
Proceedings of the 1st and 2nd Workshops on Natural Logic Meets Machine Learning (NALOMA), pages 26–40
June 16, 2021. ©2021 Association for Computational Linguistics

26

Monotonic Inference for Underspecified Episodic Logic

Gene Louis Kim♥, Mandar Juvekar♦, and Lenhart Schubert♣
University of Rochester

Department of Computer Science
{gkim21♥,schubert♣}@cs.rochester.edu

mjuvekar♦@u.rochester.edu

Abstract
We present a method of making natural
logic inferences from Unscoped Logical Form
of Episodic Logic. We establish a corre-
spondence between inference rules of scope-
resolved Episodic Logic and the natural logic
treatment by Sánchez Valencia (1991a), and
hence demonstrate the ability to handle foun-
dational natural logic inferences from prior lit-
erature as well as more general nested mono-
tonicity inferences.

1 Introduction

Natural Logic is an approach to generating infer-
ences from language directly over the grammatical
structure through knowledge of entailment mono-
tonicity in the lexicon. Monotonicity is a charac-
teristic of functions within an ordering, i.e. f is
upward monotone if x ≤ y implies f(x) ≤ f(y)
(and downward monotone for the opposite). For
example, not is downward monotone in entailment
since it flips the entailment ordering of “Fido is
a dog” entails “Fido is an animal” to “Fido is not
an animal” entails “Fido is not a dog”. Natural
Logic can be seen as an extension of Aristotelian
syllogistic reasoning (Van Benthem et al., 1986)
and was first formally related to higher-order logic
entailments by Sánchez Valencia (1991a). Icard
and Moss (2014) and Icard et al. (2017) later con-
strued Natural Logic as a formal system of its own,
independent of a separate logical formalism.

Unscoped Logical Form (ULF) of Episodic
Logic was developed with the aim to integrate ma-
chine learning into automatic natural language in-
ference by simplifying the semantic parsing task
that presupposes symbolic inference (Kim and
Schubert, 2019). ULFs retain certain ambiguities
in the sentence while strictly defining the core se-
mantic type structure that is necessary to specify
the compositional structure. This results in a pars-
ing task that is similar in form and complexity to

constituency parsing, for which the community has
built effective parsers (Mrini et al., 2019; Zhou
and Zhao, 2019). Promising preliminary results
show parsability of ULF from a small dataset and
minimal representation-specific knowledge (Kim,
2019). Automatic inference generation from ULF
has been demonstrated for dialogue-focused struc-
tural inferences which correspond to simple pre-
suppositions and implicatures over questions, re-
quests, counterfactual constructions, and clause-
taking verbs (Kim et al., 2019).

Here we present a proof-based Natural Logic
inference formalism for ULF. We show that this
method covers inferences presented by Sánchez Va-
lencia (1991a) and can support Rule Instantiation
from Episodic Logic (EL) inference for nested po-
larity inference. The contributions of this paper
are two-fold: (1) this marks the first formalized
inference procedure for ULF and (2) we present an
alternative to parsing full logical formulas in sym-
bolic Natural Logic inference through the use of
an underspecified representation. An implementa-
tion of the inference procedure that we describe is
beyond the scope of this paper, but is an important
next step for empirically evaluating the efficacy of
this approach against existing Natural Logic infer-
ence systems. Due to space limitations, we leave
fully formalized definitions and proofs to the ap-
pendix and use the main document for condensed
explanations and demonstrative examples.

2 Natural Logic

We will limit our discussion of Natural Logic to
that presented by Sánchez Valencia (1991a) and fol-
low his notation and terminology.1 The semantics
of Sánchez-Valencia’s Natural Logic is rooted in
an undirected, typed lambda calculus constructed

1Much of the recent work in Natural Logic uses the termi-
nology and notation introduced by Icard and Moss (2014).

27

Marking
X A,Y

X A∗, Y

A,X Y

A∗, X Y

Negation
x,Neg(a) y

x a, y

Monotonicity
(every x)# is a y, F (x+), X Y

(every x)# is a y, F (y), X Y

Conversion
(some y)# is a x,X Y

(some x)# is a y,X Y

abe see a carp, every carp is a fish abe see a fish

abe sees (a carp)#, (every carp)# is a fish abe sees (a fish)# marking
abe sees (a carp+)#, (every carp)# is a fish abe sees (a fish)# marking

abe sees (a fish)#, (every carp)# is a fish abe sees (a fish)# monotonicity

Figure 1: The basic inference rules for Sánchez-
Valencia’s natural logic proof system and an example.

from derivations of Lambek cum Permutation Cal-
culus (Lambek, 1988). The primitives semantic
types are e and t (for entities and truth values)
which denote sets, with complex types of the form
〈a, b〉 where a and b are semantic types in the
language. There is one inference rule over these,
〈α, β〉, α→ β, where the order of the functor and
the argument do not matter.

Sánchez-Valencia formalizes the monotonicity
of polarity lexical terms from the linguistic litera-
ture of Natural Logic in relation to this semantic
framework in order to make soundness claims of
predicate substitutions within positive and negative
polarity contexts. Polarity contexts are determined
by counting the number of downward entailing ar-
guments that lie in between a constituent and the
root of the Lambek derivation.

Inference Reasoning is done with a tableau proof
system (Beth, 1955) starting with a node with the
premises, ai, on the left and conclusion, b, on the
right like so, a1, ..., an • b, where all statements
are in plain English. This is accompanied by the
Lambek analyses for each of the statements, which
supply grammatical information (scoping and po-
larity) to the proof. The tableau is closed when
all paths in the proof tree are closed and a path
is closed when the leaf of the path has the same
statement (including scope marking) on both sides
of the node. A+ and A− mark positive and neg-
ative polarity, respectively, and (A)# marks the
outermost operator scope. The inference rules in
Sánchez’s proof system needed for demonstrating
basic monotonic inference and an example are dis-
played in Figure 1.

3 Episodic Logic: Unscoped Logical
Form

Episodic Logic (EL) is an extended FOL that
closely matches the form and expressivity of nat-

(|Ali| (do.aux-s not (know.v (that
(i.pro (work.v (adv-a (with.p (a.d dog.n)))))))))

↓ scoping
(not (|Ali| (do.aux-s (know.v (that

(a.d x: (x dog.n)

(i.pro (work.v (adv-a (with.p x))))))))))

Figure 2: Example of a ULF scoping into an SLF for
the sentence Ali does not know that I work with a dog.

ural language, using type-shifters and a liberal on-
tology of individuals (e.g. basic individuals, situ-
ations, propositions, kinds, etc.) to keep the logic
first-order while allowing for intensionality, gen-
eral quantifiers, etc. (Schubert, 2000). EL sup-
ports deductive and uncertain inference, includ-
ing forward and goal-chaining inference that uses
polarity-based substitution in a Natural Logic-like
manner (Hwang and Schubert, 1993; Morbini and
Schubert, 2009; Schubert, 2014). The forward in-
ference rules are basically the same as nested infer-
ence rules proposed by (Traugott, 1986).

