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Abstract

In this paper, we explore how to use a small
amount of new data to update a task-oriented
semantic parsing model when the desired out-
put for some examples has changed. When
making updates in this way, one potential prob-
lem that arises is the presence of conflicting
data, or out-of-date labels in the original train-
ing set. To evaluate the impact of this under-
studied problem, we propose an experimental
setup for simulating changes to a neural se-
mantic parser. We show that the presence of
conflicting data greatly hinders learning of an
update, then explore several methods to mit-
igate its effect. Our multi-task and data se-
lection methods lead to large improvements
in model accuracy compared to a naive data-
mixing strategy, and our best method closes
86% of the accuracy gap between this baseline
and an oracle upper bound.

1 Introduction

Most work in semantic parsing (and NLP in gen-
eral) considers a scenario where the desired outputs
of a model are static and can be specified with a
large, fixed dataset. However, when deploying a
semantic parsing model in a real world virtual as-
sistant, it is often necessary to update a model to
support new features or to enable improvements
in downstream processing. For example, creators
of a media assistant may want to add new com-
mands specialized towards new media types like
podcasts, or those of a navigation assistant might
like to add a new feature to allow users to spec-
ify roads to avoid. Such changes require that the
structures output by the model are updated, either
by introducing a new intent (a representation of a
desired action) or re-configuring arguments of ex-
isting intents. In this work, we investigate the best
way to make updates to the intents and arguments
of a task-oriented neural semantic parsing model.

∗ Work performed during an internship at Google.

To make an update, new data annotations must
be collected to specify the new form that is desired
for model outputs. Because changes can be quite
frequent, we would like to be able to collect a small
amount of data for each update (on the order of 50
examples) and merge the new information with a
much larger existing dataset. Naively, we might
hope to simply combine new data in with the old
and train on the combination. However, this ap-
proach has the problem that some of the older data
with out-of-date labels may conflict with the new la-
beling. These conflicts occur whenever inputs that
would be affected by a change appear in the origi-
nal dataset. For example, when introducing a new
intent for podcasts, the original dataset may have
included podcast examples labeled with a more
generic media intent or a label indicating that the
feature is unsupported. When introducing a new
argument, say ‘roads to avoid’, there may be in-
stances in the original dataset that should have this
argument labeled but do not because they were an-
notated before the argument was introduced. This
conflicting data can confuse the model and cause
it to predict labels as they were before an update
rather than after. Unfortunately, this problem of
conflicting data during model updates is understud-
ied in the academic literature.

To enable exploration of this problem on pub-
licly available datasets, we propose a method to
easily create simulated updates with conflicts (Sec-
tion 3.3) and release our update data. The idea
behind our method is to form updates in the re-
verse direction, relabeling instances of a particular
intent or argument to simulate out-of-date labels.
Using our proposed setup, we demonstrate how
conflicting data greatly hinders learning of updates
(Section 5).

In addition, we explore several methods for mit-
igating the negative effects of conflicting data by
modifying how we combine the old and the new
data (Section 6). One approach is to keep the old
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and new datasets separate, but to share informa-
tion indirectly with either fine-tuning or multi-task
learning. Another approach is to explicitly filter
data that is likely to conflict using a learned classi-
fier. Each of these methods substantially improves
performance compared to naively mixing in new
data, establishing strong baselines for future work
on this task.

In summary, the contributions of this work are
1) establishing an experimental setup to test updates
with conflicting data, 2) demonstrating that conflict-
ing data leads to large losses in model performance
if left unmitigated, and 3) exploring several possi-
ble approaches to mitigate this problem.

2 Related Work

There has been a substantial amount of prior work
on making updates to neural models (Xiao et al.,
2014; Rusu et al., 2016; Li and Hoiem, 2016; Kirk-
patrick et al., 2017; Castro et al., 2018), demonstrat-
ing a recognition in the community that the ability
to update models is important. However, most of
these works consider a setting where none of the
original data conflicts with the new labels. Thus
these works, and the general continual learning and
class-incremental learning literature, assume that
the space of inputs affected by a change does not
appear at all in the original data. In many scenarios,
this assumption does not hold because the origi-
nal dataset will aim to cover the full distribution
of inputs a model might encounter. Because of
the non-conflicting assumption, this body of prior
work focuses on other questions such as what can
be done when the original data is no longer avail-
able.

