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Abstract

Multilingual pretrained representations gener-
ally rely on subword segmentation algorithms
to create a shared multilingual vocabulary.
However, standard heuristic algorithms often
lead to sub-optimal segmentation, especially
for languages with limited amounts of data.
In this paper, we take two major steps to-
wards alleviating this problem. First, we
demonstrate empirically that applying existing
subword regularization methods (Kudo, 2018;
Provilkov et al., 2020) during fine-tuning of
pre-trained multilingual representations im-
proves the effectiveness of cross-lingual trans-
fer. Second, to take full advantage of differ-
ent possible input segmentations, we propose
Multi-view Subword Regularization (MVR),
a method that enforces the consistency be-
tween predictions of using inputs tokenized by
the standard and probabilistic segmentations.
Results on the XTREME multilingual bench-
mark (Hu et al., 2020) show that MVR brings
consistent improvements of up to 2.5 points
over using standard segmentation algorithms.1

1 Introduction

Multilingual pre-trained representations (Devlin
et al., 2019; Huang et al., 2019; Conneau and Lam-
ple, 2019; Conneau et al., 2020) are now an es-
sential component of state-of-the-art methods for
cross-lingual transfer (Wu and Dredze, 2019; Pires
et al., 2019). These methods pretrain an encoder by
learning in an unsupervised way from raw textual
data in up to hundreds of languages which can then
be fine-tuned on annotated data of a downstream
task in a high-resource language, often English, and
transferred to another language. In order to encode
hundreds of languages with diverse vocabulary, it
is standard for such multilingual models to employ
a shared subword vocabulary jointly learned on the

1Code for the method is released here:
https://github.com/cindyxinyiwang/
multiview-subword-regularization

en excitement fr excita/tion
de Auf/re/gung pt excita/ção
el en/j/ousi/asmÏc ru волн/ение

Table 1: XLM-R segmentation of “excitement” in different
languages. The English word is not segmented while the
same word in other languages is over-segmented. A better
segmentation would allow the model to match the verb stem
and derivational affix across languages.

multilingual data using heuristic word segmenta-
tion methods based on byte-pair-encoding (BPE;
Sennrich et al., 2016) or unigram language mod-
els (Kudo and Richardson, 2018) (details in §2).
However, subword-based preprocessing can lead
to sub-optimal segmentation that is inconsistent
across languages, harming cross-lingual transfer
performance, particularly on under-represented lan-
guages. As one example, consider the segmentation
of the word “excitement” in different languages in
Tab. 1. The English word is not segmented, but its
translations in the other languages, including the
relatively high-resourced French and German, are
segmented into multiple subwords. Since each sub-
word is mapped to a unique embedding vector, the
segmentation discrepancy—which generally does
not agree with a language’s morphology—could
map words from different languages to very distant
representations, hurting cross-lingual transfer. In
fact, previous work (Conneau et al., 2020; Artetxe
et al., 2020) has shown that heuristic fixes such as
increasing the subword vocabulary capacity and up-
sampling low-resource languages during learning
of the subword segmentation can lead to significant
performance improvements.

Despite this, there is not much work studying
or improving subword segmentation methods for
cross-lingual transfer. Bostrom and Durrett (2020)
empirically compare several popular word segmen-
tation algorithms for pretrained language models
of a single language. Several works propose to
use different representation granularities, such as

https://github.com/cindyxinyiwang/multiview-subword-regularization
https://github.com/cindyxinyiwang/multiview-subword-regularization


474

phrase-level segmentation (Zhang and Li, 2020) or
character-aware representations (Ma et al., 2020)
for pretrained language models of a single high-
resource language, such as English or Chinese only.
However, it is not a foregone conclusion that meth-
ods designed and tested on monolingual models
will be immediately applicable to multilingual rep-
resentations. Furthermore, they add significant
computation cost to the pretraining stage, which is
especially problematic for multilingual pretraining
on hundreds of languages. The problem of sub-
optimal subword segmentation has drawn more
attention in the context of neural machine transla-
tion (NMT). Specifically, subword regularization

methods have been proposed to improve the NMT
model of a single language pair by randomly sam-
pling different segmentations of the sentences dur-
ing training (Kudo, 2018; Provilkov et al., 2020).
However, these methods have not been applied to
multilingual NMT or pretrained language models
and it is similarly not clear if they are useful for
cross-lingual transfer.

