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Abstract

Turn-level user satisfaction is one of the most
important performance metrics for conversa-
tional agents. It can be used to monitor
the agent’s performance and provide insights
about defective user experiences. While end-
to-end deep learning has shown promising re-
sults, having access to a large number of reli-
able annotated samples required by these meth-
ods remains challenging. In a large-scale con-
versational system, there is a growing number
of newly developed skills, making the tradi-
tional data collection, annotation, and model-
ing process impractical due to the required an-
notation costs and the turnaround times. In
this paper, we suggest a self-supervised con-
trastive learning approach that leverages the
pool of unlabeled data to learn user-agent inter-
actions. We show that the pre-trained models
using the self-supervised objective are transfer-
able to the user satisfaction prediction. In ad-
dition, we propose a novel few-shot transfer
learning approach that ensures better transfer-
ability for very small sample sizes. The sug-
gested few-shot method does not require any
inner loop optimization process and is scal-
able to very large datasets and complex mod-
els. Based on our experiments using real data
from a large-scale commercial system, the sug-
gested approach is able to significantly reduce
the required number of annotations, while im-
proving the generalization on unseen skills.

1 Introduction

Nowadays automated conversational agents such
as Alexa, Siri, Google Assistant, Cortana, etc. are
widespread and play an important role in many dif-
ferent aspects of our lives. Their applications vary
from storytelling and education for children to as-
sisting the elderly and disabled with their daily
activities. Any successful conversational agent
should be able to communicate in different lan-
guages and accents, understand the conversation

∗Work done as an intern at Amazon Alexa AI.

context, analyze the query paraphrases, and route
the requests to various skills available for handling
the user’s request (Ram et al., 2018).

In such a large-scale system with many compo-
nents, it is crucial to understand if the human user
is satisfied with the automated agent’s response and
actions. In other words, it is desirable to know if the
agent is communicating properly and providing the
service that is expected by the user. In the literature,
it is referred to as targeted turn-level satisfaction as
we are only interested in the user’s satisfaction for
a certain conversation turn given the context of the
conversation, and not the overall satisfaction for the
whole conversation (Park et al., 2020). Perhaps the
most basic use of a user satisfaction model would
be to monitor the performance of an agent and to
detect defects as a first step to fix issues and im-
prove the system. Anticipating user dissatisfaction
for a certain turn in a conversation, an agent would
be able to ask the user for repeating the request
or providing more information, improving the fi-
nal experience. Also, a powerful user satisfaction
model can be used as a ranking or scoring measure
to select the most satisfying response among a set
of candidates and hence guiding the conversation.

The problem of user satisfaction modeling has re-
cently attracted significant research attention (Jiang
et al., 2015; Bodigutla et al., 2019; Park et al.,
2020; Pragst et al., 2017; Rach et al., 2017). These
methods either rely on annotated datasets providing
ground-truth labels to train and evaluate (Bodigutla
et al., 2019) or rely on ad hoc or human-engineered
metrics that do not necessarily model the true user
satisfaction (Jiang et al., 2015). Access to reli-
able annotations to be used in building satisfaction
models has been very challenging partly due to the
fact that a large-scale conversation system supports
many different devices as well as voice, language,
and application components, providing access to a
wide variety of skills. The traditional approach of
collecting samples from the live system traffic and
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tasking human annotators to label samples would
not be scalable due to the cost of annotations as
well as the turn-around time required to collect and
annotate data for a new skill or feature. Note that
onboarding new skills in a timely manner is a cru-
cial to ensure active skill developer engagement.

To address this problem, we propose a novel
training objective and transfer learning scheme that
significantly improves not only the data efficiency
but also the model generalization to unseen skills.
In summary, we make the following contributions:

• We propose a contrastive self-supervised train-
ing objective that can leverage virtually any
unlabeled conversation data to learn user-
agent interactions.

• We show that the proposed method can be
used to pre-train state-of-the-art deep lan-
guage models and the acquired knowledge is
transferable to the user satisfaction prediction.

• We suggest a novel and scalable few-shot
transfer learning approach that is able to im-
prove the label efficiency even further in the
case of few-shot transfer learning.

• We conduct extensive experiments using data
from a large-scale commercial conversational
system, demonstrating significant improve-
ments to label efficiency and generalization.

