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Abstract
Named Entity Recognition (NER) remains dif-
ficult in real-world settings; current challenges
include short texts (low context), emerging en-
tities, and complex entities (e.g. movie names).
Gazetteer features can help, but results have
been mixed due to challenges with adding ex-
tra features, and a lack of realistic evalua-
tion data. It has been shown that including
gazetteer features can cause models to overuse
or underuse them, leading to poor generaliza-
tion. We propose GEMNET, a novel approach
for gazetteer knowledge integration, including
(1) a flexible Contextual Gazetteer Represen-
tation (CGR) encoder that can be fused with
any word-level model; and (2) a Mixture-of-
Experts gating network that overcomes the fea-
ture overuse issue by learning to conditionally
combine the context and gazetteer features, in-
stead of assigning them fixed weights. To com-
prehensively evaluate our approaches, we cre-
ate 3 large NER datasets (24M tokens) reflect-
ing current challenges. In an uncased setting,
our methods show large gains (up to +49%
F1) in recognizing difficult entities compared
to existing baselines. On standard benchmarks,
we achieve a new uncased SOTA on CoNLL03
and WNUT17.

1 Introduction

Identifying entities is a core NLP task. Named
Entity Recognition (NER) is the task of finding
entities and recognizing their type (e.g., person or
location). Mention Detection (MD) is a simpler
task of identifying entity spans, without the types.

Advances in neural NER have produced high
scores on benchmark datasets like CoNLL03 and
OntoNotes (Devlin et al., 2019). However, a num-
ber of challenges remain. As noted by Augenstein
et al. (2017), these scores are driven by the use of
well-formed news text, the presence of “easy” enti-
ties, and memorization effects due to entity overlap
between train/test sets; these models perform sig-
nificantly worse on unseen entities or noisy text.

∗This research was done during an internship at Amazon.

1.1 Current NER Challenges

Beyond news text, many challenges remain in
NER. Context information has been shown to
be important for NER (Jayarao et al., 2018), and
short texts like search queries are very challenging
due to low context and a lack of surface features
(Guo et al., 2009; Carmel et al., 2014). Unseen
and emerging entities also pose a challenge
(Bernier-Colborne and Langlais, 2020). Finally,
some entities, like movie names are not simple
noun phrases and are harder to recognize (Ashwini
and Choi, 2014). Table 1 lists more details about
these challenges, and how they can be evaluated.

Entity Knowledge is essential for overcoming
these issues, and critical in the absence of casing.
Even a human may not correctly parse “what is

[[life is beautiful]]?” without knowing that
a movie is being referenced. However, most mod-
els start with no knowledge of real world entities,
learning them from the training data. Continuous
data annotation can add new entities, but is expen-
sive and often not feasible.

Consequently, methods for integrating exter-
nal knowledge, e.g., Knowledge Bases (KBs) or
gazetteers, into neural architectures have gained
renewed attention. However, such studies have re-
ported limited gains (Liu et al., 2019; Rijhwani
et al., 2020). The mixed success of gazetteers
stems from three main limitations in current work:
gazetteer feature representation, their integration
with contextual models, and a lack of data.

For the representation, one-hot binary encoding
is often used to represent gazetteer features (Song
et al., 2020). However, this does not capture con-
textual info or span boundaries. Alternatively, in-
dependent span taggers trained on gazetteers have
been proposed to extract potential entities Liu et al.
(2019), but such models can be difficult to train and
may not provide reliable features.
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Challenge Description
Short Texts
For: voice, search

News texts have long sentences discussing many entities, but other use cases (search queries,
questions) have shorter inputs. Datasets with minimal context are needed to assess performance of
such use cases. Capitalization/punctuation features are large drivers of success in NER (Mayhew
et al., 2019), but short inputs (ASR, user input) often lack these surface feature. An uncased
evaluation setting is needed to understand model performance.

Long-tail Entities
For: domains with
many entities

In many domains entities have a large long-tail distribution, with millions of values (e.g., location
names). This makes it hard to build representative training data, as it can only cover a portion of
the potentially infinite entity space. A very large test set is required for effective evaluation.

Emerging Entities
For: domains with
growing entities

All entity types are open classes (new ones are added), but some groups have a faster growth rate,
e.g., new books/songs/movies are released weekly. Assessing true generalization requires test sets
with many unseen entities, to mimic an open-world setting.

Complex Entities
For: voice, search

Not all entities are proper names: some types (e.g. creative works) can be linguistically com-
plex. They can be complex noun phrases (Eternal Sunshine of the Spotless Mind), gerunds
(Saving Private Ryan), infinitives (To Kill a Mockingbird), or full clauses (Mr.Smith Goes

to Washington). Syntactic parsing of such nouns is hard, and most current parsers/NER systems
fail to recognize them. The top system from WNUT 2017 achieved 8% recall for creative work
entities (Aguilar et al., 2017). Effective evaluation requires corpora with many such entities.

Table 1: NER challenges not addressed by current work and datasets, and proposed solutions.