In this paper, we make two contributions to close
this gap. First, we perform the first (to our knowl-
edge) empirical examination of subword regulariza-
tion methods on a variety of cross-lingual transfer
tasks from the XTREME benchmark (Hu et al.,
2020). We demonstrate that despite its simplicity,
this method is highly effective, providing consistent
improvements across a wide variety of languages
and tasks for both multilingual BERT (mBERT;
Devlin et al., 2019) and XLM-R (Conneau et al.,
2020) models. Analysis of the results shows that
this method is particularly effective for languages
with non-Latin scripts despite only being applied
during English fine-tuning.

Further, we posit that naively applying proba-
bilistic segmentation only during fine-tuning may
be sub-optimal as it creates a discrepancy between
the segmentations during the pretraining and fine-
tuning stages. To address this problem, we pro-
pose Multi-view Subword Regularization (MVR;
Fig. 1), a novel method—inspired by the usage
of consistency regularization in semi-supervised
learning methods (Clark et al., 2018; Xie et al.,
2018)—which utilizes both the standard and proba-
bilistically segmented inputs, enforcing the model’s
predictions to be consistent across the two views.
Such consistency regularization further improves
accuracy, with MVR finally demonstrating consis-
tent gains of up to 2.5 points over the standard
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Figure 1: Fine-tuning models using MVR on data (x⇤, y⇤)

practice across all models and tasks. We analyze
the sources of the improvement from consistency
regularization and find that it can be attributed to
both label smoothing and self-ensembling.

2 Background: Subword Segmentation

Here, we first discuss two common deterministic
segmentation methods based on byte pair encoding
(BPE) and unigram language models (ULM), dis-
cuss their probabilistic variants, and explain how
to incorporate them in training.

2.1 Deterministic Segmentation

The most widely used subword segmentation meth-
ods first estimate a segmentation model from the
training corpus in an unsupervised fashion. They
then produce a segmentation bx of the input x⇤ un-
der the estimated segmentation model P (x):

bx = argmax
x2S(x⇤)

P (x)

Here S(x⇤) is the set of all possible segmentations,
and P (x) is the likelihood of a given segmentation.
Note that bx is deterministically selected for each
input x⇤.

Byte-pair encoding (BPE) The popular BPE al-
gorithm (Sennrich et al., 2016) initializes the vo-
cabulary with individual characters and initially
represents each word as a sequence of characters.
It then counts the most frequent character token
bigrams in the data, merges them into a new token,
and adds the new token to the vocabulary. This
process is done iteratively until a predefined vocab-
ulary size is reached.

To segment a word, BPE simply splits the word
into character tokens, and iteratively merges adja-
cent tokens with the highest priority until no merge
operation is possible. That is, for an input x⇤, it
assigns segmentation probability P (bx) = 1 for the
sequence bx obtained from the greedy merge opera-
tions, and assigns other possible segmentations a
probability of 0.
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Notably, a variant of this method (Schuster and
Nakajima, 2012) is used for the mBERT embed-
ding model (Devlin et al., 2019).

Unigram language model (ULM) The ULM
method (Kudo and Richardson, 2018) starts from
a reasonably large seed vocabulary, which is itera-
tively pruned to maximize the training corpus like-
lihood under a unigram language model of the sub-
words until the desired vocabulary size is reached.

During segmentation, ULM decodes the most
likely segmentation of a sentence under the esti-
mated language model using the Viterbi algorithm.
This method is used in the XLM-R cross-lingual
embeddings (Conneau et al., 2020).

