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Abstract

Recent QA with logical reasoning questions re-
quires passage-level relations among the sen-
tences. However, current approaches still
focus on sentence-level relations interacting
among tokens. In this work, we explore aggre-
gating passage-level clues for solving logical
reasoning QA by using discourse-based infor-
mation. We propose a discourse-aware graph
network (DAGN) that reasons relying on the
discourse structure of the texts. The model en-
codes discourse information as a graph with
elementary discourse units (EDUs) and dis-
course relations, and learns the discourse-
aware features via a graph network for down-
stream QA tasks. Experiments are conducted
on two logical reasoning QA datasets, Re-
Clor and LogiQA, and our proposed DAGN
achieves competitive results. The source
code is available at https://github.com/Eleanor-
H/DAGN.

1 Introduction
A variety of QA datasets have promoted the devel-
opment of reading comprehensions, for instance,
SQuAD (Rajpurkar et al., 2016), HotpotQA (Yang
et al., 2018), DROP (Dua et al., 2019), and so
on. Recently, QA datasets with more complicated
reasoning types, i.e., logical reasoning, are also
introduced, such as ReClor (Yu et al., 2020) and
LogiQA (Liu et al., 2020). The logical questions
are taken from standardized exams such as GMAT
and LSAT, and require QA models to read compli-
cated argument passages and identify logical rela-
tionships therein. For example, selecting a correct
assumption that supports an argument, or finding
out a claim that weakens an argument in a passage.
Such logical reasoning is beyond the capability of
most of the previous QA models which focus on
reasoning with entities or numerical keywords.

∗This work was done during Yinya Huang’s internship in
Tencent with L. Wang and M. Fang.

†Corresponding Author: Xiaodan Liang.

A main challenge for the QA models is to un-
cover the logical structures under passages, such
as identifying claims or hypotheses, or pointing
out flaws in arguments. To achieve this, the QA
models should first be aware of logical units, which
can be sentences or clauses or other meaningful
text spans, then identify the logical relationships
between the units. However, the logical structures
are usually hidden and difficult to be extracted, and
most datasets do not provide such logical structure
annotations.

An intuitive idea for unwrapping such logical in-
formation is using discourse relations. For instance,
as a conjunction, “because” indicates a causal re-
lationship, whereas “if” indicates a hypothetical
relationship. However, such discourse-based infor-
mation is seldom considered in logical reasoning
tasks. Modeling logical structures is still lacking in
logical reasoning tasks, while current opened meth-
ods use contextual pre-trained models (Yu et al.,
2020). Besides, previous graph-based methods
(Ran et al., 2019; Chen et al., 2020a) that construct
entity-based graphs are not suitable for logical rea-
soning tasks because of different reasoning units.

In this paper, we propose a new approach to
solve logical reasoning QA tasks by incorporating
discourse-based information. First, we construct
discourse structures. We use discourse relations
from the Penn Discourse TreeBank 2.0 (PDTB
2.0) (Prasad et al., 2008) as delimiters to split texts
into elementary discourse units (EDUs). A logic
graph is constructed in which EDUs are nodes
and discourse relations are edges. Then, we pro-
pose a Discourse-Aware Graph Network (DAGN)
for learning high-level discourse features to rep-
resent passages.The discourse features are incor-
porated with the contextual token features from
pre-trained language models. With the enhanced
features, DAGN predicts answers to logical ques-
tions. Our experiments show that DAGN surpasses
current opened methods on two recent logical rea-
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Theoretically, analog systems are superior to digital systems. A signal in a pure analog system can be infinitely detailed, while 
digital systems cannot produce signals that are more precise than their digital units. With this theoretical advantage there is a 
practical disadvantage. Since there is no limit on the potential detail of the signal, the duplication of an analog representation 
allows tiny variations from the original, which are errors.

Context:

Question: The statements above, if true, most strongly support which one of the following?

Digital systems are the best information systems because error cannot occur in the emission of digital signals.Option

(1) (2) (3)

Context Option

Figure 1: The architecture of our proposed method with an example below.

soning QA datasets, ReClor and LogiQA.
Our main contributions are three-fold:

• We propose to construct logic graphs from
texts by using discourse relations as edges
and elementary discourse units as nodes.

• We obtain discourse features via graph neural
networks to facilitate logical reasoning in QA
models.