ULF fully specifies the semantic type structure
of EL by specifying the types of the atoms and
all of the predicate-argument relationships while
leaving operator scope, anaphora, and word sense
unresolved (Kim and Schubert, 2019). The name,
Unscoped Logical Form, is a label for its stage in
the interpretation process of EL and does not mean
that scoping is the only unresolved aspect of the
logical form. Kim and Schubert (2019) describe
the role of ULF in the interpretation process.

The types of ULF atoms that correspond to sur-
face words and are not logical or macro symbols
are marked with suffixed tags resembling the part-
of-speech (e.g. .v, .n, .pro, .d for verbs, nouns, pro-
nouns, and determiners). Case-sensitive symbols
such as names and titles are marked with pipes (e.g.
|John|). Pipe-marked symbols may be left with-
out a type tag in which case they default to having
an entity type. A closed set of logical and macro
symbols have unique types so the type marking
is omitted. Each suffix indicates a set of possible
semantic denotations, e.g. .pro always denotes an
entity and .v denotes an n-ary predicate where n
can vary.

Type shifters in ULF maintain coherence of the
semantic type structure. For example, the type
shifter adv-a maps a predicate into a predicate mod-
ifier as in the prepositional phrase “with a dog” in
Figure 2, as opposed to its predicative use “I am

28

with my dog”.
The syntactic structure is closely reflected in

ULF even under syntactic movement through the
use of simple rewriting macros which explicitly
mark these occurrences and upon expansion make
available the exact semantic argument structure.

The ordering of operator-argument relations in
ULF can have the operator in the first or second
position, disambiguated by the types of the par-
ticipating expressions. The EL type system only
allows function application for combining types,
〈A,B〉, A → B, much like Montagovian seman-
tics (Montague, 1970) without type-raising.

Scoped Logical Form (SLF) SLF is ULF with
explicit scoping. Since polarity propagates through
scoped operator relations, scopes must be fully
specified before adding polarities. While infer-
ences will interface with ULFs, auxiliary SLFs
are necessary to model the polarities and book-
keep scope-related assumptions in the inferences.
Scoped operator orderings are represented using
parentheses, and are lifted around the sentence that
it scopes around. Scoped determiners are repre-
sented as (δ ν: φ ψ) where δ is a determiner, ν
is a variable, φ is the restrictor wff, and ψ is the
scope wff. Figure 2 shows examples of the scoping
process.

4 Inference with ULF

Scope marking Rather than using a Lambek
analysis for identifying operator scopes and hence
polarities, we use SLFs.2 The scoping of deter-
miners leads to decoupled representations of the
scoped constituent, so we must define a correspon-
dence that allows us to mark the scoping of the
ULF based on a fixed realization of the scoping.

For a ULF, ψ, that contains a quantified expres-
sion ϙ of form the (δ π), where δ is a determiner and
π is a predicate, the corresponding formula with
(δ π) at the top-level scope is (δ x: (x π) ψ[ϙ/x]).

Top-level scope marking process Given the
SLF that defines the scope ordering, the constituent
of the form (δ π) in ψ at the position of x in ψ[ϙ/x]
is marked with # as the top scope of ψ.3 Below is

2In accordance with Sánchez-Valencia’s treatment, we do
not address the possible scoping complexities of including
sentential modifiers, tenses, and aspect as scoped operators.

3
ϙ is not an alias for the pattern (δ π). Rather it refers to

a unique constituent of ψ that has the form (δ π). This is an
important distinction in order to properly handle sentences
with multiple constituents of the same form, e.g., "A dog greets
a dog".

Scoping Operators (S1)
not(−), never.adv(−)

Verbs
know.v(+,◦)

Determiners (S2)
a.d(+,+), every.d(−,+),
some.d(+,+),
many.d(+,+),
most.d(+,◦)

Figure 3: Examples of lexical monotonicity markings.

an example to help illustrate the mapping.

"Abelard sees a carp"
SLF (a.d x: (x carp.n) (|Abelard| (see.v x)))

Marked ULF (|Abelard| (see.v (a.d carp.n)#))
δδδ: a.d, πππ: carp.n

Polarity marking We perform polarity marking
in a two stage process that mirrors the process
used by Sánchez Valencia (1991a). First we clas-
sify lexical entries according to their monotonicity
properties—in what entailment contexts they place
their arguments—and mark them in the SLF with
parenthesized subscripts. The possible entailment
options are + for upward, − for downward, and ◦
for none. Figure 3 provides a few examples.4

Using the lexical annotations, we mark the local
entailment direction of the constituents in the SLF
using subscripts without parentheses. Finally, the
global polarity is derived from these local entail-
ment directions and marked with superscripts. The
global polarity is computed by traversing the SLF
from the root and counting the number of occur-
rences of negative and flat entailments, with the
following rules.

1. Node a has no polarity if any node in the path
from the root to a is marked with ◦.

2. Else, node a has negative polarity if there are
an odd number of nodes between the root and a
(inclusive) marked with −.

3. Otherwise, node a has positive polarity.

Figure 4 shows all of these markings in a tree
format. We then mark the global polarity in the
ULF according to the corresponding SLF to get.
((no.d+ scientist.n−)

(know.v− (every.d− (scientific.a+ fact.n+)+))−)

Inference Rules Figure 5 lists the ULF versions
of the monotonicity and conversion rules from Fig-
ure 1, but in a standard rule of inference format.
Sánchez-Valencia’s Marking and Negation rules
are specific to the tableau system and not relevant

4Unmarked lexical entries are assumed to have upward
entailment on all of their arguments.

29

()
()−− ()−+

()−

()−

y
−

know.v−
x
−

()+−

()+

fact.n
+

scientific.a+
y
+

y
−

every.d
−
(−,+

)()−−

scientist.n
−

x
−

x
+

no.d
+
(−,−

)

Figure 4: A tree representation of the SLF for “No scientist knows every scientific fact." with all lexical mono-
tonicity, local entailment context, and global polarity markings.

Monotonicity (UMI)
φ[(δ P1)+], ((every.d P1) (be.v (= (a.d P2))))

φ[(δ P2)]

where δ is a determiner.

Conversion (UCI)
((d1 P) (be.v (= (d2 Q))))
((d1 Q) (be.v (= (d2 P))))

where d1 ∈ {some.d, a.d, no.d}
and d2 ∈ {some.d, a.d}.

Figure 5: Inference rules in ULF corresponding to ba-
sic inference rules for Sánchez-Valencia’s natural logic
proof system.

as a general logical inference rule. Derivations and
proofs are available in Appendix B.

We can also define the corresponding monotonic-
ity rule for the negative polarity context. The mono-
tonicity rule in ULF handles the explicit copula,
through the transparent semantic interpretation of
‘be.v’.

Example Now we use these ULF rules to per-
form the inferences from Figure 1.5

Basic Monotonicity Example with ULF
1. (|Abelard| (see.v (a.d carp.n))) Assumption

2. ((every.d carp.n) (be.v (= (a.d fish.n)))) Assumption

3. (a.d x: (x carp.n)+

(|Abelard| (see.v x)+)+)
SLF of 1.

w/ polarity

4. (|Abelard| (see.v (a.d carp.n)+)) Pol marking
1.,3.

5. (|Abelard| (see.v (a.d fish.n))) UMI 2.,4.

It turns out that the monotonicity rules so far are
special cases of EL Rule Instantiation, which oper-
ates on substitution under arbitrarily nested polarity
contexts (Schubert and Hwang, 2000).