2.2 Probabilistic Segmentation

As explained in §1, one drawback of both word
segmentation algorithms is that they produce a de-
terministic segmentation for each sentence, even
though multiple segmentations are possible given
the same vocabulary. In contrast, Kudo (2018) and
Provilkov et al. (2020) have proposed methods that
enable the model to generate segmentations proba-
bilistically. Instead of selecting the best subword
sequence for input x⇤, these method stochastically
sample a segmentation x0 as follows:

x0 ⇠ P 0(x) where P 0(x) /
⇢
P (x) if x 2 S(x⇤)

0 otherwise

Here we briefly introduce these two methods.

BPE-dropout This method is used together with
the BPE algorithm, randomly dropping merge oper-
ations with a given probability p while segmenting
the input data (Provilkov et al., 2020).

ULM-sample As the ULM algorithm relies on a
language model to score segmentation candidates
for picking the most likely segmentation, Kudo
(2018) propose to sample from these segmentation
candidates based on their language model scores.

2.3 Subword Regularization (SR)

Subword regularization (Kudo, 2018) is a method
that incorporates probabilistic segmentation at
training time to improve the robustness of mod-
els to different segmentations. The idea is con-
ceptually simple: at training time sample different
segmentations x0 for each input sentence x⇤. Pre-
vious works (Kudo, 2018; Provilkov et al., 2020)
have demonstrated that subword regularization us-
ing both BPE-dropout and ULM-sampling are ef-
fective at improving machine translation accuracy,
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Figure 2: Percentage of words with different number of seg-
ments from different languages.

particularly in cross-domain transfer settings where
the model is tested on a different domain than the
one on which it is trained.

3 Subword Regularization for

Cross-lingual Transfer

While sub-optimal word segmentation is a chal-
lenge in monolingual models, it is an even big-
ger challenge for multilingual pretrained models.
These models train a shared subword segmentation
model jointly on data from many languages, but the
segmentation can nonetheless be different across
languages, stemming from two main issues. First,
the granularity of segmentation differs among lan-
guages, where the segmentation model tends to
over-segment low-resource languages that do not
have enough representation in the joint training
data (Ács, 2019). Fig. 2 shows the distribution
of words from languages from different language
families based on the number of subwords they are
split into.2 We can see that the majority of En-
glish words are not segmented at all, while many
languages only have less than half of the words
unsegmented. Notably, even though Burmese (my)
is a language with little inflectional morphology,
almost a quarter of the words are segmented into
more than nine subwords. Second, the segmenta-
tion might still be inconsistent between different
languages even if the granularity is similar, as ex-
plained in Tab. 1. For example, neither the English
word “excitement” nor the same word in French
“excita/tion” are overly segmented, but segmenting
the English word into “excite/ment” would allow
the model to learn a better cross-lingual alignment.

Despite these issues, few methods have tried
to address this subword segmentation problem for
multilingual pretrained models. Chau et al. (2020)

2We use Pan et al. (2017)’s named entity recognition test
data with mBERT’s tokenizer.
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propose to adapt a pretrained multilingual model to
a new language by augmenting the vocabulary with
a new subword vocabulary learned on the target
language, but this method might not help for lan-
guages other than the target language it adapts to.
Chung et al. (2020) propose to separately construct
a subword segmentation model for each cluster
of related languages for pretraining the multilin-
gual representations. However, directly modifying
the word segmentation requires retraining large
pretrained models, which is computationally pro-
hibitive in most cases.

In this paper, we instead propose a more efficient
approach of using probabilistic segmentation dur-
ing fine-tuning on labeled data of a downstream
task. As mismatch in segmentation is one of the
factors harming cross-lingual transfer, we expect a
model that becomes more robust to different vari-
eties of segmentation in one language will be more
accommodating to differing segmentations in other
languages during inference. Despite the simplicity
of this method it is, as far as we are aware, unat-
tested in the literature, and we verify in § 5.3 that
it significantly improves the cross-lingual transfer
performance of multilingual pretrained models.