There are also limitations in the integration of
gazetteer features. Existing studies often add ex-
tra features to a word-level model’s Contextual
Word Representations (CWRs), which typically
contain no info about real world entities or their
spans (Yamada et al., 2020). This concatenation
approach is sub-optimal as it creates additional,
and often highly correlated features. This has been
shown to cause feature “under-training”, where the
model will learn to mostly rely on either context or
gazetteer during training, and underuse the other
(Yang et al., 2016). This can be problematic as the
utility of the gazetteer is variable: it is valuable
in low-context cases, but may not be useful when
rich syntactic context (from the CWR) can identify
entities. Conversely, a true entity may be missing
from the gazetteer. However, when gazetteers are
represented as an independent feature, the model
assigns it a fixed weight, and its contribution to
the prediction is static. To overcome this, exter-
nal knowledge should dynamically be infused into
relevant dimensions of the CWR, with the model
learning to conditionally balance the contribution
of the CWR and gazetteer to the prediction.

Finally, these issues are compounded by a lack of
data reflecting the challenges from Table 1, which
prevents the exploration of effective architectures
for knowledge injection.

1.2 Our Contributions

The key contributions of this paper are new data
and methods to address the above challenges.

We propose GEMNET, a gazetteer expert mix-
ture network for effectively integrating gazetteers
into any word-level model. The model includes an

encoder for Contextual Gazetteer Representations
(CGRs) as a way to incorporate any number of
gazetteers into a single, span-aware, dense repre-
sentation. We also propose a gated Mixture-of-
Experts (MoE) method to fuse CGRs with Con-
textual Word Representations from any word-level
model (e.g., BERT), something not explored in
previous work. Our novel MoE approach allows
the model to conditionally compute a joint CGR-
CWR representation, training a gating network to
learn how to balance the contribution of context and
gazetteer features. Finally, we employ multi-stage
training to drive further improvements by aligning
the CGR/CWR vectors.

To evaluate our proposed approaches, we create
3 challenging NER datasets that represent short sen-
tences, questions, and search queries. The created
datasets have complex entities with low-context
and represent the challenges in Table 1.

Extensive experiments in an uncased setting
show that our MoE model outperforms other base-
lines, including concatenation, in all experiments.
We achieve state-of-the-art (SOTA) results on
CoNLL03/WNUT17, but its utility is more notable
on our difficult low-context data. We show that
short texts make NER much harder, but gazetteers
yield huge gains of up to +49% F1, specially in rec-
ognizing complex/unseen entities. We also show
that gazetteer coverage during training is important.

2 Related Work

Deep Learning for NER Neural approaches
have greatly improved NER results in recent years.
A shift to encoders e.g., BiLSTM-CRF models
(Huang et al., 2015), using static word embed-



1501

dings eliminated the need for manual feature en-
gineering (e.g., capitalization features). More re-
cently, transformer-based Language Models (LMs),
e.g., BERT (Devlin et al., 2019), achieved further
improvements by using deep contextual word repre-
sentations. Such models jointly learn syntactic cues
and entity knowledge, and may fail to recognize
unseen or syntactically ambiguous entities. Conse-
quently, training data is augmented with gazetteers.

NER with Gazetteers Annotated NER data can
only achieve coverage for a finite set of entities, but
models face a potentially infinite entity space in the
real world. To address this, researchers have inte-
grated gazetteers into models (Bender et al., 2003;
Malmasi and Dras, 2015). String matching is com-
monly used to extract gazetteer matches, which are
then concatenated to word representations. Song
et al. (2020) use gazetteers from the Wikidata KB
to generate one-hot vectors that are concatenated
to BERT representations, yielding minor improve-
ments on CoNLL03. This concatenation approach
has been shown to cause feature “under-training”
(Yang et al., 2016), as discussed in §1. An alterna-
tive approach uses gazetteers to train a subtagger
model to recognize entity spans. Liu et al. (2019)
propose a hybrid semi-Markov CRF subtagger, re-
porting minor improvements. While a subtagger
may learn regularities in entity names, a key lim-
itation is that it needs retraining and evaluation
on gazetteer updates. Recent work has considered
directly integrating knowledge into transformers,
e.g., KnowBert adds knowledge to BERT layers
(Peters et al., 2019), and LUKE is pretrained to
predict masked entities (Yamada et al., 2020). The
drawbacks of such methods are that they are spe-
cific to Transformers, and the model’s knowledge
cannot be updated without retraining. We aim to
overcome the limitations of previous work by de-
signing a model-agnostic gazetteer representation
that can be fused into any word-level model.

Mixture-of-Experts (MoE) Models MoE is an
approach for conditionally computing a represen-
tation, given several expert inputs, which can be
neural models with different architectures (Arnaud
et al., 2020) or models using different knowledge
sources (Jain et al., 2019). In MoE, a gating net-
work is trained to dynamically weight experts per-
instance, according to the input. It has demon-
strated to be useful in various applications like rec-
ommendation (Zhu et al., 2020), domain adaptation

for sentiment analysis, and POS tagging (Guo et al.,
2018). For NER, Liu et al. (2020) proposed a Mix-
ture of Entity Experts (MoEE) approach where they
train an expert layer for each entity type, and then
combine them using an MoE approach. Their ap-
proach does not include external gazetteers, and
the experts provide an independent representation
that is not combined with the word representation.
In our work we treat word and external gazetteer
representations as independent experts, applying
MoE to learn a dynamically fused representation.