2 Related Work

User Satisfaction in Conversational Systems

The traditional approach to evaluating a conversa-
tional system is to evaluate different functionalities
or skills individually. For instance, for a knowl-
edge question answering or web search skill, one
can use response quality metrics commonly used to
evaluate search system and ranking systems such
as nDCG (Järvelin et al., 2008; Hassan, 2012; Fox
et al., 2005). While these methods provide justifi-
able measures for certain skills, they are not extend-
able to a large number of skills, especially for skills
without a set of proper hand-engineered features
and metrics, or newly developed third-party skills
(Bodigutla et al., 2019).

Another, more general, line of research is to
evaluate the performance of a conversation sys-
tem from the language point of view. Here, the
objective is to measure how natural, syntactically
and semantically, an automated agent is able to

interact with a human user. For instance, using
generic metrics such as BLEU (Papineni et al.,
2002) or ROUGE (Lin, 2004) one can measure how
the agent’s responses are consistent with a set of
provided ground-truth answers. However, these ap-
proaches not only suffer from shortcomings such as
inconsistency with the human understanding (Liu
et al., 2016; Novikova et al., 2017) but also are not
practical for a real-world conversation system due
to their dependence on ground-truth responses.

A more recent approach is to use human annota-
tions specifically tailored for the user satisfaction
task as a source of supervision to train end-to-end
prediction models (Bodigutla et al., 2019). Jiang
et al. (2015) suggested training individual models
for 6 general skills and devised engineered features
to link user actions to the user satisfaction for each
studied skill. Park et al. (2020) proposed a hybrid
method to learn from human annotation and user
feedback data that is scalable and able to model
user satisfaction across a large number of skills.

Contrastive Learning
Gutmann and Hyvärinen (2010) was the first study
to propose the idea of noise-contrastive learning
in the context of a capturing a distribution using
an objective function to distinguish samples of the
target distribution from samples of an artificially
generated noise distribution. Contrastive predictive
coding (CPC) (Oord et al., 2018) suggested the
idea of using an NCE objective to train an auto-
regressive sequence representation model. Deep
InfoMax (Hjelm et al., 2018) used self-supervised
contrastive learning in an architecture where a dis-
criminator is trained to distinguish between repre-
sentations of the same image (positive samples)
or representations of different images (negative
samples). While many different variations of con-
trastive methods have been suggested, the main
idea remains the same: defining a self-supervised
objective to distinguish between the hidden repre-
sentations of samples from the original distribution
and samples from a noise distribution (Trinh et al.,
2019; Devon et al., 2020; Yao et al., 2020).

Few-shot Transfer Learning
Few-shot transfer learning is a very active and
broad subject of research. We limit the scope of our
study to methods in which a form of gradient su-
pervision is provided by a target task to ensure the
efficient transferability of representations trained
on a source task. Lopez-Paz and Ranzato (2017)



4055

suggested the idea of joint multi-task training and
using the cosine similarity of the concatenated net-
work gradients from the source and target tasks.
For gradients with negative cosine distance, they
project the source gradients to a more aligned direc-
tion by solving a quadratic programming problem.
Luo et al. (2020) continued that line and suggested
a method in the context of few-shot transfer learn-
ing, showing that using even a few samples from
the target task can significantly improve the trans-
ferability of the trained models. Li et al. (2020)
presented a similar idea but suggested adjusting
learning rates for each layer to improve the cosine
similarity of different tasks. While these methods
show promising results, they only measure the sim-
ilarity between concatenated gradient vectors con-
sisting of all network parameters which is a very
rough measure of alignment. Also, they require
solving for a quadratic or iterative optimization
problem as an inner loop in the training procedure
that can be computationally expensive and often
prohibitive for large-scale problems.

3 User Satisfaction Modeling

3.1 Problem Definition

In this paper, we consider the conversational in-
teraction between a human user and an automated
agent. Each interaction consists of a set of turns in
which the user provides an utterance and the agent
provides appropriate responses. A set of turns that
are happening within a certain time window are
grouped as a conversation session. Formally, we
can represent a session as a set of turns:

Si = {(U t=0
i , Rt=0

i ), . . . , (U t=Ti , Rt=Ti )} (1)

Here, Si represents session i consisting of a set of
turns as tuples of utterance and responses, (U ti , R

t
i),

for the first turn t = 0 to the last turn t = T in that
session.