• We show the effectiveness of using logic
graph and feature enhancement by noticeable
improvements on two datasets, ReClor and
LogiQA.

2 Method

Our intuition is to explicitly use discourse-based
information to mimic the human reasoning process
for logical reasoning questions. The questions are
in multiple choices format, which means given a
triplet (context, question, answer options), models
answer the question by selecting the correct an-
swer option. Our framework is shown in Figure 1.
We first construct a discourse-based logic graph
from the raw text. Then we conduct reasoning via
graph networks to learn and update the discourse-
based features, which are incorporated with the
contextual token embeddings for downstream an-
swer prediction.

2.1 Graph Construction

Our discourse-based logic graph is constructed via
two steps: delimiting text into elementary discourse
units (EDUs) and forming the graph using their
relations as edges, as illustrated in Figure 1(1).

Discourse Units Delimitation It is studied that
clause-like text spans delimited by discourse rela-
tions can be discourse units that reveal the rhetori-
cal structure of texts (Mann and Thompson, 1988;
Prasad et al., 2008). We further observe that such
discourse units are essential units in logical reason-
ing, such as being assumptions or opinions. As the
example shown in Figure 1, the “while” in the con-
text indicates a comparison between the attributes
of “pure analog system” and that of “digital sys-
tems”. The “because” in the option provides evi-
dence “error cannot occur in the emission of digital
signals” to the claim “digital systems are the best
information systems”.

We use PDTB 2.0 (Prasad et al., 2008) to help
drawing discourse relations. PDTB 2.0 contains
discourse relations that are manually annotated on
the 1 million Wall Street Journal (WSJ) corpus and
are broadly characterized into “Explicit” and “Im-
plicit” connectives. The former apparently presents
in sentences such as discourse adverbial “instead”
or subordinating conjunction “because”, whereas
the latter are inferred by annotators between succes-
sive pairs of text spans split by punctuation marks
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such as “.” or “;”. We simply take all the “Explicit”
connectives as well as common punctuation marks
to form our discourse delimiter library (details are
given in Appendix A), with which we delimit the
texts into EDUs. For each data sample, we segment
the context and options, ignoring the question since
the question usually does not carry logical content.

Discourse Graph Construction We define the
discourse-based graphs with EDUs as nodes, the
“Explicit” connectives as well as the punctuation
marks as two types of edges. We assume that
each connective or punctuation mark connects the
EDUs before and after it. For example, the op-
tion sentence in Figure 1 is delimited into two
EDUs, EDU7 =“digital systems are the best infor-
mation systems” and EDU8 =“error cannot occur
in the emission of digital signals” by the connec-
tive r =“because”. Then the returned triplets are
(EDU7, r,EDU8) and (EDU8, r,EDU7). For each
data sample with the context and multiple answer
options, we separately construct graphs correspond-
ing to each option, with EDUs in the same context
and every single option. The graph for the single
option k is denoted by Gk = (Vk, Ek).

2.2 Discourse-Aware Graph Network
We present the Discourse-Aware Graph Network
(DAGN) that uses the constructed graph to exploit
discourse-based information for answering logical
questions. It consists of three main components: an
EDU encoding module, a graph reasoning module,
and an answer prediction module. The former two
are demonstrated in Figure 1(2), whereas the final
component is in Figure 1(3).

EDU Encoding An EDU span embedding is
obtained from its token embeddings. There
are two steps. First, similar to previous works
(Yu et al., 2020; Liu et al., 2020), we en-
code such input sequence “<s> context </s>
question || option </s>” into contex-
tual token embeddings with pre-trained language
models, where <s> and </s> are the special to-
kens for RoBERTa (Liu et al., 2019) model, and
|| denotes concatenation. Second, given the token
embedding sequence {t1, t2, ..., tL}, the n-th EDU
embedding is obtained by en =

∑
l∈Sn

tl, where Sn

is the set of token indices belonging to n-th EDU.

Graph Reasoning After EDU encoding, DAGN
performs reasoning over the discourse graph. In-
spired by previous graph-based models (Ran et al.,

2019; Chen et al., 2020a), we also learn graph
node representations to obtain higher-level features.
However, we consider different graph construction
and encoding. Specifically, let Gk = (Vk, Ek) de-
note a graph corresponding to the k-th option in
answer choices. For each node vi ∈ V, the node
embedding vi is initialized with the correspond-
ing EDU embedding ei. Ni = {j|(vj , vi) ∈ Ek}
indicates the neighbors of node vi. Wrji is the ad-
jacency matrix for one of the two edge types, where
rE indicates graph edges corresponding to the ex-
plicit connectives, and rI indicates graph edges
corresponding to punctuation marks.