4 Multi-view Subword Regularization

Previous attempts at SR have mainly applied it
to models trained from scratch for tasks such as
MT. However, the situation is somewhat differ-
ent when fine-tuning pre-trained representations,
in which case the original pre-trained models are
generally not trained on sampled segmentations.
This discrepancy between the segmentation of the
English labeled data and the segmentation of En-
glish monolingual data during pretraining might
hurt the ability of the model to take full advantage
of the parameters learned during the pretraining
stage. To reduce this pretraining–fine-tuning dis-
crepancy, we propose Multi-view Subword Reg-
ularization (MVR), a method for learning from
multiple segmented versions of the same data and
enforcing the consistency of predictions over dif-
ferent segmentations.

Given the input bxi tokenized with the determin-
istic segmentation such as BPE, and x0i, the same
input tokenized with the corresponding probabilis-
tic segmentation algorithm such as BPE-dropout,

the objective for MVR has three components

J(✓) =
nX

i=1

⇥
�1

2
log p✓(yi|bxi)| {z }
Det. Seg CrossEnt

�1

2
log p✓(yi|x0i)| {z }

Prob. Seg CrossEnt

+ �D(p✓(yi|bxi) || p✓(yi|x0i))| {z }
Consistency loss

⇤
(1)

1. A cross-entropy loss using the standard deter-
ministic segmentation. This loss acts on data
whose segmentation is consistent with the seg-
mentation seen during pretraining. It thus maxi-
mizes the benefit of pretrained representations.

2. A cross entropy loss using probabilistic segmen-
tation. It allows the model to learn from differ-
ent possible segmentations of the same input.

3. A distance term D(· || ·) between the model
prediction distributions over the two different
versions of the input. We use KL divergence
as the distance metric and a hyperparameter �
to balance the supervised cross-entropy losses
and the consistency loss. Minimizing the dis-
tance between the two distributions enforces the
model to make consistent predictions under dif-
ferent input segmentations, making it robust to
sub-optimal segmentation of multilingual data.3

Flattening the prediction The benefit of consis-
tency regularization might be limited if the model
prediction becomes overly confident on certain
classes, especially when the number of output
classes is large. Inspired by a similar technique in
knowledge distillation (Hinton et al., 2014), we can
use a softmax temperature ⌧ to flatten the predic-
tion distribution when calculating the consistency
loss. Specifically, the distance loss between two
prediction distributions in Eq. 1 can be written as
D(pflat

✓ (yi|bxi) || p✓(yi|x0i)), where

pflat
✓ (yi|bxi) =

exp(zy)/⌧P
y0 exp(zy0)/⌧

(2)

and zy is the logit for output label yi. Normally
⌧ is set to 1, and a higher ⌧ makes the probability
distribution more evenly distributed over all classes.
In our experiments, we find that ⌧ = 1 works well
for most of the tasks and ⌧ = 2 works slightly
better for tasks that have larger output label spaces.

3As in semi-supervised learning (Clark et al., 2018), we
expect our method to also be effective when applied to un-
labeled data, e.g. using target language adaptation (Pfeiffer
et al., 2020), which we leave for future work.
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Efficiency At inference time, we simply use the
model prediction based on the input tokenized by
deterministic segmentation only. Therefore, our
method does not add additional decoding latency.
MVR needs about twice the fine-tuning cost com-
pared to the baseline. However, compared to pre-
training and inference usage of a model, fine-tuning
is generally the least expensive component.

5 Experiments

5.1 Training and evaluation

We evaluate the multilingual representations using
tasks from the XTREME benchmark (Hu et al.,
2020), focusing on the zero-shot cross-lingual
transfer with English as the source language. We
consider sentence classification tasks including
XNLI (Conneau et al., 2018) and PAWS-X (Yang
et al., 2019), a structured prediction task of mul-
tilingual NER (Pan et al., 2017), and question-
answering tasks including XQuAD (Artetxe et al.,
2020) and MLQA (Lewis et al., 2020).

5.2 Experiment setup

We evaluate on both the mBERT model which uti-
lizes BPE to tokenize the inputs, and the XLM-R
models which uses ULM segmentation. To repli-
cate the baseline, we follow the hyperparameters
provided in the XTREME codebase4. Models are
fine-tuned on English training data and zero-shot
transferred to other languages. We run each experi-
ment with 5 random seeds and record the average
results and the standard deviation.