RI-1
MAJ(φ−),MIN(φ′+)

MAJσ(¬MINσ(⊥+)−)

RI-2
MAJ(φ−),MIN(φ′+)

MINσ(MAJσ(>−)+)

5Appendix D demonstrates how to handle all traditional
Aristotelian syllogisms.

where RI-1 is sound if the only variables
in the matching expression (φ′) of the minor
premise (MIN) are “matchably bound,”—bound
within φ′ or by a universal quantifier in positive
polarity context or existential quantifier in negative
polarity context—and RI-2 is sound if the only vari-
ables in the matching expression (φ) of the major
premise (MAJ) are “matchably bound.”

UMI is a special case of RI-2 and the negative
polarity version is a special case of RI-1. These
can handle inferences where the major premise is
a more complex construction than every p is a q.
RI-2 can be used to conclude Something is a cap
or pretty if Little Red Riding Hood wears it from
Every dress or hood that Little Red Riding Hood
wears is pretty and Something is a cap or a hood.
See Appendix C for a thorough discussion on Rule
Instantiation.

5 Integration with Machine Learning

While a working inference system is beyond the
scope of this paper, in this section we discuss some
ways in which machine learning can be leveraged
in conjunction with the inference formalism that we
describe in this paper. An obvious and important
role for machine learning in building a ULF-based
inference system is to train a semantic parser to pro-
vide ULFs for English sentences. Our preliminary
work in this direction (Kim, 2019) using an anno-
tated dataset has shown promising results. Our cur-
rent method is to train an LSTM to parse action se-
quences for a cache transition parser (Gildea et al.,
2018). Including contextual embeddings such as
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) as inputs to such as model will allow
the parser to use the representational power of these
embeddings to select the most appropriate parse.

Similarly, we can expect polarity labeling algo-
rithms to improve with the introduction of contex-
tual embeddings, though we are unaware of any
work that has tried to do this. This labeling could

30

also have a collaborative effect with a symbolic po-
larity labeling. With a partially complete lexicon of
negative polarity inducing operators, a ULF could
verify parts of the sequentially labeled polarities
or correct them if inconsistencies are found in the
graph where lexical knowledge is available.

For tasks like SICK (Marelli et al., 2014) which
rely largely on lexical specializations, we envi-
sion using a lexical resource like WordNet (Miller,
1995). There still remains the issue of word sense,
which is not resolved in ULF. Again distributional
word representations could be used here to select
the most appropriate word sense or set of word
senses. Tasks that provide all the necessary rela-
tionships such as FraCaS (Cooper et al., 1996) do
not require any additional axioms beyond inference
rules for basic logical operators and for introduc-
ing and eliminating macro operators. For example,
modeling relative clauses, which appear frequently
in FraCaS, simply requires properly handling the
relativizer and post-nominal modification macros
to get a monotonicity ordering between predicates
“A” and “A that B” that is fully modeled by logical
conjunction “A” and “(λ x: ((x A) ∧ (x B)))”.

The near-syntactic nature of ULF allows accu-
rate generation of English sentences corresponding
to formulas (Kim et al., 2019). An interesting ques-
tion is whether generative language models could
be used to enhance inference generation. Such
models are trained to learn the patterns of language
use, and as such do not necessarily reflect valid en-
tailments. But anchoring the use of language mod-
els to a symbolic representation like ULF would
potentially enable constraining inferences to inter-
pretable ones.

6 Conclusion

We have presented a proof-based formalism for
making natural logic inferences from ULFs with in-
proof scoping assumption declarations using less
ambiguous, scoped LFs. This inferential capacity
of ULF, in conjunction with its ease of parsing,
positions ULF as a promising representational ba-
sis for automatically generating natural logic infer-
ences. Machine learning tools can then be deployed
for semantic parsing (ULFs) and sequence labeling
(polarities), both well-researched paradigms, rather
than building a model of Natural Logic directly on
top of statistical tools.

Acknowledgments

This work was supported by NSF EAGER grant
NSF IIS-1908595, DARPA CwC subcontract
W911NF-15-1-0542, and a Sproull Graduate Fel-
lowship from the University of Rochester. We are
grateful to Hannah An, Sapphire Becker and the
anonymous reviewers for their helpful feedback.

References
Evert Willem Beth. 1955. Semantic entailment and

formal derivability. In Proceedings of the Section
of Sciences, 18, page 309–342. Koninklijke Neder-
landse Akademie van Wentenschappen.

Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox,
Johan Van Genabith, Jan Jaspars, Hans Kamp, David
Milward, Manfred Pinkal, Massimo Poesio, and
Steve Pulman. 1996. Using the framework. Tech-
nical Report LRE 62-051 D-16, The FraCaS Con-
sortium.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Daniel Gildea, Giorgio Satta, and Xiaochang Peng.
2018. Cache transition systems for graph parsing.
Computational Linguistics, 44(1):85–118.

C.H. Hwang and L.K. Schubert. 1993. Episodic Logic:
A situational logic for natural language processing.
In P. Aczel, D. Israel, Y. Katagiri, and S. Peters, edi-
tors, Situation Theory and its Applications 3 (STA-3),
pages 307–452. CSLI.

Thomas Icard, Lawrence Moss, and William Tune.
2017. A monotonicity calculus and its completeness.
In Proceedings of the 15th Meeting on the Mathemat-
ics of Language, pages 75–87, London, UK. Associ-
ation for Computational Linguistics.

Thomas F Icard and Lawrence S Moss. 2014. Recent
progress on monotonicity. In Linguistic Issues in
Language Technology. Citeseer.

Gene Kim, Benjamin Kane, Viet Duong, Muskaan
Mendiratta, Graeme McGuire, Sophie Sackstein,
Georgiy Platonov, and Lenhart Schubert. 2019. Gen-
erating discourse inferences from unscoped episodic
logical formulas. In Proceedings of the First Inter-
national Workshop on Designing Meaning Represen-
tations, pages 56–65, Florence, Italy. Association
for Computational Linguistics.

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.cs.rochester.edu/u/gildea/pubs/gildea-satta-cl18.pdf
https://doi.org/10.18653/v1/W17-3408
https://doi.org/10.18653/v1/W19-3306
https://doi.org/10.18653/v1/W19-3306
https://doi.org/10.18653/v1/W19-3306

31

Gene Kim and Lenhart Schubert. 2019. A type-
coherent, expressive representation as an initial step
to language understanding. In Proceedings of the
13th International Conference on Computational Se-
mantics, Gothenburg, Sweden. Association for Com-
putational Linguistics.

Gene Louis Kim. 2019. Towards parsing unscoped
episodic logical forms with a cache transition parser.
In the Poster Abstracts of the Proceedings of the
32nd International Conference of the Florida Arti-
ficial Intelligence Research Society.

Joachim Lambek. 1988. Categorial and categorical
grammars. In Categorial grammars and natural lan-
guage structures, pages 297–317. Springer.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A SICK cure for the evaluation of compo-
sitional distributional semantic models. In Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC’14), pages
216–223, Reykjavik, Iceland. European Language
Resources Association (ELRA).

George A. Miller. 1995. WordNet: A lexical
database for english. Communications of the ACM,
38(11):39–41.