One paper that does consider updates with label
conflicts is Chen and Moschitti (2019). Although
they do not intentionally set out to study conflicting-
data updates, in their NER task locations where
new labels apply are tagged with special “outside”
labels prior to the update, which cause conflicts
with the new labels. While their work avoids the
conflicting data problem by considering a setting
where the original data is no longer available, our
experiments show that it can be advantageous to
instead keep the original data around and use more
direct methods to avoid problems of conflicting
data.

Our work also has parallels to the concept drift
literature (Tsymbal, 2004; Lu et al., 2018). How-
ever, concept drift work focuses on unintentional

changes to a natural data distribution over time,
while our work is concerned with intentional re-
structuring of the output representation space, lead-
ing to very a different setup and choice of methods.
In particular, that work operates over a stream of ex-
amples where changes often occur gradually, does
not generally include structured prediction tasks,
and does not allow the practitioner to introduce ad-
ditional structure on the types of annotation given
(as we do in Section 3.2).

Finally, our work relates to work on training
with noisy labels (Sukhbaatar et al., 2014; Veit
et al., 2017; Jiang et al., 2018), since the incorrect
labels from conflicting data could be viewed as a
type of noise. However, it is important to evaluate
the problem of conflict-causing updates separately
from other noisy label problems because the dis-
tribution of incorrect labels due to an update will
be very different from most other sources of label
noise. While not all noisy-label methods can di-
rectly apply to our task (as many are designed for
classification as opposed to structured prediction)
and may not take full advantage of the additional
structure of our problem, we believe this line of
work can still serve as a source of inspiration for
future exploration on our task.

3 Task Setup

3.1 Preliminaries - Task-oriented Semantic
Parsing

The experiments in this paper focus on a semantic
parsing task where the goal is to generate a tree
structure conditioned on an input sentence. We
use the task formulation and data from Gupta et al.
(2018) as the basis of our setup. Output trees are
made up of intents and arguments (aka slots), where
intents come from a fixed inventory of labels, and
arguments consist of an argument-type label along
with a value. Argument values may either be free-
form text selected from the input sentence, or a
nested intent to form a hierarchical structure. In
this work, we represent these trees with a linearized
form using nested brackets, which allows for the
use of standard sequence-to-sequence models (see
Section 4 for details of our base model and Figure 1
below for some example inputs and outputs).

3.2 Data Updates

In this paper, we focus on the task of making a
single update to the intent and argument structure
output by a model, where the update is specified
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by collecting a small amount of additional data.1

Accordingly, our task setup expects two sets of data:
a large amount of data from before a change, which
we will call the V1 (version one) set, and a small
amount of data from after a change, which we call
the V2 set. The V1 set represents the current state
of the system with any data collected in the past,
while the new V2 set is collected specifically for
the purpose of introducing a particular update. For
the purposes of testing methods in this paper, we
will form these two sets synthetically, as described
in Section 3.3 below.

Because the V2 set is gathered explicitly for
the purpose of introducing a particular update, we
would like the input distribution of this data to be
targeted rather than uniformly covering the full
input space. Ideally, a substantial portion of this
data should be examples whose labels will actually
change after the update. We will call this portion
of data the changed set. However, it is also useful
to specify some examples that are not affected by
a change, so that we can accurately determine the
scope of a change. We will call inputs whose label
would be the same under the new and old label
scheme unchanged examples. We will include a
set of unchanged examples in the V2 data to show
that these labels have been confirmed under the V2
labeling scheme.

Many types of changes that we care about only
apply to examples labeled in a particular way in
the original V1 data. For example, a new argument
can often only be used for specific intents, or a
new intent may only apply to examples previously
labeled as unsupported. By taking advantage of
this information, we may be able to avoid some
unwanted side effects of our model updates. To
help us handle this information, we define a third
category of examples: trivially-unchanged. The
trivially-unchanged partition contains all examples
which we can determine to be unaffected based
solely on the original V1 labels and some simple
hand-defined rule like a list of affected intents. By
identifying these examples, we can directly include
them in the updated training set without causing
label conflicts. In the remainder of this paper, we
reserve the term unchanged to refer specifically
to unchanged examples that do not fall into the

1While handling a stream of updates may pose additional
challenges, we leave an investigation of that scenario to future
work. What qualifies as a single update is somewhat open to
interpretation, but our methods are not overly sensitive to how
it is defined.

trivially-unchanged category. Thus, the unchanged
partition represents the remaining hard examples
that are difficult to distinguish from the changed
set in the V1 data. See Figure 1 for examples of
how our three data partitions apply to particular
updates.