In the context of turn-level user satisfaction mod-
eling, we are interested in the classification of a
certain targeted turn within a session as either satis-
fying (SAT) or dissatisfying (DSAT). Note that the
satisfaction here is defined based on the agent’s re-
sponse given a certain utterance and the context
(i.e., other session turns). We use the notation
Y t∗
i ∈ {SAT,DSAT} to indicate the user satisfac-

tion for the targeted turn t = t∗ of session i. See
Figure 2 for examples of SAT/DSAT interactions.

Session Label
U0: play clocks
R0: Playing clocks by Coldplay. SAT
[User listening for 1 minute] (user listening)

U0: play clock
R0: Sorry, I cannot find the song. DSAT
U1: play clocks (repeated request)

R1: Playing clocks by Coldplay.
[User listening for 1 minute]
U0: turn on the tv
R0: Did you mean Living Room TV? SAT
U1: yes
R1: [EMPTY] (no further request)

U0: call chris
R0: Calling chris. DSAT
U1: stop (ASR error, barge-in)

R1: [EMPTY]
U1: call christina
R1: Calling Christina.
[Phone call for 2 minutes]

Figure 2: A few examples of SAT and DSAT turns to
illustrate the importance of the conversation context.

3.2 Datasets1

In this study, we use real-world data from Alexa,
a large-scale commercial conversational agent.
Specifically, we use a dataset of about 891,000
real-world conversation sessions in which a certain
turn within each session is annotated by a human
annotator as SAT or DSAT. Human annotators had
access to the session context and followed a stan-
dard labeling protocol (further information is pro-
vided in Appendix A). As a preprocessing step, we
limited turns within each session to a window of
five turns: at most two turns before the targeted
turn, the targeted turn, and at most two turns after
the targeted turn. This labeled dataset is denoted as
Dsup.

In addition to Dsup, we also use a large pool of
real-world session data without any annotation or
label. This dataset is about twice the size of Dsup,
but as we are not limited to targeted turns, we keep
all session turns and decide context windows based
on a randomized data augmentation step. The re-
sulting effective sample size is significantly larger
than Dsup. We denote this unlabeled dataset as
Dunsup. As both datasets were sampled from real
traffic, we ensured that there is no overlap between
Dunsup and the evaluation splits of Dsup.

The conversations cover a wide variety of in-
ternally developed (1p) and third-party (3p) devel-
oper skills. Due to the imbalanced traffic, in our

1Due to confidentiality concerns, we are not able to dis-
close the exact annotation protocols and data specifications.
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Figure 1: Overview of the suggested network architecture. In our architecture, BERT encoder with average pool
at the last layer is used as the LM. We consider a context window of at most 2T+1 turns. Heads are simple MLPs
classifiers with one hidden layer.

Property Size
Total number of samples ≈ 891, 000
Total number of 1p skills > 20
Total number of 3p skills > 1500
Ratio of SAT to DSAT samples > 20

Table 1: Dataset statistics for Dsup

datasets, there is a huge variation between the num-
ber of samples for different skills. For instance, 1p
skills such as music or weather have hundreds of
thousands of samples while many 3p skills only
have less than 10 samples throughout our datasets.
To properly evaluate the performance of our pre-
dictors on such imbalanced data, we proposed a
novel approach to split the data and to evaluate. We
build two test sets: a test set measuring in-domain
performance and another test set to measure the
out-of-domain generalization. The in-domain test
set consists of samples from skills that the train set
covers. The out-of-domain test set measures the
performance on skills that are not covered by the
train set. Ideally, we would like to observe good
classification performance in both test splits, indi-
cating the ability of our models to learn and model
the current major traffic and to generalize to less
frequent or future traffic. Based on this, we split
Dsup to 70% train, 15% validation, and the rest
for the test (about 1/5 of test samples are out-of-
domain and 4/5 are in-domain). The in-domain
and out-of-domain test sets consist of 17 and 275
skills, respectively. The Dunsup is randomly split
to 80% train and the rest for validation, regardless
of skills. Table 1 presents a summary of dataset
statistics for Dsup.