3 Datasets

We experiment using three standard benchmarks:
CoNLL03, OntoNotes, and WNUT17. However,
these corpora do not capture the issues from
Table 1; rich context and common entities (country
names) allow a simple RNN model to achieve near-
SOTA results. A key contribution of our paper is
the creation of 3 new datasets that represent those
challenges. They are difficult, as shown in §5.1.

NER Taxonomy: We adopt the WNUT 2017
(Derczynski et al., 2017) taxonomy entity
types: PERSON (PER for short, names of peo-
ple), LOCATION (LOC, locations/physical facili-
ties), CORPORATION (CORP, corporations and busi-
nesses), GROUPS (GRP, all other groups), PRODUCT
(PROD, consumer products), and CREATIVE-WORK

(CW, movie/song/book/etc. titles).
Our datasets are described below.1 All data are

uncased, and we make them publicly available.2

Their statistics, listed in Table 2, show that they
reflect the challenges from §1: short inputs (low
context), with many unseen entities in the test set.

LOWNER (Low-Context Wikipedia NER) To
create our training set, we take advantage of the
rich interlinks in Wikipedia. We parse the English
Wikpedia dump and extract sentences from all ar-
ticles. The sentences are parsed, and linked pages
are resolved to their respective Wikidata entities to
identify their type. To mimic search and voice set-
tings, we minimize the context around the entities
by dropping sentences with unlinked entities, iden-
tified using interlinks and a capitalization heuristic.
The result is a corpus of 1.4 million low-context
sentences with annotated entities, e.g., “A version

for the [sega cd] was also announced.”
1More details about their development are in Appendix A
2https://registry.opendata.aws/

lowcontext-ner-gaz

https://registry.opendata.aws/lowcontext-ner-gaz
https://registry.opendata.aws/lowcontext-ner-gaz
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Set Dataset Type # Sentence # Token # Entity Avg. Sent Len
Entity Type Distribution

PER LOC CORP GRP PROD CW

1 LOWNER Train 13,424 206,772 13,555 15.40±6.35 5,029 3,791 631 1,941 424 1,805
2 LOWNER Dev 3,366 51,651 3,813 15.34±6.28 1,255 1,235 169 565 101 499
3 LOWNER Test 1,385,290 21,303,399 490,749 15.37±6.29 215,411 120,480 20,015 52,566 15,976 74,830
4 MSQ-NER Test 17,868 98,117 18,993 5.49±1.86 4,586 10,468 679 610 469 2,187
5 ORCAS-NER Test 471,746 1,958,020 368,250 4.15±1.75 68,000 162,652 28,738 23,058 18,114 71,461

Table 2: Data statistics. Entity counts are unique values. LOWNER has train/dev/test sets, the rest are test sets.

MSQ-NER: MS-MARCO Question NER To
represent NER in the QA domain, we create a set
of natural language questions, based on the MS-
MARCO QnA corpus (V2.1) (Bajaj et al., 2016).
Like Wu et al. (2020), we templatize the questions
by applying NER to extract item names, which are
then mapped to our taxonomy. Entities are replaced
with their types to create templates, e.g., “who
sang <CW>” and “when did <PROD> come out”.
Approx 3.5k Templates (appearing >= 5 times)
are chosen and slotted with entities from a knowl-
edge base to generate 18k annotated questions
e.g., “when did [xbox 360] come out”. There
are a wide range of question shapes and entity
types, please see Appendix A for examples.

ORCAS-NER: Search Query NER To repre-
sent the search query domain, we utilize 10 mil-
lion Bing user queries from the ORCAS dataset
(Craswell et al., 2020) and apply the same templati-
zation procedure as MSQ-NER. This yields search
templates e.g., “<PROD> price” and “<CORP>
phone number”, which are used to create anno-
tated queries, e.g., “[airpods pro] reviews”. A
total of 472k queries are generated from 97k unique
templates, please see examples in Appendix A.

3.1 Gazetteer Data

Our gazetteer is composed of 1.67 million entities
from the English Wikidata KB. Instead of collect-
ing entities from the web (Khashabi et al., 2018),
we focused on entities that map to our taxonomy.
Alternative names (aliases) for entities are included.
Gazetteer statistics are listed in Appendix B.

4 The GEMNET Model

We propose GEMNET, a generic gazetteer fusion
approach that can be integrated with any word-level
model, e.g., RNNs and Transformers. We exper-
iment with both BiLSTM-CRF and BERT-CRF
models which produce (contextual) word represen-
tations, and complement these “word experts” with
gazetteers. The overall architecture is shown in
Figure 1, and the components are detailed below.

4.1 Contextual Gazetteer Representations

Our gazetteer representations is obtained in two
steps: entry matching, and contextual encoding.

O B-PROD I-PROD B-CORP I-CORP

How 1 0 0 0 0
much 1 0 0 0 0

is 1 0 0 0 0
Apple 0 1 0 1 0
iPhone 0 1 1 0 0

12 0 0 1 0 0

Table 3: Example of our gazetteer representation.

Gazetteer Entry Matching A gazetteer g is a
list of entries that are associated with a category.
For instance, a PERSON gazetteer contains a list
of known people. The k-th entry g(k) is associ-
ated with a tokenized string (‘John Carpenter’)
and t(k) holds the IOB2 tags ([B-PER, I-PER]).
We use T to denote the tag set over all gazetteers,
e.g., T = {B-PER,I-PER,B-LOC,I-LOC,O, ...}.