In some instances, it is also useful to talk about
the data in the original V1 set in terms of the
three partitions (changed, unchanged, and trivially-
unchanged). In this case, these labels refer to
whether an example would change if we had gath-
ered new labels for them. In actuality, the changed
subset will have out-of-date labels in V1, and we
call these examples conflicting data. Our experi-
ments show that conflicting data causes substantial
problems when learning an update (see Section 5
and 7), but unfortunately, the examples that make
up the conflicting set cannot be easily identified in
the V1 data.

3.3 Creating Synthetic Changes

To enable exploration of the conflicting data prob-
lem, we demonstrate a method for easily simulating
updates with conflicts on an existing publicly avail-
able dataset. We form our synthetic updates in
the reverse direction – the data from the original
dataset represents the final V2 form, and we mod-
ify some examples to represent a V1 (pre-update)
form. We aim to make changes that can be done
automatically in the reverse direction, while still
being interesting to learn in the forward direction.

To form our updates, we select a particular intent
or argument from the dataset to simulate the intro-
duction of. We sample a set of examples labeled
with the selected intent or argument to form the
primary part of the V2 training set. For other ex-
amples with this intent or argument, we will keep
them as part of the V1 training set, but re-label
them to some form they may have taken before
the new intent or argument was introduced. These
re-labeled examples act as conflicting data.

For example, suppose we would like to simulate
the creation of the intent GET_INFO_TRAFFIC,
as shown at the top of Figure 1. After se-
lecting a subset of GET_INFO_TRAFFIC ex-
amples for the V2 training set, we form a
conflicting set in the V1 data by re-labeling
GET_INFO_TRAFFIC examples to use the
related intent GET_INFO_ROAD_CONDITION.
For this particular change, we kept the arguments
the same when updating, but for others we remove
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New intent from related
Changed

Query: Where is there construction on the highway?

V1 Label: V2 Label:
(IN:GET_INFO_ROAD_CONDITION (IN:GET_INFO_TRAFFIC

(SL:LOCATION "the highway" ) ) (SL:LOCATION "the highway" ) )

Unchanged
Query: Are roads icy?

V1 Label: V2 Label:
(IN:GET_INFO_ROAD_CONDITION (IN:GET_INFO_ROAD_CONDITION

(SL:ROAD_CONDITION "icy" ) ) (SL:ROAD_CONDITION "icy" ) )

Trivially-unchanged
Examples not labeled with IN:GET_INFO_ROAD_CONDITION in V1 are trivially-unchanged.

New intent from unsupported
Changed

Query: If I leave right now, can I get to New York City before one o’clock PM?

V1 Label: V2 Label:
(IN:UNSUPPORTED_NAVIGATION ) (IN:GET_ESTIMATED_ARRIVAL

(SL:DATE_TIME_DEPARTURE "right now" )
(SL:DESTINATION "New York City" ) )

Unchanged
Query: What major city has the worst traffic?

V1 Label: V2 Label:
(IN:UNSUPPORTED_NAVIGATION ) (IN:UNSUPPORTED_NAVIGATION )

Trivially-unchanged
Examples not labeled with IN:UNSUPPORTED_NAVIGATION in V1 are trivially-unchanged.

New argument
Changed

Query: Which route to work has less traffic?

V1 Label: V2 Label:
(IN:GET_DIRECTIONS (IN:GET_DIRECTIONS

(SL:DESTINATION "work" ) ) (SL:DESTINATION "work" )
(SL:OBSTRUCTION "traffic" ) )

Unchanged
Query: What is the best route to get to Atlanta to see my brother Mark?

V1 Label: V2 Label:
(IN:GET_DIRECTIONS (IN:GET_DIRECTIONS

(SL:DESTINATION "Atlanta" ) ) (SL:DESTINATION "Atlanta" ) )

Trivially-unchanged
Examples not labeled with one of the seven intents that allow the SL:OBSTRUCTION slot are
trivially-unchanged.