Richard Montague. 1970. Universal grammar. Theo-
ria, 36(3):373–398.

Fabrizio Morbini and Lenhart Schubert. 2009. Evalu-
ation of Epilog: A reasoner for Episodic Logic. In
Proceedings of the Ninth International Symposium
on Logical Formalizations of Commonsense Reason-
ing, Toronto, Canada.

Khalil Mrini, Franck Dernoncourt, Trung Bui, Wal-
ter Chang, and Ndapa Nakashole. 2019. Rethink-
ing self-attention: An interpretable self-attentive
encoder-decoder parser.

Victor Sánchez Valencia. 1991a. Categorial grammar
and natural logic. ILTI Prepublication: Logic, Phi-
losophy and Linguistics (LP) Series.

Victor Sánchez Valencia. 1991b. Studies on natural
logic and categorial grammar. Ph.D. thesis, Univer-
sity of Amsterdam.

Lenhart Schubert. 2014. From treebank parses to
Episodic Logic and commonsense inference. In Pro-
ceedings of the ACL 2014 Workshop on Semantic
Parsing, pages 55–60, Baltimore, MD. Association
for Computational Linguistics.

Lenhart K. Schubert. 2000. The situations we talk
about. In Jack Minker, editor, Logic-based Artifi-
cial Intelligence, pages 407–439. Kluwer Academic
Publishers, Norwell, MA, USA.

Lenhart K. Schubert and Chung Hee Hwang. 2000.
Episodic Logic meets Little Red Riding Hood: A
comprehensive natural representation for language
understanding. In Lucja M. Iwańska and Stuart C.
Shapiro, editors, Natural Language Processing and
Knowledge Representation, pages 111–174. MIT
Press, Cambridge, MA, USA.

Jonathan Traugott. 1986. Nested resolution. In 8th
International Conference on Automated Deduction,
pages 394–402, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Johan Van Benthem et al. 1986. Essays in Logical Se-
mantics. Springer.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on Penn treebank. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2396–2408, Florence, Italy. Association for Compu-
tational Linguistics.

Appendix A Sánchez-Valencia’s
Treament of Natural Logic

This appendix lays out the formal treatment of
Sánchez-Valencia’s Natural Logic which is de-
scribed in Section 2. The semantics of Sánchez-
Valencia’s Natural Logic is rooted in an undirected,
typed lambda calculus constructed from derivations
of Lambek cum Permutation Calculus (Lambek,
1988). The primitives semantic types are e and
t (for entities and truth values) which denote sets,
with complex types of the form 〈a, b〉 where a and
b are semantic types in the language.There is one
inference rule over these, 〈α, β〉, α → β, where
the order of the functor and the argument do not
matter.

Definition A.1. Monotonicity is defined over the
partial ordering relation ≤a which is defined as
follows, where a is a semantic type and Da is the
corresponding set:

• If α, β ∈ De then α ≤e β iff α = β.

• If α, β ∈ Dt then α ≤t β iff α = ⊥ or β =
>.

• If α, β ∈ D(c,d) then α ≤(c,d) β iff for each
κ ∈ Dc , α(κ) ≤d β(κ).

Definition A.2. Monotonicity for functions f ∈
D(a,b) is defined over this ordering as follows:

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/363_Paper.pdf
https://doi.org/10.1145/219717.219748
https://doi.org/10.1145/219717.219748
http://arxiv.org/abs/1911.03875
http://arxiv.org/abs/1911.03875
http://arxiv.org/abs/1911.03875
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230

32

• f is upward monotone iff for all x, y ∈ Da,
x ≤a y entails f(x) ≤b f(y).

• f is downward monotone iff for all x, y ∈ Da,
x ≤a y entails f(y) ≤b f(x).

• f is non-monotone if it is neither upward or
downward monotone.

Definition A.3. Monotonicity of an occurrence M
in N is defined relative to its semantic interpreta-
tion, where I is the interpretation function such
that:

• M is upward monotone in N iff I(M) ≤
I(M ′) entails I(N) ≤ I(N{M/M ′}) for all
models and assignments.

• M is downward monotone in N iff I(M ′) ≤
I(M) entails I(N{M/M ′}) ≤ I(N) for all
models and assignments.6

Using this, Sánchez-Valencia proves that pos-
itive and negative polarity items from the prior
Natural Logic literature corresponds to upward and
downward monotone occurrences. From this corre-
spondence the soundness of substituting supersets
for subsets in positive polarities and vice versa is
realized.

Appendix B Detailed Inference System
Correspondence

Sánchez-Valencia reasons using a tableau proof
system (Beth, 1955) with nodes of the form

a1, a2, ..., an • b1, b2, ..., bm
where ai, 1 ≤ i ≤ n and bj1 ≤ j ≤ m are English
expressions with corresponding Lambek deriva-
tions a′i and b′j . The proof starts with the premises
on the left side (ai) and the desired conclusions
on the right side (bj). The proof concludes when
all paths of the proof tree are closed. A path is
closed when the leaf node of the path has the same
statement (including scope markings) on both sides
of the node. For those unaware of the notation of
tableau systems, this node can be interpreted as the
following well-formed formula.
(A1 ∧A2 ∧ ... ∧An)→ (B1 ∨B2 ∨ ... ∨Bm)

A tableau step, e.g.
a b

a′ b′

can be interpreted as the formula
(A→ B)←→ (A′ → B′)

6N{M/M ′} is shorthand for M ′ substitutes for M in N .

B.1 Marking in NLog

Sánchez-Valencia’s (1991a) monotonicity and
scope marking rules are

X A,Y

X A∗, Y

A,X Y

A∗, X Y

where A∗ is a monotonicity or scope marking
of A provided by the fixed Lambek analysis of
A. Monotonicity can take values + and − and
scoping is marked with ()# where the parentheses
circumscribe the words associated with the top-
level scope.

B.2 Scope Marking in ULF

Rather than using a Lambek analysis for identifying
the operator scopes and as a result the polarities,
scoped logical forms (SLFs) are used, which are
ULFs with disambiguated scopes. The conversion
from ULF to SLF can be denoted mid-proof so that
a specific scoping does not need to be committed
to at the start of the proof.

B.2.1 Mapping ULFs to SLFs
Scoping for ULFs comes in two flavors:

(S1) Independent scoped operators. An indepen-
dent scoped operator is one that simply raises
up to any wff level and introduces some in-
formation to only that scope of the overall
formula. This includes tense, aspect, and
sentence-level adverbials operators. These
operators add temporal, locative, or general
additional contextual information to the wff.

(|Abelard| ((past see.v) him.pro yesterday.adv-e))

↓ scoping

(past (yesterday.adv-e (|Abelard| (see.v him.pro))))

(S2) Determiners with restrictors. When deter-
miners are scoped, they bring with them the
restrictor predicate. A variable is introduced
which is placed in the position of the lifted
constituent and this variable is quantified with
the lifted determiner and restricted by the re-
strictor predicate.

(|Abelard| (see.v (a.d carp.n)))

↓ scoping

(a.d x: (x carp.n) (|Abelard| (see.v x)))

33

B.2.2 Scope Marking with SLFs
In accordance with Sánchez-Valencia’s treatment,
we will only perform scope marking on the (S2)
classes of scoping operators. Fortunately, this is the
more interesting one from a structural perspective.
The scoping of ULFs with (S2) classes leads to a
more decoupled representation of the constituent,
so we must define a correspondence between these
components that allows us to still mark the scoping
of the ULF based on the fixed scoped realization.