The model first calculates weight αi for each
node with a linear transformation and a sigmoid
function αi = σ(Wα(vi) + bα), then conducts
message propagation with the weights:

ṽi =
1

|Ni|
(
∑
j∈Ni

αjW
rjivj), rji ∈ {rE , rI} (1)

where ṽi is the message representation of node vi.
αj and vj are the weight and the node embedding
of vj respectively.

After the message propagation, the node repre-
sentations are updated with the initial node embed-
dings and the message representations by

v′i = ReLU(Wuvi + ṽi + bu), (2)

where Wu and bu are weight and bias respectively.
The updated node representations v′i will be used
to enhance the contextual token embedding via
summation in corresponding positions. Thus t′l =
tl + v′n, where l ∈ Sn and Sn is the corresponding
token indices set for n-th EDU.

Answer Prediction The probabilities of options
are obtained by feeding the discourse-enhanced
token embeddings into the answer prediction mod-
ule. The model is end-to-end trained using cross
entropy loss. Specifically, the embedding sequence
first goes through a layer normalization (Ba et al.,
2016), then a bidirectional GRU (Cho et al., 2014).
The output embeddings are then added to the input
ones as the residual structure (He et al., 2016). We
finally obtain the encoded sequence after another
layer normalization on the added embeddings.

We then merge the high-level discourse features
and the low-level token features. Specifically, the
variant-length encoded context sequence, question-
and-option sequence are pooled via weighted sum-
mation wherein the weights are softmax results of
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Methods Dev Test Test-E Test-H

BERT-Large 53.80 49.80 72.00 32.30
XLNet-Large 62.00 56.00 75.70 40.50
RoBERTa-Large 62.60 55.60 75.50 40.00
DAGN 65.20 58.20 76.14 44.11
DAGN (Aug) 65.80 58.30 75.91 44.46
* The results are taken from the ReClor paper.
* DAGN ranks the 1st on the public ReClor leader-

board1until 17th Nov., 2020 before submitting it to
NAACL. Until now, we find that several better results
appeared in the leaderboard and they are not opened.

Table 1: Experimental results (accuracy %) of DAGN
compared with baseline models on ReClor dataset.
Test-E = Test-EASY, Test-H = Test-HARD.

a linear transformation of the sequence, resulting
in single feature vectors separately. We concate-
nate them with “<s>” embedding from the back-
bone pre-trained model, and feed the new vector
into a two-layer perceptron with a GELU activa-
tion (Hendrycks and Gimpel, 2016) to get the out-
put features for classification.

3 Experiments

We evaluate the performance of DAGN on two log-
ical reasoning datasets, ReClor (Yu et al., 2020)
and LogiQA (Liu et al., 2020), and conduct ab-
lation study on graph construction and graph net-
work. The implementation details are shown in
Appendix B.

3.1 Datasets
ReClor contains 6,138 questions modified from
standardized tests such as GMAT and LSAT, which
are split into train / dev / test sets with 4,638 / 500
/ 1,000 samples respectively. The training set and
the development set are available. The test set is
blind and hold-out, and split into an EASY subset
and a HARD subset according to the performance
of BERT-base model (Devlin et al., 2019). The
test results are obtained by submitting the test pre-
dictions to the leaderboard. LogiQA consists of
8,678 questions that are collected from National
Civil Servants Examinations of China and manu-
ally translated into English by professionals. The
dataset is randomly split into train / dev / test sets
with 7,376 / 651 / 651 samples respectively. Both
datasets contain multiple logical reasoning types.

3.2 Results
The experimental results are shown in Tables 1
and 2. Since there is no public method for both
datasets, we compare DAGN with the baseline

Methods Dev Test

BERT-Large 34.10 31.03
RoBERTa-Large 35.02 35.33
DAGN 35.48 38.71
DAGN (Aug) 36.87 39.32

Table 2: Experimental results (accuracy %) of DAGN
compared with baseline models on LogiQA dataset.