Figure 1: Examples from different types of updates that we simulate. To simulate updates, we use the original
dataset as the V2 form, and modify some examples to a V1 form in a way that is not easily reversed. We describe
our data in terms of three partitions: changed, unchanged, and trivially-unchanged – as described in Section 3.2.
Note that while trivially-unchanged examples can be easily identified from their V1 labels, changed and unchanged
examples cannot be easily distinguished in V1.
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arguments or relabel them in the V1 set.

Because the examples with our “new” intent or
argument are different between the V1 and V2 data,
those examples make up the changed subset. Recall
that we would also like to include some unchanged
examples in the V2 training set. To select examples
for this partition, we find other examples labeled
with the intent that we re-labeled our conflicting
set to have. For our GET_INFO_TRAFFIC in-
tent example, this means finding some examples
with the label GET_INFO_ROAD_CONDITION,
since these examples look similar to the re-labeled
conflicting examples but should have the same
labels in V1 and V2. Since all of the exam-
ples where this update applies are labeled as
GET_INFO_ROAD_CONDITION in the V1 train-
ing set, any example with a different V1 label can
be considered trivially-unchanged.

In total, we form five different synthetic updates
to use in our experiments.2 Figure 1 also shows
examples for two other types of updates: intro-
ducing a new intent for previously unsupported
inputs and introducing a new argument. The up-
dates are formed from the TOP dataset, which con-
tains over 40,000 English queries about navigation
or events labeled with tree-based semantic parses
(Gupta et al., 2018).

4 Base Model

The semantic parsing model we use for our experi-
ments is a sequence-to-sequence model based on
the transformer architecture (Vaswani et al., 2017).
We use a sequence-to-sequence model because of
their flexibility and widespread use in semantic
parsing (Jia and Liang, 2016; Dong and Lapata,
2016; Rongali et al., 2020) and NLP in general.
Our model encodes a language input using a pre-
trained 12-layer BERT model (Devlin et al., 2019),
then decodes a parse tree flattened by depth-first
traversal. At each step, the decoder can generate
either 1) a labeled bracket representing an intent or
argument label 2) a closing bracket or 3) an index
of an input token to be copied. The hyperparame-
ters of our model architecture and training can be
found in Appendix A.

2Data for our synthesized updates can be down-
loaded from https://github.com/google/
overcoming-conflicting-data/, and Appendix B
summarizes the partition sizes for each of these changes.

Figure 2: Accuracy as a function of data size with con-
flicting data compared to accuracy when an oracle re-
moves the conflicts, averaged across five different up-
dates.

5 Effect of Conflicting Data

Before we describe and test our methods for mit-
igating conflicts, this section will briefly explore
how conflicting data affects learning. We evalu-
ate model updates both with and without conflict-
ing data, and compare accuracies as we vary the
amount of new V2 data being introduced. The
non-conflicting setting represents an oracle where
all conflicting data is removed, which we can eas-
ily simulate in our synthetic data-creation process
but is generally not achievable on real-world data
without additional manual annotation.

More precisely, when evaluating updates with
conflicting data, we include 50 examples with out-
of-date labels in the changed category. We mix
these examples with a full set of unchanged and
trivially-unchanged examples to represent a V1
training set from before an update. We then intro-
duce different amounts of changed examples with
updated labels to act as the V2 training set, with
sizes ranging from from half the conflicting set size
(25) to four times as much (200). For each data size,
we measure accuracy using an exact match metric,
meaning the entire tree output by the model must
match the reference to be considered correct. For
the non-conflicting setting, we do not include the
50 examples with out-of-date labels, but otherwise
use the same setup.

The results for this experiment are shown in Fig-
ure 2, after averaging over five different changes
(a detailed breakdown of results can be found in
Appendix C). To the left of the graph, we see that
when the amount of conflicting data is greater than

https://github.com/google/overcoming-conflicting-data/
https://github.com/google/overcoming-conflicting-data/
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the size of the new data being added, we get less
than half of the accuracy we would get without
conflicting data. While the gap narrows somewhat
with more data, even when we introduce four times
as much new data as there are conflicting examples,
the presence of conflicting data still leads to a loss
of over 10% accuracy. These results show just how
detrimental conflicting data can be to the learning
of a model update.

6 Mitigation Methods

In this work, we consider three methods to allevi-
ate the problems caused by conflicting data: fine-
tuning, multi-task learning with separate decoder
heads, and data filtering with a learned classifier.