The key to making a correspondence between
the (S2)-type constituent in ULF and SLF is the
quantified variable of the SLF. For a ULF, ψ which
contains a quantified expression ϙ of form the (δ π)
where δ is a determiner and π is a predicate, the
corresponding formula with (δ π) at the top-level
scope is (δ x: (x π) ψ[ϙ/x]).

Top-level scope marking process Knowing this
correspondence, we have a path to marking the
ULF quantified expression constituent that is the
top-level scope. Given the SLF which defines the
scope ordering, the constituent of the form (δ π)
in psi at the position of x in ψ[ϙ/x] is marked as
the top scope of ψ. Note that ϙ does is not an
alias for the pattern (δ π). Rather it refers to a
unique constituent of ψ which has the form (δ π).
This is an important distinction in order to properly
handle sentences with multiple constituents of the
same form, e.g. "A dog greets a dog". Below is an
example to help illustrate the mapping.

"Abelard sees a carp"
SLF (a.d x: (x carp.n) (|Abelard| (see.v x)))

Marked ULF (|Abelard| (see.v (a.d carp.n)#))
δδδ: a.d, πππ: carp.n

In practice, we will not use the actual natural
logic marking for inference since we don’t use the
tableau method for inference. Rather, we use this
process to identify the ULF constituent with the
top-level scope on the fly using the process which
retains the same inferential capacity to the marking
in tableau method.

B.3 Polarity marking in ULF

We perform polarity marking in a two stage process
that mirrors the process used by (Sánchez Valen-
cia, 1991a). First we classify lexical entries ac-
cording to their monotonicity properties—in which
direction they place entailment contexts on their
arguments—and mark them in the SLF with sub-
scripts. For example, the determiner no.d, which

Scoping Operators (S1)
not(−), never.adv(−)

Verbs
know.v(+,◦)

Determiners (S2)
a.d(+,+), every.d(−,+),
some.d(+,+),
many.d(+,+),
most.d(+,◦)

Figure 6: Examples of lexical monotonicity markings.

has negative downward entailment on both the re-
strictor and scope is marked as no.d(−,−). Here are
a few lexical polarity annotated items. The pos-
sible entailment options are + for upward, − for
downward, and ◦ for flat. Figure 6 provides more
examples.

Unmarked lexical entries are assumed to have
upward entailment on all of their arguments. Using
the lexical annotations, we mark the local entail-
ment direction of the argument constituents in the
SLF using subscripts again. For example, the SLF
for "no scientist knows every scientific fact"

(no.d(−,−) x: (x scientist.n)
(every.d(−,+) y: (y (scientific.a fact.n))

(x (know.v y))))

gets its arguments marked as follows.

(no.d(−,−) x: (x scientist.n)−
(every.d(−,+) y: (y (scientific.a fact.n))−

(x (know.v y))+)−)

Finally, the global polarity is derived from these
local entailment directions and marked with super-
scripts. The global polarity is derived by traversing
the SLF from the root and counting the number of
occurrences of negative and flat entailments. The
global polarity is computed form this using the
following rules, applied in order.

1. If node a has no polarity if any node in the
path from the root to a is marked with ◦ (flat
local entailment).

2. Else, if node a has negative polarity if there
are an odd number of nodes between the root
and a (including a) marked with − (down-
ward local entailment).

3. Otherwise, node a has positive polarity.

Following these rules the argument marked SLF
gets marked with global polarity as (limiting global
polarity marking to just nodes with local entailment
marking for readability)

34

()

()−−

()−+

()−

()−

y−

y))))

know.v−

(know.v

x−

(x

()+−

()+

fact.n+

fact.n))

scientific.a+

(scientific.a

y+

(y

y−

y:

every.d−(−,+)

(every.d

()−−

scientist.n−

scientist.n)

x−

(x

x+

x:

no.d+(−,−)

(no.d

Figure 7: A tree representation of the SLF for "No scientist knows every scientific fact." with all lexical mono-
tonicity, local entailment context, and global polarity markings.

General

person

scientist

physicist

fact

scientific fact

physics fact

Specific

-+

Figure 8: Monotonicity orderings of the predicates that
are involved in the polarity inference example. Lower
predicates are subsets of predicates above them. Predi-
cates can be replaced with those above them in positive
polarity and below them in negative polarity.

(no.d(−,−) x: (x scientist.n)−−
(every.d(−,+) y: (y (scientific.a fact.n))+−

(x (know.v y))−+)−−)

The propagation of the polarity is easier to see
when the SLF is written in a tree diagram, Figure 7.

Then we can mark the global polarity in the
ULF according to the corresponding constituent
in the SLF. The following is the resulting ULF
for the above SLF, only marking constituents that
correspond to predicates in predicative position in
the SLF.

((no.d scientist.n−)
(know.v− (every.d (scientific.a fact.n)+)))

We now show that these markings result in infer-
ences that follow our intuition. From the sentence
"No scientists knows every scientific fact" we want

to infer

(1) a. No physicist knows every scientific fact

b. No scientist knows every fact

but not

(2) a. *No person knows every scientific fact

b. *No scientist knows every physics fact

Figure 8 shows the monotonicity orderings of the
predicates that are involved in this example and the
direction of warranted inference in each polarity.

In positive polarity, we are warranted inference
upward on this diagram, and for negative polarity
downward. That is, ‘scientist’ is in negative po-
larity which warrants replacement by ‘physicist’,
which is indeed intuitively warranted in English.
As is desired from the motivating sentences, “scien-
tist” is in negative polarity and can be replaced with
“physicist” (1a) and “scientific fact” is in positive
polarity and can be replaced with “fact” (1b).

B.4 Inferences with ULFs
B.4.1 Negation
Sánchez-Valencia’s (1991a) negation rule is

x,Neg(a) y

x a, y

In simple logical terms, this rule is

((X ∧ ¬A)→ Y)↔ (X → (A ∨ Y)) (1)

Negation of ULFs is performed by applying the
logical ‘not’ operator so no special rule is necessary.

35

For instance, the negation of the ULF (|Abelard|
walk.v) is (not (|Abelard| walk.v)).

Some identities that are useful for inferences are
listed below, in the form of inference rules. Proofs
for these identities can be given using the formal
definitions of the respective generalized quantifiers.

(not (not φ))
φ

(not (some.d ν:ψ φ))
(no.d ν:ψ φ)

(not (a.d ν:ψ φ))
(no.d ν:ψ φ)

φ

(not (not φ))

(no.d ν:ψ φ)
(not (some.d ν:ψ φ))

(no.d ν:ψ φ)
(not (a.d ν:ψ φ))

B.4.2 Handling ‘be.v’
While ‘be.v’ are included in ULFs for simplifying
the interface to natural language since the copula
can act as an anchor for modifications from ad-
verbial phrases and temporal information from its
conjugation, we can consider it to be semantically
void with respect to its arguments.

SLF Rule 1 (be.v Elimination).