We denote input sentences as (w1, w2, . . . , wL),
where wi is the i-th word, and L is the length.
Full string matching is applied to inputs to identify
matches across all gazetteers. Overlapping matches
are resolved by preferring longer ones over shorter
ones, and earlier matches over later ones. A match
matrix, M ∈ {0, 1}L×|T |, represents the matching
results. It is initialized with zeros, and successful
matches (wi, wi+1, . . . , wi+m) = g(k) will set

M
i+j,t

(k)
j

= 1, j = 0, 1, . . . ,m,

indicating that the word wi+j is represented by a
one-hot vector over the tag set T .

A key advantage of this representation is that
it captures multiple matches for a given span in a
sentence. As shown in Table 3, the word “apple”
can be matched to product and organization types.
Furthermore, it is span-aware due to the IOB2 en-
coding. Any number of types and gazetteers can be
added as needed, allowing the model to learn from
correlations, and identify ambiguous entities.
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Figure 1: GEMNET model architecture. Input is passed to the word expert (e.g. BERT) and its match matrix to the
Contextual Gazetteer Representation (CGR) encoder. Their outputs are dynamically combined via a Mixture-of-
Experts (MoE) gating network and passed to a CRF layer for word prediction.

M is extracted by a gazetteer matcher, as a pre-
processing step outside the network. This modular
approach has an important advantage: it allows the
gazetteer to be updated without model retraining.
This is useful for efficiently recognizing emerging
entities, and supporting personalized user-defined
entities (e.g., contact lists).

Contextual Encoding M can be directly used
as input features, but is sparse. We use a linear pro-
jection to obtain a dense representation per word:

hi
gaz = f(w ·Mi + b)

where w ∈ RD×T and b ∈ RD are trainable pa-
rameters, D is the hidden dimension of gazetteer

representation and f is an activation function. This
creates a dense representation that captures interac-
tions between multiple matches. We then contextu-
alize this representation by applying a BiLSTM:

hi
forward = LSTM(hi−1

forward,h
i
gaz)

hi
backward = LSTM(hi+1

backward,h
i
gaz)

hi
CGR = [hi

forward,h
i
backward]

where [·, ·] is the concatenation. A sample visual-
ization of the embeddings is shown in Appendix D.

This dense contextualized gazetteer represen-
tation (CGR) can capture information about entity
span boundaries (present in M), as well as interac-
tions between entities in a sentence.
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4.2 Gazetteer Knowledge (CGR) Integration

The CGR operates on IOB2 tags and cannot memo-
rize specific patterns; it is designed to be integrated
with a lexical model. We consider these representa-
tions to be orthogonal: CGRs can complement the
model’s knowledge and syntactic representation.

CGR Concatenation The simplest integration is
to concatenate the dense CGR to the CWR, while
jointly training the two representations.

Mixture-of-Experts (MoE) Model The word-
level model and CGRs complement each other and
may not always be in agreement. The word model
may have low confidence about the span of an un-
seen entity, but the gazetteer may have knowledge
of it. Conversely, the model’s syntactic context
may be confident about a span not in the gazetteer.

In fact, the two sources can be considered as
independent experts and an effective model should
learn to use their outputs dynamically. Inspired
by the MoE architecture (Pavlitskaya et al., 2020),
we apply conditional computation to combine our
representations, allowing the model to learn the
contexts where it should rely more on each expert.

We add a gating network to create a weighted
linear combination of the word and gazetteer repre-
sentations. For a sentence, the two models output3

their representations hword and hgaz, which are
used to train the gating network:

we = σ(θ[hword,hCGR]),

h = we · hword + (1− we) · hCGR,

where θ are trainable parameters with size 2L, [·, ·]
is the concatenation and σ is the Sigmoid activation
function. We learn gating weights, we, so that the
model can learn to dynamically compute the hidden
information h for each word. The architecture of
our model is shown in Figure 1. After obtaining h,
we feed it to a CRF layer to predict a tag.

Two-stage Training Our architecture jointly op-
timizes over both experts, but their initial states
differ. The word expert often contains pretrained
elements, either as word embeddings or transform-
ers. The randomly-initialized CGR will have high
initial loss, and its representation is not aligned
with the word expert, preventing correct conver-
gence. We tackle this problem through a two-stage
training method to adapt the two experts to each
other. In the first stage, we freeze the word ex-

3Outputs sizes must be equal, e.g., CGR must match BERT.

pert and only train the CGR encoder with the MoE
and CRF layers, forcing the model to use gazetteer
knowledge in order to minimize the loss. Impor-
tantly, this also adapts the CGR encoder to align its
representation with that of the word expert, e.g., the
dimensions with noun signals will be aligned with
those of BERT, enabling the computation of their
linear combination. In the second stage, the two ex-
perts are jointly fine-tuned to co-adapt them. This
ensures that the CGR encoder starts with reason-
able weights, and allows the MoE gating network
to better learn how to balance the two experts.

5 Experiments

Data: All experiments are uncased, using
standard benchmarks (CoNLL03, OntoNotes,
WNUT17) and the new datasets we create (see §3).