3.3 Network Architecture

Figure 1 shows a high-level drawing of the network
architecture used in our experiments. It consists of

a language model (LM) that encodes utterance and
response pairs to vector representations. Here, we
consider up to T turns before and after the targeted
turn. To further summarize the list of the previous
or next turns, we use GRU layers (Chung et al.,
2014). Then, an average pool is used to produce
a representation vector, z, for each session. Note
that before the pooling, simple non-linear MLPs
are used to transform each partial representation.
Finally, z is used as an input to a set of different
head networks, responsible for making predictions
for different objectives.

Regarding the LM, we use the standard BERT en-
coder (Devlin et al., 2018) architecture pre-trained
as suggested by Liu et al. (2019). To make a fixed-
length representation of the utterance response
pairs i.e. turn semantics, we use an average pool
at the last encoder layer of the BERT token rep-
resentations. We also tried other approaches such
as using the classification token instead of pool-
ing, but based on our initial results simple pooling
performed consistently better.

We share our BERT-based LM parameters across
the network to encode the session turns. However,
we train separate GRU networks to summarize the
previous and next turns. The output dimension of
the LM is equal to 768, the size of the standard
BERT hidden layer. The hidden layer and output
size of our GRUs are 256, and we use 2-layer bi-
directional GRUs. Each head is a simple MLP with
a single hidden layer of size 256 followed by a
ReLU nonlinearity. The final network consists of
about 117.7 million parameters from which about
110 million is related to BERT and the rest is for
GRUs, heads, etc.

3.4 Supervised Learning Baseline

As a baseline approach, we use the network defined
in Section 3.3 with a binary classification head to
distinguish SAT and DSAT samples. Here, we
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use labels provided by Dsup and a binary cross-
entropy (BCE) loss function. An Adam optimizer
(Kingma and Ba, 2014) with a batch size of 512
is used to train the network for 10 epochs. The
base learning rate for all non-BERT layers is set
to 10−3, while for BERT layers, we use a smaller
learning rate of 5 × 10−5. The learning rates are
decayed with a factor 5 twice at 60% and 80% of
total iterations. Unless indicated otherwise, we
use a similar training setup for other experiments
suggested in this paper.

4 Self-Supervised Contrastive Learning

4.1 Self-Supervised Objective

We define a self-supervised objective in which the
model is tasked to distinguish real sessions from
unreal (or noisy) sessions. Any unlabeled dataset,
such as Dunsup can be used to sample real sessions.
To generate unreal textual information, different
approaches have been suggested in the literature
such as back-translation (Fang and Xie, 2020), gen-
erative modeling (Liu et al., 2020), or even random
word substitutions.

In this work, we leverage the multi-turn and
structured nature of sessions to generate noise
samples by simply shuffling the targeted utter-
ances/responses within each training batch (see
Figure 3 for an example). Intuitively, the noise
samples are sessions in which the targeted utter-
ance or response does not belong to the rest of
the session. Therefore, the model has to capture
the joint distribution of the context and targeted
turns. Algorithm 1 shows an overview of the sam-
ple generation and training process for the proposed
contrastive objective.

Sample 1 (+)
U: Play
R: What do you want me to play?

Sample 2 (+)
U: What time is it?
R: The time is 12:55 pm

Sample 3 (-)
U: Play
R: The time is 12:55 pm

Sample 4 (-)
U: What time is it?
R: What do you want me to play?

Figure 3: A toy example demonstrating the generation
of unreal samples from a batch of two real samples.
Session context is omitted for brevity.

Algorithm 1 Contrastive Self-Supervised Training

Input: Dunsup, hθ (model w/ contrastive head)
repeat
X ← GetBatch(Dunsup)
batchsize← length(X)
y ← ones(batchsize)
Xn ← clone(X)
if rand() < 0.5
shuffle(Xn[‘targeted_utterance‘])

else
shuffle(Xn[‘targeted_response‘])

yn ← zeros(batchsize)
p← hθ([X;Xn])
loss← BCE(p, [y; yn])
Backprop loss
Update θ

until MaxEpoch

4.2 Contrastive Pretraining

The objective introduced in Section 4.1 is not di-
rectly applicable to be used as a user satisfaction
model. One approach to leverage the pool of unsu-
pervised data is to pre-train the model on unlabeled
data using the self-supervised objective, and then
attach a classifier head and finetune the network to
distinguish SAT and DSAT samples. In our imple-
mentation, we pre-train using the self-supervised
objective on Dunsup for 10 epochs, then train a
classifier head on Dsup for another 10 epochs; ad-
justing the learning rates for the network body to
×0.1 of the base learning rates (see Section 3.4 for
more information on the learning rate setup).