(a.d y: (y P) (x (be.v (= y))))
(x P)

where P is an arbitrary unary predicate and x is an
arbitrary term.

Proof
1. (a.d y: (y P) (x (be.v (= y)))) Assumption

2. I((a.d y: (y P) (x (be.v (= y))))) Interp. fn.

3. There exists d ∈ D s.t. d ∈ I(P) and
I((x (be.v (= y))))Uy:d

Satisfaction
conds of ∃

4. There exists d ∈ D s.t. d ∈ I(P) and
I((x (= y)))Uy:d

Def of be.v

5. There exists d s.t. d ∈ I(P) and
(I(x) = d)

I(=)

6. I(x) ∈ I(P) Variable
substitution

7. (x P) Interp. fn. of
predication

With this inference rule we can easily derive a
predicate subset defining inference rule which is
necessary for polarity inferences.

(every.d x: (xP1) (a.d y: (y P2) (x (be.v (= y)))))

(every.d x: (x P1) (x P2))

where P1 and P2 are arbitrary unary predicates.
For example, from the initial SLF for "every

carp is a fish" we get a nice relationship between
the predicates ‘carp.n’ and ‘fish.n’.

(every.d x: (x carp.n) (a.d y: (y fish.n) (x (be.v (= y)))))
⇓

(every.d x: (x carp.n) (x fish.n))

B.4.3 Monotonicity Inference
The basic monotonicity inference rule in Natural
Logic takes a subset relationship between two pred-
icates, P1 ⊆ P2, and a formula, f , where some-
thing of type P1 occurs in positive polarity. Then
we can assert f ′ which is the same as f except that
P2 is substituted for P1. We can state a direct
analog of this rule using SLFs.

We also formulate a similar rule which takes
the subset relationship P1 ⊆ P2 and a formula g,
where something of type P2 appears in negative
polarity. In this case we can assert g′ which is
the same as g except that P1 is substituted for P2.
Using SLFs the inferences looks as follows.

SLF Rule 2 (Monotonicity Inference, SMI).

(δ x: (x P1)+ φ(x)), (every.d y: (y P1) (y P2))
(δ x: (x P2) φ(x))

(δ x: (x P2)− φ(x)), (every.d y: (y P1) (y P2))
(δ x: (x P1) φ(x))

where δ is a determiner.

The SLFs are necessary for keeping track of the
outer scope and determining the polarities, but the
core inference can be written using ULFs, closer
to surface form, with the SLFs acting as auxiliary
information to ensure consistency of the formulas.
Using ULFs and chaining SMI and be.v elimination
we get the following inferences.

ULF Rule 1 (Monotonicity Inference, UMI).

φ[(δ P1)+], ((every.d P1) (be.v (= (a.d P2))))
φ[(δ P2)]

φ[(δ P2)−], ((every.d P1) (be.v (= (a.d P2))))
φ[(δ P1)]

where δ is a determiner.

It is worth noting that if the restrictor of a deter-
miner is a conjunction of predicates restricting the
variable, then due to the upward entailing nature
of the ∧ operator we can propagate the polarity
induced by the determiner on its restrictor to each
term in the conjunction. Also, we know that the
∧ operator preserves subset relations, that is if x
satisfies predicates P1 and P2 and if every ele-
ment of P1 is also in Q, then x must satisfy the
predicates Q and P2. Therefore, in a case where a
variable is restricted by a conjunction of predicates,

36

it is possible to use the monotonicity inference rule
on individual predicates in the restrictor. This is
particularly useful when dealing with extensionally
modified predicates (see B.4.4).

Example 1. Now we will use the presented
ULF/SLF marking and inference rules to per-
form an inference over generalized quantifiers that
Sánchez Valencia (1991a) demonstrated: from
"Abelard sees a carp" and "Every carp is a fish" we
will conclude "Abelard sees a fish". Before we start
the inference, we walk through the scoping and po-
larity derivation of assumption (1), which will be
used in the inference. This derivation takes the
place of the Lambek derivations used by Sánchez-
Valencia to get polarity and scoping information
into the proof.

Scoping and Polarity Derivation
1. (|Abelard| (see.v (a.d carp.n))) ULF

2. (a.d x: (x carp.n) (|Abelard| (see.v x))) Only possible
scoping

3. (a.d(+,+) x: (x carp.n)
(|Abelard| (see.v x)))

a.d lexical
monotonicity

4. (a.d x: (x carp.n)+
(|Abelard| (see.v x))+)

Local entail.
context

5. (a.d x: (x carp.n)+

(|Abelard| (see.v x)+)+)
Global

polarity

Now for the actual proof.

Proof
1. (|Abelard| (see.v (a.d carp.n))) Assumption

2. ((every.d carp.n) (be.v (= (a.d fish.n)))) Assumption

3. (|Abelard| (see.v (a.d carp.n)+)) Polarity
marking, 1.

4. (|Abelard| (see.v (a.d fish.n))) UMI, 2.,3.

B.4.4 Inferences with Predicate Modifiers
Let P ′ be an extensional modification of a predicate
P , and let Pm be the modifying predicate. Since
the modification is extensional, we know that an
entity x satisfies P ′ if and only if it satisfies both
P and Pm. Hence we get the following rule.

SLF Rule 3.

(δ x: (x P ′) φ(x))
(δ x: ((x P) ∧ (x Pm)) φ(x))

where P ′ is an extensional modification of the pred-
icate P with modifying predicate Pm, and δ is a
determiner.

This rule can then be combined with monotonic-
ity inference to get

ULF Rule 2.
φ[(δ (M P1))+], ((every.d P1) (be.v (= (a.d P2))))

φ[(δ (M P2))]

where M is an extensional modifier and δ is a de-
terminer. A similar rule for negative polarities can
be written as well.

This allows us to make another inference demon-
strated by Sánchez Valencia (1991a):

Example 2. From "Abelard sees a male carp" and
"Every carp is a fish", we will conclude "Abelard
sees a male fish".

Scoping and Polarity Derivation
1. (|Abelard| (see.v (a.d (male.a carp.n)))) ULF

2. (a.d x: (x (male.a carp.n))
(|Abelard| (see.v x)))

Only possible
scoping

3. (a.d x: ((x male.a) ∧ (x carp.n))
(|Abelard| (see.v x)))

Assume
intersective

modification

4. (a.d(+,+) x: ((x male.a) ∧ (x carp.n))
(|Abelard| (see.v x)))

a.d lexical
monotonicity

5. (a.d x: ((x male.a) ∧ (x carp.n))+
(|Abelard| (see.v x))+)

Local entail.
context

6. (a.d x: ((x male.a)+ ∧ (x carp.n)+)
(|Abelard| (see.v x))+)

Upward entail.
of ∧

7. (a.d x: ((x male.a)+ ∧ (x carp.n)+)
(|Abelard| (see.v x)+)+)

Global
polarity

Proof
1. (|Abelard| (see.v (a.d (male.a carp.n)))) Assumption

2. ((every.d carp.n) (be.v (= (a.d fish.n)))) Assumption

3. (|Abelard| (see.v (a.d (male.a carp.n+)))) Polarity
marking, 1.

4. (|Abelard| (see.v (a.d (male.a fish.n)))) UMI, 2.,3.