Models: We integrate GEMNET with both BERT
and BiLSTM word encoders.For BERT, we use
the pretrained BERTBASE model. The last output
layer is used, and for each word, we use the first
wordpiece representation as its representation. The
BiLSTM model has 3 inputs: GloVe embeddings
(Pennington et al., 2014), ELMo embeddings
(Peters et al., 2018) and CharCNN embeddings
(Ma and Hovy, 2016).

Evaluation: We evaluate MD and NER, and re-
port entity-level precision, recall and F1 scores.

5.1 MD Baselines

Our first experiment aims to measure the difficulty
of our datasets (§3) relative to existing benchmarks.
We train a BERT model on CoNLL03 and use it to
measure MD performance on our data. Measuring
NER performance is not possible as we use a
different tag set (WNUT17 vs CoNLL03).

Dataset P R F1
CoNLL03 96.9 95.7 96.3
LOWNER 67.5 74.5 70.9
MSQ-NER 38.9 38.7 38.8
ORCAS-NER 56.8 51.6 54.1

Table 4: Mention detection (MD) results for a BERT
model trained on CoNLL03, tested on our data.

Results: Compared to the CoNLL03 results, the
LOWNER performance is worse. Although the eval-
uation on LOWNER is a transfer setting, the large
gap shows the existing model cannot generalize
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well to our datasets due to the hard entities. Results
for MSQ-NER and ORCAS-NER, which are short
texts, are even lower. Overall, we note the difficulty
of our datasets due to low context and hard entities.

5.2 NER Ablation Experiments
We explore all model architectures by training on
LOWNER (set 1 in Table 2) and evaluating MD
and NER performance on all datasets (sets 3–5 in
Table 2). See Appendix C for training details.

Models: The GEMNET model is jointly trained
and fused with BERT and BiLSTM word encoders,
with and without two-stage training. To assess the
impact of the MoE component, we also concatenate
the CGR and CWR vectors, without MoE.

Baselines: We compare against three baselines:
(1) no gazetteer baselines; (2) binary concatenation:
we simply concatenate the binary match features
(M) to the word representations, as is common in
the literature; (3) the subtagger model of Liu et al.
(2019). They are shown as “baselines” in table 5.

Results: MD and NER performance for all mod-
els is shown in Table 5. Overall we note the high
effectiveness of the GEMNET model. In particular,
our BiLSTM-based GEMNET approach improves
F1 by up to 49% over the no gazetteer BiLSTM
baseline in ORCAS-NER. Different aspects of the
results are discussed below.

Word Encoder Performance: For LOWNER,
we note that BERT achieves the best results, which
is to be expected since the data consists of full sen-
tences. MD is easier than NER, and represents the
upper bound for NER. Performance in all cases
decreases with low context, with search queries
(ORCAS-NER) being the hardest. BiLSTMs per-
form better on shorter inputs, e.g., ORCAS-NER.

Impact of Gazetteers: Results improve in all
cases with external knowledge. While the subtag-
ger and the binary concatenation baselines yield
gains compared to the no gazetteer baselines, our
CGR-based approach outperforms all of them in
all NER tests. This indicates the high effective-
ness of our CGR. For LOWNER, using CGR+MoE,
MD performance improves by 2.4%, while NER
increases 4.7% over the no gazetteer BERT base-
line. Low-context data, MSQ-NER and ORCAS-
NER, have much lower baseline performance, and
benefit greatly from external knowledge. The best
MSQ-NER NER model improves 36% over the no

gazetteer BiLSTM baseline, while ORCAS-NER

increases by 49%. This clearly demonstrates the
impact of gazetteer integration.

Effect of Integration Method: CGR outper-
forms baselines in all NER experiments, showing
the effectiveness of a span-aware, contextual rep-
resentation that is jointly trained with the word-
level model. The MoE integration is superior to
concatenation in all cases. This is more salient in
low context settings, demonstrating that the MoE
model can rely on the CGR feature when the syntac-
tic context (CWR) is not discriminative. In some
cases baselines actually degrade performance as
the model can not effectively balance the experts.

Effect of Two-stage Training: We observe that
two-stage training is crucial for BERT, including
concatenation models and MoE models, but not for
the BiLSTM model. This confirms our hypothesis
that the CGR cannot be jointly trained with a large
pretrained model. Freezing BERT and then jointly
fine-tuning them provides great improvements.

Results on Benchmarks: We applied GEMNET,
i.e., BERT using CGR+MoE with two stage train-
ing, to the standard benchmarks. We experiment in
an uncased setting, and and compare with the re-
ported uncased SOTA (Mayhew et al., 2019). The
SOTA uses BERT-CRF, which are the same as our
baseline architecture. For comparison, we also
reproduce the BERT baseline using our implemen-
tation. Results are shown in Table 6. Our mod-
els achieve SOTA results in all uncased settings,
demonstrating generalization across domains; we
improve by 3.9% on WNUT17.

5.3 Per-Class Performance & Error Analysis

We also look at performance across different en-
tity classes to understand the source of our im-
provements. Table 7 shows relative gains per class,
comparing the no gazetteer baseline performance
against the best model. Detailed precision/recall
values are in Appendix E (Table 16).