SR We use BPE-dropout (Provilkov et al., 2020)
for mBERT and ULM-sample (Kudo, 2018) for
XLM-R models to do probabilistic segmentation
of the English labeled data. BPE-dropout sets a
dropout probability of p 2 [0, 1] for the merge op-
erations, where a higher p corresponds to stronger
regularization. ULM-sample utilizes a sampling
temperature ↵ 2 [0, 1] to scale the scores for
segmentation candidates, and a lower ↵ leads to
stronger regularization. We select the p and ↵ val-
ues based on the model performance on the English
dev set of the NER task and simply use the same
values across all other tasks. We set p = 0.1 for
BPE-dropout and ↵ = 0.6 for ULM-sample.

MVR We select the hyperparameters for
MVR using the English dev set performance

4https://github.com/google-research/
xtreme

on the NER task. MVR works slightly better
by using stronger regularization than SR, likely
because using inputs deterministically segmented
by the standard algorithm can balance the negative
impact of bad tokenization by sampling from
a more diverse set of segmentation candidates.
We use � = 0.2, p = 0.2 for mBERT and
� = 0.6,↵ = 0.2 for XLM-R. We use prediction
temperature ⌧ = 2 for the question-answering
tasks XQuAD and MLQA for the XLMR mdoels,
and simply use ⌧ = 1 for all other tasks. Further
analysis of hyperparameters on the performance of
MVR can be found in § A.1.

5.3 Main results

We compare performance of SR, MVR and the
baseline for all models in Tab. 2, focusing on the
average performance on all languages for each task.
Our baseline numbers match or exceed the bench-
mark results in Hu et al. (2020) for both mBERT
and XLM-R large (Hu et al. (2020) do not include
results for XLM-R base) on almost all tasks.

Applying SR on English significantly improves

other languages SR is surprisingly effective for
mBERT—it is comparable to the baseline on XNLI
and significantly improves over the baseline for the
rest of the four tasks. However, the gains are less
consistent for XLM-R models. For both XLM-R
base and large, SR leads to improvements on the
NER task and the PAWS-X classification task, but
is mostly comparable to the baseline for the rest
of the three tasks. SR performs better for mBERT
likely because the vocabulary of mBERT is more
imbalanced than that of XLM-R; it thus benefits
more from the regularization methods. mBERT
relies on BPE, which could be worse than ULM at
tokenizing subwords into morphologically mean-
ingful units (Bostrom and Durrett, 2020). Further-
more, mBERT has only 100K words in the vocab-
ulary while XLM-R has a much larger vocabulary
of 250K.

MVR consistently improves over SR For
mBERT, it leads to improvements of over 1 to 2
points over the baseline for all tasks. It is also
very effective for the XLM-R models. For both
the XLM-R base and the stronger XLM-R large
models, MVR improves over 1 point over the base-
line on the NER task and the two classification
tasks. On the question-answering tasks, MVR de-
livers strong improvements for the XLM-R base
model while the improvements on the XLM-R

https://github.com/google-research/xtreme
https://github.com/google-research/xtreme
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Model Method Avg. XNLI PAWS-X NER XQuAD MLQA

Metrics Acc. Acc. F1 F1/EM F1/EM

mBERT
Hu et al. (2020) 67.1 65.4 81.9 62.2 64.5 / 49.4 61.4 / 44.2
Baseline (ours) 67.3 66.5±0.4 83.1±0.4 61.5±0.7 64.7±0.2 / 49.8±0.4 60.9±0.4 / 43.8±0.5
SR 68.0 66.4±0.2 85.0±0.3 62.2±0.6 64.7±0.3 / 50.0±0.3 61.5±0.3 / 44.4±0.3
MVR 68.8 67.2±0.3 85.6±0.3 62.7±0.4 66.3±0.2 / 51.7±0.2 62.2±0.2 / 45.3±0.1