The need for addressing the intersective nature
of the modification in male fish brings up a benefit
of using ULFs as a basis for the inferences. Since
ULF is explicitly underspecified, the assumptions
made during the inference process must be stated.
The corresponding proof presented by Sánchez-
Valencia hides the assumption of intersective mod-
ification in the lexical monotonicity marking of
male (as ((e, t)+, (e, t))). In ULF, modifications
are assumed to be intensional unless otherwise as-
sumed, so the intersective nature of the modifier
male.n must be explicitly stated.

37

B.4.5 Conversion Rules
Sánchez-Valencia’s (1991a) conversion rule is

(some y)# is a x,X Y

(some x)# is a y,X Y

Before stating the corresponding rule for ULFs,
we note that the rule also works for the determiners
a.d and no.d. Thus we state the ULF conversion
rules as follows:

SLF Rule 4 (Conversion).

(d x: (x P) (x Q))↔ (d y: (y Q) (y P))

where d ∈ {some.d, a.d, no.d}.
Correctness of this rule can be argued using the

definitions of the generalized quantifiers ‘some’,
‘a’, and ‘no’ and subset relations under interpreta-
tion.

Using ULFs and chaining this rule with the be.v
inference, we get the following rule.

ULF Rule 3 (Conversion).

((d1 P) (be.v (= (d2 Q))))
↔ ((d1 Q) (be.v (= (d2 P))))

where d1 ∈ {some.d, a.d, no.d} and d2 ∈ {some.d,
a.d}.

B.5 Boolean Connectives

Sánchez-Valencia (1991a) handles generalized
boolean connectives by allowing connectives (and,
or) to have the type (a, (a, a)), where a is any com-
plex category ending in t. Then the inference rules
appropriately substitute one of the connective con-
stituents for the entire phrase. The rules, which we
will not list here, have a few versions depending
on the position of the connective due to the left
side of the tableau nodes being interpreted as con-
nected with conjunctions and the right side with
disjunctions.

ULF handles this similarly, without the tableau-
specific details by allowing connectives to be inter-
preted as 〈A, 〈A,A〉〉 for an arbitrary type A. They
are interpreted as generalized lambda expressions.

Definition B.1 (ULF Generalized Connective).

(A χ B)↔
(λ x1, ..., xn: ((A x1...xn) χ (B x1...xn)))

where χ ∈ {and.cc, or.cc} and both A and B are
prefix operators with arity n. Infix operators are
defined in the equivalent way while respecting the
predicate position relative to the arguments.

This along with the observation that the follow-
ing formulas hold true through the intersective and
unionistic nature of conjunction and disjunction,
respectively, allow us to use simple monotonicity
rules in the context of boolean connectives.

(λ x1, ..., xn: ((A x1...xn) and.cc (B x1...xn))) ⊆ A,B
A,B ⊆ (λ x1, ..., xn: ((A x1...xn) or.cc (B x1...xn)))

Appendix C Polarity-based EL Inference

EL supports two forward inference rules and two
goal-based inference rules that operate on substitu-
tions under appropriate polarity contexts (Schubert
and Hwang, 2000). Here we present a couple of
examples and connect it to the inference rules in
ULF. First, the forward inference rules, called Rule
Instantiation (RI):

RI-1
MAJ(φ−),MIN(φ′+)

MAJσ(¬MINσ(⊥+)−)

RI-2
MAJ(φ−),MIN(φ′+)

MINσ(MAJσ(>−)+)

where RI-1 is sound if the only variables
in the matching expression (φ′) of the minor
premise (MIN) are “matchably bound,”—bound
within φ′ or by a universal quantifier in positive
polarity context or existential quantifier in negative
polarity context—and RI-2 is sound if the only vari-
ables in the matching expression (φ) of the major
premise (MAJ) are “matchably bound.”

It turns out that the monotonicity rule presented
by Sánchez Valencia (1991a) is a special case of RI-
2. Here is an example to demonstrate a monotonic-
ity inference over SLFs, which for this inference is
sufficiently disambiguated.
Proof
1. Every carp is a fish Assumption

2. Abelard sees a carp Assumption

3. (every.d x: (x carp.n)
(a.d y: (y fish.n) (be.v (= y))))

SLF for 1.

4. (a.d x: (y carp.n) (|Abelard| (see.v y))) SLF for 2.

5. (every.d x: (x carp.n) (x fish.n)) be.v Elim, 3.

6. (every.d x: (x carp.n)− (x fish.n)+) Polarity
marking, 5.

7. (a.d y: (y carp.n)+

(|Abelard| (see.v y))+)
Polarity

marking, 4.

8. (a.d y: (y fish.n)+

(|Abelard| (see.v y))+)
RI-2, 6.,7.

(see C)

9. Abelard sees a fish English for 8.

Step-by-step RI-2 application
1. (every.d x: (x carp.n)− (x fish.n)+) MAJ

38

2. (a.d y: (y carp.n)+

(|Abelard| (see.v y))+)
MIN

3. >→ (y fish.n)+ Converted
MAJ ,

{x/y}, 1.

4. ⊥ ∨ (y fish.n)+ → Def, 3.

5. (y fish.n)+ ⊥ Elim, 4.

6. (a.d y: (y fish.n)+

(|Abelard| (see.v y))+)
Subst. of

converted
MAJ , 2.,5.

Notice that this proof holds for an arbitrary pred-
icates in place of carp and fish and an arbitrary
sentence where carp occurs in positive polarity
context in place of Abelard sees a carp. Thus, RI-2
is a generalization of Sánchez’s monotonicity rule.

(every x)# is a y, F (x+), X Y

(every x)# is a y, F (y), X Y

Note that RI-2 can also handle inferences where
the major premise is a more complex construction
than “every p is a q”. In episodic logic, RI-2 can
be used to conclude Something is a cap or pretty if
Little Red Riding Hood wears it from Every dress
or hood that Little Red Riding Hood wears is pretty
and Something is a cap or a hood (Schubert and
Hwang, 2000).

Additionally, RI-1 is a generalization of the re-
verse inference: substituting in more specific predi-
cates when in negative polarity.
Step-by-step RI-1 application
1. (every.d x: (x carp.n)− (x fish.n)+) MIN

2. (no.d y: (y fish.n)−

(|Abelard| (see.v y))−)
MAJ

3. (no.d x: (x fish.n)−

(|Abelard| (see.v x))−)
Converted

MAJ ,
{y/x}, 2.

4. ¬((x carp.n)− → ⊥+) Converted
MIN , 1.

5. ¬(¬(x carp.n)− ∨ ⊥+) → Def, 4.

6. ¬¬(x carp.n)− ∧ >+ de Morgan, 5.

7. (x carp.n)− ∧ >+ ¬ Elim, 6.

8. (x carp.n)− > Annih, 7.

9. (no.d x: (x carp.n)−

(|Abelard| (see.v x))−)
Subst. of

converted
MIN , 3.,8.

We’ve already shown that RI subsumes the
specialized monotonicity inference presented by
Sánchez Valencia (1991a). Now, we will show that

in first order contexts RI also subsumes a more
general presentation of natural logic inference by
Sánchez Valencia (1991b). The upward mono-
tonicity inference in positive contexts is written
by Sánchez Valencia as

JMK ≤ JM ′K JN(M)K
JN(M ′)K

Where JK is the denotation function and ≤ is the
monotonicity ordering from Definition A.1. We
will refer to this rule as SVMI. First, we show that
the RI-2 inference in first order contexts can be
interpreted in this form.

