı́guez. 2017.
Generic axiomatization of families of noncrossing
graphs in dependency parsing. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1745–1755, Vancouver, Canada. Association
for Computational Linguistics.

Daniel Zeman, Joakim Nivre, et al. 2020. Universal de-
pendencies 2.7. LINDAT/CLARIAH-CZ digital li-
brary at the Institute of Formal and Applied Linguis-
tics (ÚFAL), Faculty of Mathematics and Physics,
Charles University.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2019.
Cross-lingual dependency parsing using code-mixed
TreeBank. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 997–1006, Hong Kong, China. Association
for Computational Linguistics.

Houquan Zhou, Yu Zhang, Zhenghua Li, and Min
Zhang. 2020. Is pos tagging necessary or even help-
ful for neural dependency parsing? In CCF Interna-
tional Conference on Natural Language Processing
and Chinese Computing, pages 179–191. Springer.

Appendix A Taggers accuracy

Sentences Average accuracy
100 57.08
500 81.24
1 000 85.03
5 000 90.90
10 000 92.77
Low-resource 85.03

Table 10: Average accuracy of the taggers for the splits
of the rich-resource treebanks and the complete low-
resource treebanks.

Appendix B Treebanks information

% Non-projective
sentences Family Script

de 6.76 IE (Germanic) Latin
cs 11.49 IE (West Slavic) Latin
ru 7.53 IE (East Slavic) Cyrillic
lzh 0.01 Sino-Tibetan Chinese characters
fa 14.22 IE (Iranian) Persian
et 3.22 Uralic Latin
ro 5.43 IE (Romance) Latin
ko 21.70 Korean Korean
grc 37.52 IE (Greek) Greek
hi 13.60 IE (Indo-Aryan) Devanagari
lv 6.53 IE (Baltic) Latin
af 22.23 IE (Germanic) Latin
cop 13.24 Afro-Asiatic Coptic
fo 0.19 IE (Germanic) Latin
hu 27.10 Uralic Latin
lt 14.07 IE (Baltic) Latin
mt 3.86 Semitic Latin
mr 6.01 IE (Indo-Aryan) Devanagari
ta 1.67 Dravidian Tamil
te 0.15 Dravidian Telugu
wo 2.99 Niger-Congo Latin

Table 11: Information about the treebanks used.

Appendix C Low-resource treebank sizes

Sentences
AfrikaansAfriBooms 1 315
CopticScriptorium 1 089
FaroeseFarPaHC 1020
HungarianSzeged 910
LithuanianHSE 153
MalteseMUDT 1 123
MarathiUFAL 373
TamilTTB 400
TeluguMTG 1 051
WolofWTB 1 188

Table 12: Number of training sentences for the low-
resource treebanks used.

https://www.coli.uni-saarland.de/bib/files/Volokh_OABook.pdf
https://www.coli.uni-saarland.de/bib/files/Volokh_OABook.pdf
https://doi.org/10.18653/v1/D18-1163
https://doi.org/10.18653/v1/D18-1163
https://doi.org/10.18653/v1/P19-1529
https://doi.org/10.18653/v1/P19-1529
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/D19-1077
https://doi.org/10.18653/v1/P18-4013
https://doi.org/10.18653/v1/P18-4013
https://doi.org/10.18653/v1/P17-1160
https://doi.org/10.18653/v1/P17-1160
http://hdl.handle.net/11234/1-3424
http://hdl.handle.net/11234/1-3424
https://doi.org/10.18653/v1/D19-1092
https://doi.org/10.18653/v1/D19-1092
https://arxiv.org/abs/2003.03204
https://arxiv.org/abs/2003.03204