XLM-R base
Baseline (ours) 71.1 74.4±0.2 84.3±0.7 60.6±0.6 70.9±0.3 / 54.9±0.5 65.5±0.3 / 47.7±0.2
SR 71.4 74.4±0.7 85.5±0.5 61.0±0.6 70.9±0.3 / 55.7±0.2 65.4±0.1 / 47.5±0.1
MVR 72.3 75.3±0.3 86.3±0.6 61.8±0.3 71.6±0.5 / 56.5±0.4 66.4±0.5 / 48.5±0.4

XLM-R large
Hu et al. (2020) 75.8 79.2 86.4 65.4 76.6 / 60.8 71.6 / 53.2
Baseline (ours) 76.1 80.3±0.4 86.9±0.5 63.6±0.3 77.0±0.2 / 61.7±0.3 72.8±0.2 / 54.5±0.1
SR 76.5 80.1±0.5 87.3±0.4 65.5±0.6 77.2±0.2 / 62.0±0.2 72.5±0.1 / 54.0±0.2
MVR 77.2 81.3±0.1 88.2±0.2 66.0±0.7 77.6±0.2 / 62.5±0.4 72.8±0.2 / 54.5±0.1

Table 2: Average performance and standard deviation of different methods for mBERT, XLM-R base and XLM-R large models.
SR is especially effective for mBERT. MVR leads to significant further improvements across all models and tasks.

large model is slightly smaller. It has around 0.5
point improvement on XQuAD and has the same
performance on MLQA. MVR leads to more im-
provements on XQuAD, probably because it has a
more diverse set of languages that potentially have
more sub-optimal subword segmentation. The con-
sistent gains on both mBERT and XLM-R show
that MVR is a general and flexible method for a
variety of pretrained multilingual models based on
different segmentation methods.

5.4 Effect of each loss component

In this section, we verify the effectiveness of the
three loss components in MVR by removing each
of them from the objective. The ablation results
on mBERT for all tasks are listed in Tab. 3. Re-
moving any of the three loss components hurts
the model performance by about the same amount
for most of the tasks. For the question answering
tasks, however, removing the cross-entropy loss on
the deterministically segmented inputs reduces the
model performance by almost half. This is likely
because under this setting, the model only learns
to locate exact spans for inputs tokenized by BPE-
dropout, while we use the standard BPE to segment
the inputs at test time.

6 Analyses

In this section, we perform several analyses to bet-
ter understand the behavior and root causes of the
accuracy gains realized by our method.

6.1 Effect on over-segmentation

In this section, we analyze the effect of our methods
on languages and words with different subword
segmentation granularity. We focus on the NER

task because it contains a diverse set of over 40
languages. We calculate the average number of
subword pieces in a language, and plot the gains
over the baseline for these languages with respect
to their average subwords in Fig. 3. To visualize
the relationship between the two values, we also
fit a trend line and record its coefficient for each
method in the legend. We consider three methods
for mBERT: SR, MVR without consistency loss,
and the full MVR. The trend line for MVR has
a positive coefficient, indicating that it improves
more on languages that are more overly segmented.
Removing the consistency loss tends to hurt more
for these languages. SR, on the other hand, does
not tend to favor languages with more subword
segmentation.

Next, we bucket all the words together based on
how many subwords they are segmented into, and
compare the performance of our methods for each
word bucket. We use the XLM-R model and plot
the results in Fig. 4. SR brings slightly more im-
provements on average for words that are split into
4 or more pieces for the large model. MVR outper-
forms SR for all categories, especially for difficult
words that are segmented into 5 or more subwords.