Since RI-2 substitutes MAJσ(>) for φ′+

in MIN(φ′+), if we can show that Jφ′K ≤
JMAJσ(>)K, then RI-2 can be justified through
SVMI. As MAJ(φ) is assumed in RI-2, if φ = >,
then for all models satisfying the assumptions,
MAJ(>) = >.7 Basically, MAJ(φ), (φ =
>) → MAJ(>). This by definition of ≤ (A.1)
satisfies JφK ≤ JMAJ(>)K: in any case where
φ is true, so is MAJ(>). Since φ and φ′ are
matchably bound, their differences are irrelevant
in the above justification and can be substituted
for each other. Thus, for any application of RI-2
Jφ′K ≤ JMAJσ(>)K holds, and therefore the infer-
ence can be justified through SVMI.

Now, we show that for any SVMI inference
where M and M ′ are wffs, it can be written
in the form of RI-2. JMK ≤ JM ′K can be re-
stated as (∀xM → M ′), which we identify as
MAJ(φ−), where M is phi and we know that M
is in a negative polarity context due to ∀. N(M)
is identified as MIN(φ′+) where M is φ′ and
we know is in a positive polarity context by as-
sumption. MAJ(>) = > → M ′ = M ′ so
MIN(MAJ(>)) = N(M ′).

We conjecture that this generalizes to all M and
M ′ that are not wffs. The monadic predicate case
seems simple enough through a connection with
modus ponens, but proofs for cases such as deter-
miners and variables are more elusive.

Appendix D Traditional Aristotelian
Syllogisms in ULF

In this appendix, we show that similar to Sánchez-
Valencia’s (1991a) Natural Logic, the inference
system described for ULFs can explain traditional
syllogistic inference. We will give proofs for the

7This step requires the first-order context. In intensional
contexts, the substitution via equality is not justified.

39

syllogisms of the first figure using ULFs. Since all
other syllogisms can be derived from these, this is
sufficient to show that all traditional syllogisms can
be derived.

D.1 Scoping and Polarity Derivations

Before proving the syllogisms we go through the
scoping and polarity derivations of the propositions
used in the syllogisms.

Proposition i. “Every X is a Y ”
1. ((every.d X) (be.v (= (a.d Y)))) ULF

2. (every.d x: (x X) (x (be.v (= (a.d Y))))) Scope every.d

3. (every.d x: (x X)
(a.d y: (y Y) (x (be.v (= y)))))

Scope a.d

4. (every.d(−,+) x: (x X)
(a.d(+,+) y: (y Y)

(x (be.v (= y)))))

Lexical
monotonicity

5. (every.d x: (x X)−
(a.d y: (y Y)+

(x (be.v (= y)))+)+)

Local entail.
context

6. (every.d x: (x X)−

(a.d y: (y Y)+

(x (be.v (= y)))+)+)

Global
polarity

Proposition ii. “Some X is a Y ”
1. ((some.d X) (be.v (= (a.d Y)))) ULF

2. (some.d x: (x X)
(a.d y: (y Y) (x (be.v (= y)))))

Scoping

3. (some.d(+,+) x: (x X)
(a.d(+,+) y: (y Y)

(x (be.v (= y)))))

Lexical
monotonicity

4. (some.d x: (x X)+
(a.d y: (y Y)+

(x (be.v (= y)))+)+)

Local entail.
context

5. (some.d x: (x X)+

(a.d y: (y Y)+

(x (be.v (= y)))+)+)

Global
polarity

Proposition iii. “No X is a Y ”
1. ((no.d X) (be.v (= (a.d Y)))) ULF

2. (no.d x: (x X)
(a.d y: (y Y) (x (be.v (= y)))))

Scoping

3. (no.d(−,−) x: (x X)
(a.d(+,+) y: (y Y)

(x (be.v (= y)))))

Lexical
monotonicity

4. (no.d x: (x X)−
(a.d y: (y Y)+

(x (be.v (= y)))+)−)

Local entail.
context

5. (no.d x: (x X)−

(a.d y: (y Y)−

(x (be.v (= y)))−)−)

Global
polarity

Proposition iv. “Not every X is a Y ”
1. (not (every.d X) (be.v (= (a.d Y)))) ULF

2. (not (every.d x: (x X)
(a.d y: (y Y)

(x (be.v (= y))))))

Scoping

3. (not(−) (every.d(−,+) x: (x X)
(a.d(+,+) y: (y Y)

(x (be.v (= y))))))

Lexical
monotonicity

4. (not (every.d x: (x X)−
(a.d y: (y Y)+

(x (be.v (= y)))+)+)−)

Local entail.
context

5. (not (every.d x: (x X)+

(a.d y: (y Y)−

(x (be.v (= y)))−)−)−)

Global
polarity

D.2 Deriving the Syllogisms

Syllogism 1 (Barbara). “Every M is a P ” and
“Every S is a M” entail “Every S is a P ”.
Proof
1. ((every.d M) (be.v (= (a.d P)))) Assumption

2. ((every.d S) (be.v (= (a.d M)))) Assumption

3. ((every.d M)− (be.v (= (a.d P)))) Polarity
marking, 1.

4. ((every.d S) (be.v (= (a.d P)))) UMI, 2.,3.

Syllogism 2 (Darii). “EveryM is a P ” and “Some
S is a M” entail “Some S is a P ”.
Proof
1. ((every.d M) (be.v (= (a.d P)))) Assumption

2. ((some.d S) (be.v (= (a.d M)))) Assumption

3. ((some.d S) (be.v (= (a.d M)+))) Polarity
marking, 2.

4. ((some.d S) (be.v (= (a.d P)))) UMI, 1.,3.

Syllogism 3 (Celarent). “No M is a P ” and “Ev-
ery S is a M” entail “No S is a P ”.
Proof
1. ((no.d M) (be.v (= (a.d P)))) Assumption

2. ((every.d S) (be.v (= (a.d M)))) Assumption

3. ((no.d M)− (be.v (= (a.d P)))) Polarity
marking, 1.

4. ((no.d S) (be.v (= (a.d P)))) UMI, 2.,3.

Syllogism 4 (Ferio). “No M is a P ” and “Some S
is a M” entail “Not every S is a P ”.

Using the logical interpretation of Sánchez-
Valencia’s Negation Rule twice (1), we see that the

40

syllogism is true iff “Every S is a P ” and “Some
S is a M” entail “Some M is a P ”. We prove this
as follows.
Proof
1. ((every.d S) (be.v (= (a.d P)))) Assumption

2. ((some S) (be.v (= (a.d M)))) Assumption

3. ((some S)+ (be.v (= (a.d M)))) Polarity
marking, 2.

4. ((some P) (be.v (= (a.d M)))) UMI, 1.,3.

5. ((some M) (be.v (= (a.d P)))) Conversion, 4.

This could alternatively be proved by contradic-
tion without the use of the equivalent of the Nega-
tion Rule, where “Not every S is a P ” becomes
negated to “every S is a P ”, after which, applying
UMI and Conversion leads to a contradiction.