Methods Dev

DAGN 65.20
ablation on nodes
DAGN - clause nodes 64.40
DAGN - sentence nodes 64.40
ablation on edges
DAGN - single edge type 64.80
DAGN - fully connected edges 61.60
ablation on graph reasoning
DAGN w/o graph module 64.00

Table 3: Ablation study results (accurcy %) on ReClor
development set.

models. As for DAGN, we fine-tune RoBERTa-
Large as the backbone. DAGN (Aug) is a variant
that augments the graph features.

DAGN reaches 58.20% of test accuracy on
ReClor. DAGN (Aug) reaches 58.30%, therein
75.91% on EASY subset, and 44.46% on HARD
subset. Compared with RoBERTa-Large, the
improvement on the HARD subset is remark-
ably 4.46%. This indicates that the incorporated
discourse-based information supplements the short-
coming of the baseline model, and that the dis-
course features are beneficial for such logical rea-
soning. Besides, DAGN and DAGN (Aug) also
outperform the baseline models on LogiQA, espe-
cially showing 4.01% improvement over RoBERTa-
Large on the test set.

3.3 Ablation Study
We conduct ablation study on graph construction
details as well as the graph reasoning module. The
results are reported in Table 3.

Varied Graph Nodes We first use clauses or sen-
tences in substitution for EDUs as graph nodes. For
clause nodes, we simply remove “Explicit” connec-
tives during discourse unit delimitation. So that
the texts are just delimited by punctuation marks.
For sentence nodes, we further reduce the delim-
iter library to solely period (“.”). Using the modi-
fied graphs with clause nodes or coarser sentence
nodes, the accuracy of DAGN drops to 64.40%.
This indicates that clause or sentence nodes carry

1https://bit.ly/2UOQfaS

https://bit.ly/2UOQfaS
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less discourse information and act poorly as logical
reasoning units.

Varied Graph Edges We make two changes of
the edges: (1) modifying the edge type, (2) mod-
ifying the edge linking. For edge type, all edges
are regarded as a single type. For edge linking, we
ignore discourse relations and connect every pair of
nodes, turning the graph into fully-connected. The
resulting accuracies drop to 64.80% and 61.60%
respectively. It is proved that in the graph we built,
edges link EDUs in reasonable manners, which
properly indicates the logical relations.

Ablation on Graph Reasoning We remove the
graph module from DAGN and give a comparison.
This model solely contains an extra prediction mod-
ule than the baseline. The performance on ReClor
dev set is between the baseline model and DAGN.
Therefore, despite the prediction module benefits
the accuracy, the lack of graph reasoning leads to
the absence of discourse features and degenerates
the performance. It demonstrates the necessity of
discourse-based structure in logical reasoning.

4 Related Works

Recent datasets for reading comprehension tend to
be more complicated and require models’ capabil-
ity of reasoning. For instance, HotpotQA (Yang
et al., 2018), WikiHop (Welbl et al., 2018), Open-
BookQA (Mihaylov et al., 2018), and MultiRC
(Khashabi et al., 2018) require the models to have
multi-hop reasoning. DROP (Dua et al., 2019) and
MA-TACO (Zhou et al., 2019) need the models to
have numerical reasoning. WIQA (Tandon et al.,
2019) and CosmosQA (Huang et al., 2019) require
causal reasoning that the models can understand
the counterfactual hypothesis or find out the cause-
effect relationships in events. However, the logical
reasoning datasets (Yu et al., 2020; Liu et al., 2020)
require the models to have the logical reasoning
capability of uncovering the inner logic of texts.

Deep neural networks are used for reasoning-
driven RC. Evidence-based methods (Madaan et al.,
2020; Huang et al., 2020; Rajagopal et al., 2020)
generate explainable evidence from a given context
as the backup of reasoning. Graph-based methods
(Qiu et al., 2019; De Cao et al., 2019; Cao et al.,
2019; Ran et al., 2019; Chen et al., 2020b; Xu
et al., 2020b; Zhang et al., 2020) explicitly model
the reasoning process with constructed graphs, then
learn and update features through message passing

based on graphs. There are also other methods
such as neuro-symbolic models (Saha et al., 2021)
and adversarial training (Pereira et al., 2020). Our
paper uses a graph-based model. However, for
uncovering logical relations, graph nodes and edges
are customized with discourse information.