Gains on Latin vs. non-Latin script In addi-
tion, it is notable that we fine-tune the model using
labeled data from English, a Latin script language,
while the non-Latin scripted languages might have
larger segmentation and vocabulary discrepancies
from English. We thus also plot the score improve-
ments of both SR and MVR over the baseline for
languages with and without Latin script in Fig. 6.
We use a lighter shade to represent improvements
for Latin-script languages and a darker shade for
languages with non-Latin scripts. Across all the
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Method Avg. XNLI PAWS-X NER XQuAD MLQA
Metrics Acc. Acc. F1 F1/EM F1/EM

MVR 68.8 67.2±0.3 85.6±0.3 62.7±0.4 66.3±0.2 / 51.7±0.2 62.2±0.2 / 45.3±0.1

– Det. Seg CrossEnt 52.8 66.7±0.5 85.5±0.2 62.4±0.7 25.0±8.2 / 15.6±6.7 24.3±8.6 / 13.1±6.4
– Prob. Seg CrossEnt 67.7 66.7±0.6 85.0±0.3 62.3±0.7 64.0±0.3 / 48.7±0.4 60.3±0.4 / 43.1±0.3
– consistency loss 68.2 66.5±0.7 85.3±0.3 62.3±0.6 65.2±0.2 / 50.2±0.4 61.7±0.1 / 44.5±0.2

Table 3: Effect of removing each loss component on mBERT.
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1-piece 2-piece 3-piece 4-piece >=5-piece0

1

2

3

4

F
1
ga
in

SR
MVR

Figure 4: XLM-R large gains over the
NER baseline for words with increasing
number of subword pieces.

1 2 3 4 5 6 7 8 9 10
Bucket by increasing entropy

�2.5

0.0

2.5

5.0

7.5

F
1
ga
in

SR
MVR no KL
MVR

Figure 5: mBERT improvements over
the NER baseline for examples with dif-
ferent entropy. Consistency loss helps
examples with higher entropy more.

NER XNLI PAWS-X XQuADMLQA

0

2

4

Sc
or
e
ga
in
s
ov
er

ba
se
lin

e mBERT

NER XNLI PAWS-X XQuADMLQA

0

1

2

3

4

XLM-R large

SR Latin
MVR Latin
SR non-Latin
MVR non-Latin

Figure 6: Gains over the baseline for languages with Latin vs. non-Latin
script. Both SR and MVR improve more for non-Latin languages.

0.005 0.010 0.015

Baseline dist. to ensemble

�0.02

�0.01

0.00

0.01

0.02

D
is
t.

in
cr
ea
se

w
/o

K
L MVR

MVR no KL

Figure 7: Increase in distance to the ensemble
distribution by removing the consistency loss
on the NER task. The languages are labeled
based on the method with closer distance to
the ensemble distribution. The consistency
loss shifts model prediction closer to the en-
semble distribution.

tasks, both SR and MVR generally have larger
improvements on languages with non-Latin script.
MVR, which is represented by blue shades, gen-
erally outperforms SR for both the Latin and non-
Latin scripted languages across all models. While
SR sometimes underperforms the baseline on Latin
scripted languages, especially for XLM-R mod-
els, MVR delivers consistent improvements over
the baseline across both types of languages. Over-
all, MVR achieves the largest improvements over
SR for languages with non-Latin scripts.

6.2 Effect of consistency loss

One of the novel components of MVR is the consis-
tency loss between two different segmentations of
the input. In this section we analyze two hypothe-
ses about the source of benefit provided thereby.

Label smoothing The first hypothesis is that the
consistency loss may be able to mitigate over-
confident predictions by calibrating the two out-
put distributions against each other. This effect is
similar to label smoothing (Szegedy et al., 2015;
Yuan et al., 2020), which softens the one-hot tar-
get label by adding a loss of uniform distribution
over all class labels and has proven helpful across
a wide variety of models. To measure this, we plot
the F1 improvement on the NER task for exam-
ples categorized by increasing predictive entropy
in Fig. 5. MVR leads to more improvements on ex-
amples with higher entropy, or those that the model
is more uncertain about, indicating that MVR is
indeed helping the model improve on examples
where it is not confident.



480

NER XNLI PAWS-X XQuAD MLQA

�0.5

0.0

0.5

Sc
or
e
ga
in
s
ov
er

ba
se
lin

e
mBERT

SR
MVR

NER XNLI PAWS-X XQuAD MLQA

�0.2

0.0

0.2

0.4

0.6

XLM-R large

SR
MVR

Figure 8: Gains of MVR and SR for English. While SR harms
the performance on English, MVR generally improves it.