6.1 Fine-tuning

Our first and simplest method for handling conflict-
ing data is fine-tuning. For this approach, we first
train a model on only the V1 training data, then
after training completes, we take the final parame-
ters and use those as initialization for training with
the V2 data. This approach can alleviate the con-
flicting data problem because the second stage of
training does not include any conflicting data and
the model will have less confusion about how to
label changed examples. By first training on the
V1 data, we are also able to benefit indirectly from
the larger amount of data contained in it.

During the second stage of training, we train on
the changed and unchanged data in the V2 training
set, as well as the trivially-unchanged examples
from the V1 training set. Trivially-unchanged data
from the V1 data can be included in V2 training
because it can be easily identified and is known to
not conflict.

6.2 Multi-task

For our next method, we use an approach from
multi-task learning where multiple decoder heads
are used for different sets of data (Caruana, 1997;
Fan et al., 2017). Our two “tasks” correspond to
the V1 data and the V2 data, and we use a separate
set of parameters for the final pre-softmax layer of
the decoder for each of the versions (as illustrated
in Figure 3). The V1 head is only trained with V1
data and the V2 head is only trained with V2 data,
but the encoder layers and decoder transformer
are shared between both. This way, the V2 head
is never trained on conflicting examples from V1,
but the overall V2 model can still benefit from

Figure 3: In our multi-task method, we feed the new
V2 data to a separate decoder head to separate it from
the possibly-conflicting data in the original V1 training
set. The encoder layers and decoder transformer layers
are shared between V1 and V2.

some information in V1 data indirectly through
the shared encoder and decoder transformer layers.
After training, the V1 head can be discarded, and
the V2 head is used to make decisions. We train
on both versions simultaneously, with each batch
containing some of both types of data. As with
our other methods, the V2 head is also trained on
trivially-unchanged data from the V1 data.

The goal behind this approach is similar to that
of fine-tuning: to avoid training the V2 model di-
rectly on the possibly-conflicting V1 data while
still sharing some amount of information through
model parameters. However, unlike fine-tuning,
which is liable to forget information from V1 as
training progresses, the simultaneous training for
the multi-task method keeps the V1 information
active for better sharing.

6.3 Classifier-based Data Selection

The final method we explore in this work is
classifier-based data selection. The idea behind the
data selection strategy is to explicitly select exam-
ples from the original V1 data that we don’t think
will conflict. Using the small amount of V2 data,
we train a classifier to predict whether an example
will be changed or unchanged, and then apply this
classifier to the V1 data, as illustrated in Figure 4.
We can then include the selected examples in our
updated training set, allowing us to take advantage
of more information from the original training set
while filtering out many of the problematic conflict-
ing examples.

We first train a classifier on the V2 data to learn
a binary decision between changed and unchanged
examples. This training requires that we can dis-
tinguish between which examples are changed and
unchanged, which can either be specified as part
of the annotation process, or can be estimated by
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Figure 4: Our selection classification method uses a bi-
nary classifier to filter the original V1 data based on
whether it is likely to be out-of-date.

running an existing V1 model to predict old labels
for the provided V2 examples (in this work we
use the annotation method, as part of our synthetic
data-creation process). Our classifier uses the same
BERT encoder as our sequence-to-sequence pars-
ing model and is initialized with parameters from
a parsing model for the V1 data. Representations
of this encoder are averaged across time before
feeding into a small feedforward network with a
hidden dimension of 512. After training on the V2
set, the binary classifier is run on the V1 training
set (excluding the trivially-unchanged examples,
which can be automatically included as-is for V2
training). This creates a categorization of predicted-
changed and predicted-unchanged, which we hope
will closely approximate the true changed and un-
changed sets. For many of the changes we tested,
the classifiers performed quite well, with accura-
cies above 90% on held-out data. For examples in
predicted-unchanged, we will include them in the
set of training examples used to train our updated
model. For examples in predicted-changed, we do
not want to directly include them, and consider two
possible solutions: 1) remove them completely or
2) include the examples with an intent-only loss, as
described below.