The smallest gains are on PER and LOC types,
and the largest gains are on products and creative
works (CW). This agrees with our hypothesis that
these complex entities are the hardest to recognize.

Comparing datasets, increases are much larger
on MSQ-NER and ORCAS-NER, confirming the
challenges of short low-context inputs, and our
models effectiveness in such cases.
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Word
Gazetter Model 2-stage

LOWNER MSQ-NER ORCAS-NER

Encoder MD NER MD NER MD NER

Baseline BiLSTM
No gazetteer No 86.5 81.7 62.9 51.4 38.3 27.3
Subtagger (Liu et al., 2019) No 91.0 86.1 71.1 62.7 56.7 43.8
Binary Concatenation No 90.6 87.3 55.7 51.1 41.2 33.3

Ours BiLSTM

CGR + Concatenation No 90.8 89.1 84.8 83.2 75.5 73.6
CGR + Concatenation Yes 90.7 88.9 85.6 84.1 76.6 74.9
GEMNET (CGR + MoE) No 90.6 89.0 88.7 87.3 78.1 76.3
GEMNET (CGR + MoE) Yes 90.9 89.3 86.7 85.6 76.4 75.0

Baseline BERT
No gazetteer No 90.5 87.0 65.4 57.3 50.0 37.2
Subtagger (Liu et al., 2019) No 90.2 86.3 60.8 53.7 44.8 32.5
Binary Concatenation No 87.7 84.2 70.7 60.2 48.7 38.8

Ours BERT

CGR + Concatenation No 90.8 87.4 59.8 52.7 46.3 35.7
CGR + Concatenation Yes 92.9 91.4 78.4 76.1 63.7 59.0
GEMNET (CGR + MoE) No 90.1 86.6 62.7 56.1 47.9 37.2
GEMNET (CGR + MoE) Yes 92.9 91.7 83.2 81.9 72.2 70.2

Table 5: MD and NER results (F1 score) on all test sets for models trained on LOWNER.

Method CoNLL03 WNUT17 OntoNotes

Uncased SOTA 91.0 46.1 88.1
BERT Baseline 89.6 46.9 86.9
GEMNET (BERT) 91.3 50.2 88.0

Table 6: Uncased NER Results (F1 score) on
CoNLL03, WNUT17 and OntoNotes v5.0.

Class LOWNER MSQ-NER ORCAS-NER

PER +1.9 +21.8 +40.1
LOC +2.2 +37.5 +46.5
GRP +8.5 +57.3 +57.2
CORP +12.7 +57.7 +56.5
CW +10.2 +58.8 +61.4
PROD +10.7 +64.2 +62.0

Table 7: Relative gains over no gazetteer baseline for
each entity class (F1 score) for each dataset.

We also conduct a qualitative error analysis to
identify instances where the best non-gazetteer
baseline fails, but our model provides correct out-
put. Some examples are shown in Table 8. The
baseline often lacks knowledge about complex
and long-tail entities, either missing them (#1,6,8
show full or partial MD failure) or misclassifying
them (#3-5 show NER errors). Another common
trend we observe is baselines incorrectly predicting
nested entities within complex entities (#2,10).

5.4 Effect of Gazetteer Coverage
We consider the impact of gazetteer coverage4 on
performance. We hypothesize that training cover-
age impacts how much the model learns to rely
on the gazetteer. To verify this we examine two

4The proportion of entities that are present in the gazetteer

(a)

(b)

Figure 2: Coverage analysis. X-axis is the testing cov-
erage and Y-axis is the training coverage. (a) shows
results for the LOWNER test set, and (b) shows the re-
sults for MSQ-NER.

scenarios: (1) the gazetteer coverage for train and
test match (i.e., both high or low); and (2) there is
a coverage gap between train and test, e.g., train
coverage is 90% but is 25% for test, or vice versa.

Model and Data: For each train/test
set we create gazetteers that have p%
coverage of the set’s gold entities, with
p ∈ {5, 10, 20, 30, 50, 75, 90, 95}. This is
achieved by randomly dropping entities. We then
train models using each p and evaluate on test
sets, using all values of p. This experiment is done
using LOWNER and MSQ-NER.
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Dataset Gold Sentence Entities by Baseline Entities by Best Model

LOWNER

Example 1: he worked for
–

|linear technology|CORP

|linear technology|CORP and |analog devices|CORP |analog devices|CORP

Example 2: his signature piece was |orange blossom|PROD |orange blossom special|CW

|orange blossom special|CW

Example 3: it is the last of the |heinlein juveniles|CW |heinlein juveniles|GRP |heinlein juveniles|CW

MSQ-NER

Example 4: what is the zip code for |basarbovo|LOC |basarbovo|PER |basarbovo|LOC

Example 5: who is the director of |el reino|CW |el reino|GRP |el reino|CW

Example 6: when was the |nokia 2.2|PROD invented |nokia|CORP |nokia 2.2|PROD

ORCAS-NER

Example 7: |bee-line|CORP revenue |bee-line revenue|CW |bee-line|CORP

Example 8: |lexus rc 350|PROD height |lexus rc|PROD |lexus rc 350|PROD

Example 9: how old is |ingross|PER |ingross|LOC |ingross|PER

Example 10: cast of |dr. devil and mr. hare|CW |dr. devil|PER, |mr. hare|PER |dr. devil and mr. hare|CW

Table 8: Error analysis examples where baselines fail, but our models provide the correct recognition.