Ensemble effect The second hypothesis is that
the consistency loss could regularize the model to
be closer to the ensemble of models trained on
standard deterministically segmented inputs and
probabilistically segmented inputs. To verify this
hypothesis, we first calculate the ensembled predic-
tion probability of the baseline and the SR models
for each language. Then we compare the KL di-
vergence between this ensemble distribution and
MVR with or without the consistency loss. In
Fig. 7, we plot this KL divergence difference be-
tween the MVR without consistency loss and the
full MVR for each language in NER. For most of
the languages, the full MVR has lower KL diver-
gence with the ensemble distribution, which indi-
cates that the consistency loss trains the model to
be closer to the ensemble of two inputs.

6.3 MVR also improves English

Although SR improves the model performance av-
eraged over all languages, surprisingly it can hurt
the performance on English, the language we use
for fine-tuning. Fig. 8 shows the improvement on
English over the baseline for both SR and MVR,
and notably English performance decreases for all
tasks on mBERT. MVR, on the other hand, gener-
ally brings improvements for English across both
mBERT and XLM-R large models. This is likely
because MVR also utilizes English inputs with stan-
dard segmentation, the method used at pretraining
time, which allows it to take full advantage of the
information encoded during pretraining.

7 Related work

Several works propose to optimize subword-
sensitive word encoding methods for pretrained
language models. Ma et al. (2020) uses convolu-
tional neural networks (Kim, 2014) on characters
to calculate word representations. Zhang and Li
(2020) propose to add phrases into the vocabulary

for Chinese pretrained language models. However,
they focus on improving the vocabulary of pre-
trained representations of a single language, and
they require modification to the model pretraining
stage. Chung et al. (2020) propose to cluster related
languages together and run subword vocabulary
construction on each language cluster when con-
structing vocabularies for mBERT. Their method is
also applied at the pretraining stage and could be
combined with our method for potential additional
improvements.

Our method is also related to prior work that
optimize word representations for NMT and lan-
guage modeling. Character level embeddings have
been utilized instead of subword segmentation for
NMT (Cherry et al., 2018; Lee et al., 2017; Ataman
and Federico, 2018) and language modeling (Kim
et al., 2016; Józefowicz et al., 2016). Wang et al.
(2019) propose a multilingual word embedding
method for NMT that relies on character n-gram
embedding and a latent semantic embedding shared
between different languages. Ataman and Federico
(2018) show that character n-gram based embed-
ding performs better than BPE for morphologically
rich languages. He et al. (2020) propose to learn the
optimal segmentation given a subword vocabulary
for NMT.

Our method is inspired by semi-supervised learn-
ing methods that enforce model consistency on
unlabeled data. Several self-training methods uti-
lize unlabeled examples to minimize the distance
between the model predictions based on the unla-
beled example and a noised version of the same
input (Miyato et al., 2017b,a; Xu and Yang, 2017;
Clark et al., 2018; Xie et al., 2018). Xu and Yang
(2017) use knowledge distillation on unlabeled data
to adapt models to a new language. Clark et al.
(2018) propose to mask out different parts of the
unlabeled input and encourage the model to make
consistent prediction given these different inputs.
These methods all focus on semi-supervised learn-
ing, while our method regulates model consistency
to mitigate the subword segmentation discrepancy
between different languages.

8 Conclusion

We believe that the results in this paper convinc-
ingly demonstrate that standard deterministic sub-
word segmentation is sub-optimal for multilingual
pretrained representations. Even incorporating sim-
ple methods for subword regularization such as
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BPE-dropout at fine-tuning can improve the cross-
lingual transfer of pretrained models, and our pro-
posed Multi-view Subword Regularization method
further shows consistent and strong improvements
over a variety of tasks for models built upon dif-
ferent subword segmentation algorithms. Going
forward, we suggest that some variety of subword
regularization, MVR or otherwise, should be a stan-
dard component of the fine-tuning of pre-trained
representations that use subword segmentation.
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