4.3 Few-Shot Learning

In the pretraining approach, we solely relied on
the loose semantic relationship between the self-
supervised and the user satisfaction modeling tasks.
However, it is desirable to have a representation
that is not only solving the self-supervised task but
is also useful for the final objective. In other words,
we have a source task (S) which we have a large
number of training samples and a target task (T )
with a limited number of samples that is our main
interest. The idea is to use information from the
target task during the source training such that the
trained model is most compatible with the target.

Let us assume we have datasets DS and DT
corresponding to the source (S) and target (T )
tasks as well as inference functions for each task:
fS(.|θ, ωS) and fT (.|θ, ωT ). In this notation, θ rep-
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resents shared network parameters (i.e., the body in
our architecture) and ω represents task-specific pa-
rameters (i.e., a head in our architecture). Formally,
when optimizing for task S, we are interested in:

argmin
θ,ωS

Ex,y∼DS
[LS(fS(x|θ, ωS), y)] , (2)

where LS is the loss function for the source task.
A simple gradient descent step to solve this prob-
lem can be written as:

θt+1 ←− θt − η∇θE(LS(fS(x|θt, ωtS), y)) ,
ωt+1
S ←− ωtS − η∇ωSE(LS(fS(x|θ

t, ωtS), y)) .
(3)

However, we are interested in optimization steps
that do not increase the loss value for task T :

Ex,y∼DT
[LT (fT (x|θt+1, ωt+1

T ), y)] ≤
Ex,y∼DT

[LT (fT (x|θt, ωtT ), y)] .
(4)

Considering (4) as an optimization constraint
can potentially halt the optimization because im-
provements to the source objective do not directly
translate to improvements to the target task. In
other words, the constraint above may not be al-
ways directly satisfiable using gradient steps in the
source domain.

To overcome this issue, instead of using gradi-
ent descent, we define the problem as a Random-
ize Block Coordinate Descent (RBCD) (Nesterov,
2012; Wright, 2015) optimization. At each RBCD
iteration, only a subset of model parameters, i.e. a
block noted as b, is sampled from a distribution B
and used for the gradient descent update2:

b ∼ B ,

θt+1
b ←− θtb − η∇bE(LS(fS(x|θt, ωtS), y)) .

(5)
Note that we only use the RBCD optimization for
the network body parameters (θ), while the head pa-
rameters (ωS and ωT ) are optimized using a regular
gradient descent optimization.

In this work, we propose the idea of adjusting
the block selection distribution, B, such that pa-
rameters having more aligned source and target
gradients have more chance of being selected:

B : Pr(i ∈ b) ∝ 〈∇i,SLS ,∇i,TLT 〉 , (6)

where the inputs to LS and LT are omitted for
brevity. Intuitively, (6) is used to discourage pa-
rameter updates that are not aligned with the T task

2Note that the block selection operation is discrete, either a
certain parameter belongs to the block or not, but the distribu-
tion B can be a continuous or discrete probability distribution.

which can be viewed as a soft method to enforce
the constraint in (4). Here, there are multiple op-
tions to define the granularity of the block selection
such as layer-wise, neuron-wise, or element-wise.
Based on our initial experiments, we found that
defining the block elements to be layer-wise results
in the best performance.