Results: Results are plotted as heatmaps in Fig-
ure 2. Best results occur with high train and test
coverage, while the worst results fall under high
training coverage but low test coverage. When
train coverage is low, test coverage has no impact
as the model presumably ignores the gazetteer in-
put. Across test coverage values, best results are
generally around the diagonal, i.e., matching train-
ing coverage. These patterns are identical across
datasets, indicating that a train/test coverage gap
should be avoided. In practice, if test set coverage
cannot be measured, or high coverage is not guaran-
teed, then using lower training coverage (e.g., 50%)
prevents performance degradation in very low test
coverage cases.

We also note that the gap between the best and
worst result for LOWNER is not huge, showing the
impact of sentence context. This gap is much larger
for ORCAS-NER, where the model cannot rely on
the context. Finally, we note that an alternative
dynamic dropout method5 achieved similar results.

5.5 Performance in a Low-Resource Setting

We also consider the impact of a low-resource set-
ting (limited annotations) on performance, hypoth-
esizing that gazetteers are more helpful in such
settings. To verify this, we create random subsets
of 5/10/20% of the training data and compare the
NER performance of a baseline (BERT-base) vs
our best model(BERT+CGR+MoE+2stage) when
trained on this data. Results are shown in Table 9.

The results show that gazetteers are always more
effective than baseline in low-resource scenarios.
Specifically, they improve much faster with less
data, achieving close to maximum performance
with only 20% of the data.

5Gazetteer matches are randomly dropped during training
(i.e., random entity dropout).

LOWNER MSQ-NER ORCAS-NER

Size Baseline Ours Baseline Ours Baseline Ours
5% 74.2 81.2 52.2 60.4 33.1 44.2
10% 78.1 86.7 55.3 74.4 33.7 49.1
20% 81.2 88.7 55.5 81.3 33.9 69.7
100% 87.0 91.7 57.3 81.9 37.2 70.2

Table 9: NER results on the full test set (F1) for compar-
ing a baseline model (BERT, No gazetteer) and GEM-
NET (BERT + CGR + MoE + 2stage) in low-resource
settings using small subsets of the training data.

6 Conclusion

We focused on integrating gazetteers into NER
models. We proposed GEMNET, a flexible
architecture that includes a Contextual Gazetteer
Representation encoder, combined with a novel
Mixture-of-Expert gating network to conditionally
utilize this information alongside any word-level
model. GEMNET supports external gazetteers,
allowing the model’s knowledge to be updated
without retraining.

We also developed new datasets to represent the
current challenges in NER. Experimental results
demonstrated that our method can alleviate the fea-
ture weight under-training issue, achieving signif-
icant improvements on our data and a standard
benchmark, WNUT17. The datasets we released
can serve as benchmarks for evaluating the entity
knowledge possessed by models in future work.

Future work involves investigating integration
with different model architectures, partial gazetteer
matching, and additional entity features.
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Appendix

A Dataset Details

LOWNER: This dataset is based on Wikipedia,
and uses the links as span annotations.

The complete English Wikipedia dump from
July 2020 was downloaded. We extracted the ar-
ticles, which were then parsed to remove markup
and extract sentences with their interlinks (links to
other articles). This resulted in the extraction of
approx. 180 million sentences. We then mapped
the interlinks in each sentence to the Wikidata KB
then resolved them to our NER taxonomy (in same
manner as Appendix B).

Next, we filtered sentences using two strategies.
Taking advantage of Wikipedia’s well-formed text,
we applied a Regex-based NER method to identify
sentences containing named entities that were not
linked, and removed them. This removes long and
high-context sentences that contain references to
many entities. Additionally we also removed any
sentence where the links could not be resolved to
Wikidata entities. This process discards over 90%
of the sentences, resulting in approx. 14 million
candidate sentences.

This process is very effective at yielding short,
low-context sentences. Example sentences are
shown in Table 10. The sentences contain some
context, but they are much shorter than the aver-
age Wikipedia sentence, and usually only contain
a single entity, making them more aligned with the
challenges listed in Table 1.

We randomly sampled 1.4 million sentences,
where entities were tagged using the taxonomy
described in Section 3. This forms the complete
LOWNER dataset. We created the training, devel-
opment, and test sets by having the training and
dev sets match the CoNLL03 data in size.6 The
remaining items were used to form a very large test
set that contains millions of entities not present in
the training set.

MSQ-NER: This dataset aims to reflect NER in
the QA domain, and is based on the MS-MARCO
QnA dataset (v2.1) (Bajaj et al., 2016) which con-
tains over a million questions.

We first templatize the questions by apply-
ing an existing NER system (e.g., spaCy) to
identify entities in the questions. We then use
our gazetteer to map the entities to their NER

6The split ratio between train and dev is about 4 : 1.

types to create slotted templates, e.g., “when
did [[iphone]] come out” becomes “when did

<PROD> come out”. The templates are then aggre-
gated by frequency. This process results in 3, 445
unique question templates.