6.3.1 Intent-only Loss

The idea of the intent-only loss variant of the data
selection method is to try to take advantage of more
information about the predicted-changed examples
without requiring us to know the full form of the
tree after a change. While we know that these ex-
amples are likely to have changed, in general we
do not know if or how the full argument structure
will change for all examples. However, it is usually
possible to know what the intent should be for the

Overall Accuracy

Baselines
Train on V1 data 49.2
Train on V2 data 51.8
Direct mixing 49.9

Methods
Fine-tune 59.9
Multi-task 69.7
Selection (drop changed) 65.6
Selection (intent only) 71.5

Oracle
Relabel all examples 74.7

Table 1: Exact match accuracies of our methods for mit-
igating the effects of conflicting data, averaged across
five different updates. Our methods greatly outperform
the baselines and close a substantial portion of the gap
to the oracle upper bound.

changed examples. If the update is introducing
a new intent, we can use this new intent for the
predicted-changed examples. If the update only
affects arguments, we can keep the original intents
for the examples. Which of these cases applies
can be specified manually (as we do in our experi-
ments), or could likely be determined automatically
by running a V1 model on the V2 data and com-
paring the intents. Once we have determined the
new top-level intent for the predicted-changed ex-
amples, we will include them as special training
examples that only receive a loss on their intent.
Since the intent is the first token to be predicted by
the sequence-to-sequence decoder, we can simply
mask out the loss for the rest of the tokens in the
sequence. With this masking, argument structure
prediction will be unaffected by these examples,
and the model must defer to other examples, such
as those in the V2 training set, to learn argument
labeling.

One case that this approach does not currently
handle are updates that introduce multiple new in-
tents simultaneously, and we leave an exploration
of that case to future work. To use an intent-only
loss on those updates, more fine-grained classifi-
cations are needed to determine what the correct
intent for the changed examples are.

7 Evaluation

In this section, we describe the evaluation of our
methods for mitigating the conflicting data problem.
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Figure 5: A break down of results across the three data partitions.

For each update, we form a test set by randomly
selecting 100 examples from each of the three
data partitions (changed, unchanged, and trivially-
unchanged), and a V2 training set by selecting 50
changed and 50 unchanged examples. All remain-
ing examples are placed into the V1 training set
and changed examples are relabeled appropriately.
Note that unlike in Section 5 where we used a fixed-
size conflicting set of 50 examples in V1, in this
setup we use all remaining examples available after
sampling a subset for V2, which results in larger
conflicting sets ranging from hundreds to thousands
of examples. The large sizes of the conflicting sets
further amplifies the effect of the conflicting data.
We report results in terms of exact match accuracy
between the predicted and target parse structure.
Results are aggregated across 5 different updates,
giving us a total of 1500 test examples for each
method (5 updates × 3 partitions × 100 examples).
We also average across 5 different runs for each
method to reduce variance.

We compare against three baselines: training
only on the original V1 data, training only on the
new V2 data, and directly mixing the two data
versions together into a single dataset.3 We also
compare to an upper bound where the entire V1
training set is re-annotated with updated labels. For

3We also tried a variant of the direct mixing baseline where
the V2 data is upsampled to try to account for differences
in size, but this obtained almost identical results, indicating
that upsampling is not an effective method for overcoming
conflicting data (not shown in main results; see Appendix D).

many updates, this upper bound requires thousands
of new annotations, as compared to the one hundred
labels used by our methods.

7.1 Results
The results of our evaluation are shown in Table 1.
All of our methods substantially outperform the
baselines. Our best method, the selection classi-
fier with an intent-only loss on changed examples
(§ 6.3), obtains an accuracy of 71.5%, covering
86% of the gap between the best baseline and the
oracle upper bound.

To see a more clear picture of what is happening,
we also break down results by data partitions, as
shown in Figure 5 (an even more detailed break-
down across different updates is provided in Ap-
pendix D). In this chart, we can see that the base-
line that mixes the V1 and V2 data without ac-
counting for conflicts performs extremely poorly
on the changed examples, echoing our results in
Section 5. On the other hand, training only on the
small set of V2 data throws away all the informa-
tion from the original V1 training set, limiting its
performance (particularly on unchanged examples).
Our methods provide an effective way to combine
information in both datasets without overwhelming
changed data with out-of-date labels.