Algorithm 2 shows an outline of the proposed
method. At each iteration within the training loop,
we back-propagate the S and T losses and store
the gradients of layer parameters. For parameters
related to the S head, we follow a simple gradient
descent update. For body parameters, we only up-
date the parameters if the inner product of the S
and T tasks is positive or at a small random out-
come with the probability of α. To guarantee the
convergence of the source task, we allow all pa-
rameters to be selected at each step at least with
a very small probability of α. In our experiments,
we consider α as a hyperparameter taking values
in {0.001, 0.005, 0.01, 0.05, 0.1}. Additional care
is required when updating the T head layer pa-
rameters as the DT is usually much smaller than
DS and the T head is prone to overfitting. We
use a validation set from task T to detect over-
fitting for the T head and early stop the updates.
Note that a hyperparameter λ is used to set the
frequency of the T head updates after the early
stopping. Having less frequent head updates allows
the T head to gradually improve and adapt to the
changes in the body without getting overfitted. In
our experiments, we search for proper λ values in
{0.001, 0.002, 0.005, 0.01}.

In contrast to other works in the literature which
mostly leverage the alignment of concatenated gra-
dients (Lopez-Paz and Ranzato, 2017; Luo et al.,
2020), we propose layer-wise similarity measure-
ments providing more granularity and more adapt-
ability. Also, the suggested approach does not re-
quire any inner loop optimization process or gradi-
ent projection and hence is scalable to large-scale
problems. The only computational and memory
overhead is to store the model gradients with re-
spect to each task and to compute inner products
between the layer parameters.

The method explained in this section is general
to few-shot transfer learning and joint training set-
tings where a large source dataset is being used
to achieve representations that are most useful for
a final target task. For our use-case, we use the
suggested approach considering the source task, S,
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Algorithm 2 The Proposed Few-Shot Training

Input: DS , DT , fS , fT , α (random selection
rate), λ (T head update rate)
repeat
(xS , yS) ∼ DS
(xT , yT ) ∼ DT
// compute & store gradients
lossS ← LS(fS(xS , yS))
Backprop and store lossS
lossT ← LT (fT (xT , yT ))
Backprop and store lossT
// Layer-Wise RBCD update
for P in LayerParameters :

if P ∈ ωS // if S head param
P ← P − η∇P lossS

else if P ∈ θ // if body param
sim← 〈∇P lossS ,∇P lossT 〉
if sim > 0 or rand() < α
P ← P − η∇P lossS

else
// if T head parameter
if NotEarlyStopped or rand() < λ
P ← P − η∇P lossT

Validate, update NotEarlyStopped
until MaxEpoch

as the self-supervised contrastive objective and the
target task, T , as the user satisfaction prediction
task. In our experiments, after the joint training
process, we reinitialize the T head and finetune the
network for the T task. We found this approach to
be helpful to achieve the best results as the jointly
trained T head is often slightly overfitted.

5 Results

5.1 Experimental Setup

We used PyTorch (Paszke et al., 2017) to train our
models. For each case, we continue the training
for the maximum number of epochs (10 in our ex-
periments) and select the best model based on the
validation performance. We conducted our experi-
ments on a cluster of 48 NVIDIA V100 GPUs (16
GB memory, 8 GPUs per machine). It took be-
tween about 6 hours to 27 hours to run individual
experiments, depending on the case.

For each experiment, we report Area Under
the ROC Curve (AUC-ROC) and Area Under the
Precision-Recall Curve (AUC-PR) as the perfor-
mance measures. The results for the in-domain
and out-of-domain held-out test sets are reported

separately. Note that there is an imbalance in the
frequency of SAT and DSAT labels, and also there
is a difference in the label distribution for the in-
domain and out-of-domain test sets. To ensure the
statistical significance of the results, each experi-
ment is repeated four times using random initializa-
tions reporting the mean and standard deviations.

5.2 Quantitative Results

Figure 4 shows a comparison of the in-domain
test results for the supervised training and the self-
supervised contrastive pretraining methods. For
each case, we report the in-domain test perfor-
mance using models trained with a different num-
ber of annotated training samples. The x-axis is
plotted in the log scale. It can be seen that the
contrastive self-supervised approach is much more
data-efficient compared to the supervised approach
as it leverages the pool of unlabeled data.

Figure 5 shows a comparison between the super-
vised training and the self-supervised pretraining
methods on the out-of-domain test set. Similar
to the in-domain case, there is a significant gap
between the labeled data efficiency of these ap-
proaches. However, compared to the in-domain
case, using even all training samples, the gap does
not appear to close. In other words, for the out-
of-domain test set the self-supervised approach is
not only more data-efficient but also tends to gen-
eralize better. In a real-world conversation system,
the out-of-domain generalization can be crucial as
many different new skills are being developed and
included in the system every day, making the tradi-
tional in-domain human annotation less practical
due to the required annotation turnaround time.