Discourse information provides a high-level un-
derstanding of texts and hence is beneficial for
many of the natural language tasks, for instance,
text summarization (Cohan et al., 2018; Joty et al.,
2019; Xu et al., 2020a; Feng et al., 2020), neural
machine translation (Voita et al., 2018), and coher-
ent text generation (Wang et al., 2020; Bosselut
et al., 2018). There are also discourse-based ap-
plications for reading comprehension. DISCERN
(Gao et al., 2020) segments texts into EDUs and
learns interactive EDU features. Mihaylov and
Frank (2019) provide additional discourse-based
annotations and encodes them with discourse-
aware self-attention models. Unlike previous
works, DAGN first uses discourse relations as
graph edges connecting EDUs for texts, then learns
the discourse features via message passing with
graph neural networks.

5 Conclusion

In this paper, we introduce a Discourse-Aware
Graph Network (DAGN) to addressing logical rea-
soning QA tasks. We first treat elementary dis-
course units (EDUs) that are split by discourse
relations as basic reasoning units. We then build
discourse-based logic graphs with EDUs as nodes
and discourse relations as edges. DAGN then learns
the discourse-based features and enhances them
with contextual token embeddings. DAGN reaches
competitive performances on two recent logical
reasoning datasets ReClor and LogiQA.
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A Discourse Delimiter Library

Our discourse delimiter library consists of two
parts, the “Explicit” connectives annotated in Penn
Discourse TreeBank 2.0 (DPTB 2.0) (Prasad et al.,
2008), as well as a set of punctuation marks. The
overall discourse delimiters used in our method are
presented in Table 4.

Explicit Connectives
’once’, ’although’, ’though’, ’but’, ’because’,

’nevertheless’, ’before’, ’for example’, ’until’, ’if’,
’previously’, ’when’, ’and’, ’so’, ’then’, ’while’, ’as long
as’, ’however’, ’also’, ’after’, ’separately’, ’still’, ’so that’,

’or’, ’moreover’, ’in addition’, ’instead’, ’on the other
hand’, ’as’, ’for instance’, ’nonetheless’, ’unless’,

’meanwhile’, ’yet’, ’since’, ’rather’, ’in fact’, ’indeed’,
’later’, ’ultimately’, ’as a result’, ’either or’, ’therefore’,

’in turn’, ’thus’, ’in particular’, ’further’, ’afterward’,
’next’, ’similarly’, ’besides’, ’if and when’, ’nor’,

’alternatively’, ’whereas’, ’overall’, ’by comparison’,
’till’, ’in contrast’, ’finally’, ’otherwise’, ’as if’, ’thereby’,
’now that’, ’before and after’, ’additionally’, ’meantime’,

’by contrast’, ’if then’, ’likewise’, ’in the end’,
’regardless’, ’thereafter’, ’earlier’, ’in other words’, ’as

soon as’, ’except’, ’in short’, ’neither nor’, ’furthermore’,
’lest’, ’as though’, ’specifically’, ’conversely’,

’consequently’, ’as well’, ’much as’, ’plus’, ’and’,
’hence’, ’by then’, ’accordingly’, ’on the contrary’,

’simultaneously’, ’for’, ’in sum’, ’when and if’, ’insofar
as’, ’else’, ’as an alternative’, ’on the one hand on the

other hand’
Punctuation Marks

’.’, ’,’, ’;’, ’:’

Table 4: The discourse delimiter library in our imple-
mentation.

B Implementation Details

We fine-tune RoBERTa-Large (Liu et al., 2019)
as the backbone pre-trained language model for
DGAN, which contains 24 hidden layers with hid-
den size 1024. The overall model is end-to-end
trained and updated by Adam (Kingma and Ba,
2015) optimizer with an overall learning rate of 5e-
6 and a weight decay of 0.01. The overall dropout
rate is 0.1. The maximum sequence length is 256.
We tune the model on the dev set to obtain the best
iteration steps of graph reasoning, which is 2 for
ReClor data, and 3 for LogiQA data. The model
is trained for 10 epochs with a batch size of 16 on
Nvidia Tesla V100 GPU.

For the answer prediction module, the hidden
size of GRU is the same as the token embeddings in
the pre-trained language model, which is 1024. The
two-layer perceptron first projects the concatenated
vectors with a hidden size of 1024 × 3 to 1024,
then project 1024 to 1.
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