8 Conclusion

This work has shown that in order to make effec-
tive updates to the outputs of a neural semantic
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parsing model by adding new data, it is important
to consider the effect of conflicting examples in
the original data. Conflicting data is likely a prob-
lem in many different scenarios where outputs to
a model must be updated, and we believe that fur-
ther study into methods for mitigating the effects
of conflicting data is an important direction to al-
low practitioners to handle the constantly-changing
needs of real-world machine learning applications.
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A Model Hyperparameters

Hyperparameter Value

Decoder layers 1
Decoder dimension 256
Decoder feedforward dimension 256
Batch size 512
Training steps 50000
Learning rate 3e-4
Learning rate warmup 10000

These hyperparameters were kept constant across all experiments and were selected based on defaults
from an existing implementation. Model parameter counts are dominated by the BERT encoder, with
approximately 100 million parameters. Training was performed on TPUs and took several hours per run.

B List of changes with data sizes

The table below briefly describes the five updates we test on with the sizes of each data partition changed,
unchanged, and trivially-unchanged. For our primary experiments, 100 examples from each partition are
placed in the test set, 50 examples from changed and unchanged are placed in the V2 training set, and the
remainder are used for the V1 training set.

Update type Changed Unchanged Trivially-unchanged

New intent from unsupported 1719 1756 32266
New intent from related + argument name change 3625 3776 28340
New argument 635 21114 13992
New intent from related 10044 422 25275
New intent from multiple intents in V1 285 3942 31514



50

C Effect of Conflicting Data Results Detail

The table below details the results for the experiment described in Section 5 and summarized in Figure 2.
We vary the size of updated data in the V2 changed partition while holding constant a set of 50 conflicting
examples in the original V1 data.

Change New data size Accuracy (%)

Conflicting No Conflicting

New from unsupported 25 21 42
50 27 51

100 54 60
200 61 71

New from related + arg change 25 17 59
50 44 73

100 52 74
200 66 75

New argument 25 11 54
50 44 54

100 45 68
200 67 67

New from related 25 16 41
50 29 56

100 42 56
200 54 71

New from multiple sources 25 15 40
50 34 54

100 34 72
200 45 65

Average 25 16 47.2
50 35.6 57.6

100 45.4 66
200 58.6 69.8
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D Main Results Detail

The following table breaks down our main results across the different updates tested. These results are
described in Section 7 and summarized in Figure 5.

Update Partition Accuracy (%)

V1 only V2 only Dir mix Upsampl Fine-tu Multi-t Sel (rm) Sel (io) Oracle

A Change 0.0 53.6 0.8 0.0 58.2 66.8 51.4 68.2 80.2
Unchange 75.4 20.8 70.0 74.8 35.0 61.6 72.8 69.8 72.2
Triv-unch 78.8 77.2 77.8 77.6 78.8 82.0 78.0 79.4 78.0

B Change 0.0 59.6 0.0 0.6 66.2 70.6 60.2 64.6 81.8
Unchange 68.4 15.2 69.3 66.6 35.2 62.2 66.6 65.2 67.0
Triv-unch 79.6 83.0 79.3 80.0 82.8 81.2 80.0 81.8 77.2

C Change 0.0 31.2 1.8 2.8 45.4 39.0 43.8 59.2 73.4
Unchange 79.0 25.4 81.0 80.6 42.4 79.2 77.2 80.8 81.4
Triv-unch 73.4 75.0 72.3 73.6 74.2 74.8 72.4 74.6 73.6

D Change 0.0 55.0 0.0 0.0 69.0 85.6 55.2 83.4 86.8
Unchange 64.6 41.4 66.2 64.8 52.2 61.6 60.8 56.8 59.0
Triv-unch 70.0 74.4 70.4 73.0 73.2 71.8 71.8 73.0 72.0

E Change 0.0 69.6 13.0 13.4 71.8 65.4 46.2 66.0 69.8
Unchang 71.0 17.4 69.8 72.2 33.4 63.0 69.0 68.2 70.6
Triv-unch 78.2 78.6 77.3 77.6 80.8 80.2 79.2 81.2 77.2

Avg Change 0.0 53.8 3.1 3.4 62.1 65.5 51.4 68.3 78.4
Unchange 71.7 24.0 71.2 71.8 39.6 65.5 69.3 68.2 70.0
Triv-unch 76.0 77.6 75.4 76.4 78.0 78.0 76.3 78.0 75.6

Update key: A: New intent from unsupported, B: New intent from related with argument relabeling, C:
New argument, D: New intent from related with same arguments, E: New intent from multiple intents in
V1