In Figure 6 and Figure 7, we compare the in-
domain and out-of-domain performance of the self-
supervised pretraining method with the proposed
few-shot learning method. As it can be seen from
Figure 6, the in-domain AUC-PR and AUC-ROC
for the few-shot learning are consistently better
than the self-supervised pretraining approach. Note
that the performance gap closes at about 5000 sam-
ples; perhaps because it is enough training data for
fine-tuning and successfully transferring the pre-
trained model. The out-of-domain performances
as reported in Figure 7 show better results for the
few-shot approach but the margin of improvement
is relatively smaller than the in-domain case.

Note that in the presented results, we focused our
comparisons to methods that are scalable and lever-
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Figure 4: Comparison of the supervised training baseline and the proposed self-supervised pretraining methods for
the in-domain test set using different number of training samples (left: AUC-PR, right: AUC-ROC).
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Figure 5: Comparison of the supervised training baseline and the proposed self-supervised pretraining methods for
the out-of-domain test set using different number of training samples (left: AUC-PR, right: AUC-ROC).

age human annotation data for turn-level satisfac-
tion prediction, excluding approaches using human-
engineered and skill-specific metrics as well as
methods that only consider the quality of conversa-
tion from the language perspective.

5.3 Qualitative Results

Table 3 in Appendix B presents a qualitative com-
parison of the baseline supervised training and
the self-supervised approach suggested in this pa-
per. Here, to highlight the generalization and data-
efficiency of each method, we limit the number of
annotated samples to 1024 random samples from
the training set of the Dsup dataset. For this table,
we provide sample sessions that are chosen with
an emphasis on more difficult requests, unclear re-
quests, or requests involving 3p skills. U and R
indicate the targeted utterance and response, while
U +x and R+x indicate the context utterance and
responses appearing x turns after the targeted turn.

From the provided examples, it can be inferred
that the self-supervised approach provides a deeper
understanding of the user-agent interaction and is

able to generalize better even for infrequent 3p
skills. It is consistent with the quantitative results
presented in the paper.

6 Conclusion

This paper suggested a self-supervised objective
to learn user-agent interactions leveraging large
amounts of unlabeled data available. In addition to
the standard fine-tuning approach, this paper pre-
sented a novel few-shot transfer learning method
based on adjusting the RBCD block selection dis-
tribution to favor layer parameters with source and
target gradients pointing in similar directions. Ac-
cording to the experiments using real-world data,
the proposed approach not only requires signifi-
cantly less number of annotations, but also general-
izes better for unseen out-of-domain skills.
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Figure 6: Comparison of the self-supervised pretraining and the proposed few-shot learning methods for the in-
domain test set using different number of training samples (left: AUC-PR, right: AUC-ROC).
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Figure 7: Comparison of the self-supervised pretraining and the proposed few-shot learning methods for the out-
of-domain test set using different number of training samples (left: AUC-PR, right: AUC-ROC).
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A Annotation Protocol

In the following, we provide a summary of main
points considered to produce the annotations used
in this paper3:

• Human annotators were trained to annotate
samples i.e., we do not use domain specific
metrics or other automated success measures
as annotation.

• It was made clear to the annotators that the
task is turn-level user satisfaction, and not
the overall satisfaction over session. Also,
instructions were provided on how to handle
ASR errors, repeated requests, multiple users
in one utterance, and many other special cases.

• The annotators were provided the targeted
turn as well as a few context turns. This
helped them to better understand the actual
user intention and judge accordingly.

• They were asked to rate the system’s response
quality in terms of the user satisfaction on the
scale of 1 to 5, from terrible to excellent. See
Table 2 for score categories and an example
of each category.

• To ensure the quality of annotations, each sam-
ple was annotated multiple times by different
annotators.

Table 2: Examples of the annotation scores.

Score Example
1 U: Is bacon really bad for your health?

(Terrible) R: Sorry, I’m not sure.
2 U: How’s the humidity?

(Bad) R: Sorry, I don’t have daily forecast information.
3 U: Play a song for the baby.

(Okay) R: Skill [SKILL NAME] can help you with that.
Did you want to enable it?

4 U: What’s the temperature going to be tomorrow?
(Good) R: Tomorrow in London, you can look for cloudy

weather with a high of 65 and low of 52 degrees.
5 U: Cancel alarm.

(Excellent) R: 6:35 PM alarm cancelled.

In our analysis, we consider all samples having
a score of 3 or better as SAT, and DSAT otherwise.
Also, in our data pipeline, we considered differ-
ent annotations of the same utterance as different
samples. However, care was taken in the data split

3Certain details were omitted to comply with confidential-
ity requirements.

process to ensure there is no train data contamina-
tion in our validation and test sets.

B Qualitative Results

Table 3 presents a qualitative comparison of the
baseline supervised training and the self-supervised
approach suggested in this paper. Here, to high-
light the generalization and data-efficiency of each
method, we limit the number of annotated samples
to 1024 random samples from the training set of
the Dsup dataset. For this table, we provide sample
sessions that are chosen with an emphasis on more
difficult requests, unclear requests, or requests in-
volving 3p skills. U and R indicate the targeted
utterance and response, while U+x andR+x indi-
cate the context utterance and responses appearing
x turns after the targeted turn.

From these examples, it can be inferred that the
self-supervised approach provides a deeper under-
standing of the user-agent interaction and is able to
generalize better even for infrequent 3p skills. It is
consistent with the quantitative results presented in
the paper.
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Table 3: Qualitative comparison of predictions for different methods on a set of selected test samples.

Label Prediction Comments

Session Supa Selfb

U-1: what what high school bas-
ketball team do you like

R-1: I don’t have a favorite yet.

U : what is your favorite m. l. b.
team

R : My home team is [NAME],
and you’ve gotta root root root
for the home team

SAT DSAT SAT
Asking for favorite,
agent using advanced
language and slang

U+1: what’s your favorite movie
R+1: The Empire Strikes Back"
is my all-time favorite. It’s im-
pressive.

U-1: is it going to rain tomorrow
R-1: No rain is expected in New
York tomorrow.

U : is it raining now in new york
R : No rain is expected in New
York tomorrow

DSAT SAT DSAT
Asking for weather, re-
wording and repeating
the request

U+1: is it raining today
R+1: It’s raining right now. You
can expect about 0.05 inches.

U+2: set an alarm for five p.m. R+1: Alarm set for 5:00 PM.

U : close the garage
R : Ok, Here’s Garadget - Smart
Garage The door ’garage’ was
already closed

SAT DSAT SAT
Device interaction, us-
ing a less common 3p
skill

U : teach me

R : Me’s definition is first-person
singular pronoun, indicating the
speaker, used as the object of a
verb or preposition

DSAT SAT DSAT
Knowledge question,
vague request agent
fails to understand

U+1: pause R+1: [EMPTY]

U-2: what is in the middle of the
milky way galaxy

R-2: A storm of exploding stars
circling a black hole.

U-1: name all the countries in
the world

R-1: There are 193 UN-
recognized countries, including
China, India, the United States,
and Indonesia.

U : read us a really long list

R : Resuming your most recently
purchased book, Everything I
Know About Lean I Learned in
First Grade

DSAT SAT DSAT
Knowledge question,
agent fails to understand
user’s intention

U+1: cancel R+1: [EMPTY]

U+2: name all the countries in
europe

R+2: I know about fifty countries
in Europe. They are the United
Kingdom, Turkey, [48 MORE
NAMES]

U-2: call
R-2: Which Phone Number, Con-
tact or Device do you want to
call?

U-1: p.m
R-1: I heard you ask for p.m., but
I can’t find that name in your list
of contacts or devices.

U : call liam

R : I can’t call Liam’s phone
number. I can call contacts who
have signed up for [AGENT]
calling, and I can call phone
numbers in the United States,
Canada, and Mexico

SAT DSAT SAT
Call request, failed due
to system limitation but
user understands

U+1: thank you [AGENT] R+1: You bet . And good evening.

aSupervised training baseline
bSelf-supervised contrastive learning method