While the NER system cannot correctly iden-
tify many entities, the most frequent templates are
reliable. Examples are listed in Table 11.

Finally, we generate MSQ-NER by slotting the
templates that have a frequency of >= 5 with
random entities from the Wikipedia KB with the
same class. Each template is slotted with the same
number of times it appeared in MS-MARCO in
order to maintain the same relative distribution
as the original data. This results in 17, 868 ques-
tions, e.g., “when did [[xbox 360]] come out”,
which we use as a test set.

ORCAS-NER: To represent the search query do-
main, we utilize 10 million Bing user queries from
the ORCAS dataset (Craswell et al., 2020) and ap-
ply the same templatization procedure described
above for MSQ-NER. This yields search tem-
plates e.g., “<PROD> price” and “<CORP> phone

number”, which are used to create annotated
queries, e.g., “[[airpods pro]] reviews”. This
process creates 97, 324 unique query templates.
We slot these templates according to their fre-
quency, yielding a final dataset of 471, 746 queries.
This is our largest, and most challenging, test set.
Examples of our templates are listed in Table 12.

B Gazetteer Details and Statistics

We parsed a Wikidata dump from July 2020 and
mapped entities to our NER taxonomy (§3). This
was done by traversing Wikidata’s class and in-
stance relations, and mapping them to our NER
classes, e.g., Wikidata’s human class maps to PER
in our taxonomy, song to CW, and so on.

We extracted 1.67 million entities that were
mapped to our classes. The distribution of these
entities is shown in Table 13.

C Training Details & Hyperparameters

The hyperparameters searching range and the op-
timal ones we use in Section 5.2, including the
results on our created datasets in Table 5 and bench-
mark results in Table 6, are shown in Table 14 (BiL-
STM model) and Table 15 (BERT model). The
parameter tuning is performed on the development
sets of the respective datasets.



1511

The design is considered a forerunner to the modern [[food processor]].

The regional capital is [[Oranjestad, Sint Eustatius]].

The most frequently claimed loss was an [[iPad]].

A [[Macintosh]] version was released in 1994.

An [[HP TouchPad]] was prominently displayed in an episode of the sixth season.

The incumbent island governor is [[Jonathan G. A. Johnson]].

A revised edition of the book was released in 2017 as an [[Amazon Kindle]] book.

Table 10: Sample sentences from LOWNER. Gold entities are in brackets.

average retail price of <PROD>

where was <CW> filmed

how many miles from <LOC> to <LOC>

how many kids does <PER> have

when did <GRP> start

when will <CORP> report earnings

Table 11: Sample questions from MSQ-NER. Slots are
in angle brackets.

<CW> imdb

best hotels <LOC>

<PER> parents

<PROD> price

<GRP> website

<CORP> customer service

Table 12: Sample search queries from ORCAS-NER.
Slots are in angle brackets.

During training we set the gradient norm to be
5.0 to ensure smooth training. We also apply early
stopping, halting the training process when we can-
not improve performance on the development set
during the last 15 epochs.

D CGR Embedding Visualization

As mentioned in §4, given a sentence, we use a
gazetteer matcher to extract its representation M.
M is passed to the CGR encoder (i.e., the green
paprt in Figure 1) to generate the gazetteer repre-
sentation, i.e., hCGR. We give all the sentences

Entity Type (Tag) #Entries Examples
PERSON (PER) 799,072 Frank Gray, Steven Jobs
LOCATION (LOC) 430,630 Seattle, Beijing
CORPORATION (CORP) 48,446 Amazon, Sony
GROUPS (GRP) 106,940 Uni. of Cambridge
PRODUCT (PROD) 31,139 TV, Smartphone
CREATIVE-WORK (CW) 256,912 La La Land

Table 13: The distribution of gazetteer entries mapped
to each NER class.

Figure 3: 2D visualization of the CGR (gazetteer tag)
representations.

in MSQ-NER as inputs to the CGR encoder and
obtain the averaged embedding vectors of all the
gazetteer tags, e.g., B-PER and B-CW. To visualize
these gazetteer tags, we apply t-SNE (Maaten and
Hinton, 2008) and generate their 2D visualization
shown in Figure 3. It is clear that the tags in the
same type, e.g., B-PROD and I-PROD, are close
to each other. This indicates that our CGR encode
can identify the semantic meaning of these tags and
provide effective gazetteer representation.

E Additional Results

Some additional detailed results are included in this
section.

Table 16 shows detailed precision, recall and
F1 scores for each entity class, comparing the no
gazetteer baseline model and the best model for
each dataset. We note that the worst performance is
on products and creative works, as we hypothesized
since the entities are much more linguistically com-
plex. These classes achieve the largest increases
with our models, which demonstrates that our meth-
ods successfully make up the models’ weakness in
the complex entities challenge.
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Parameter Search Range LOWNER optimal
BiLSTM input word dimension [50,200] 50

BiLSTM input charCNN dimension - 16
BiLSTM input #filters - 128

BiLSTM input filter size - 3
BiLSTM hidden [100, 512] 256

Feedforward #layers [1,3] 1
Feedforward dimensions [200,800] 512
Feedforward activation {linear,tanh,relu} linear

Matcher dimension [20,100] 100
Matcher biLSTM hidden [50, 512] 384
Matcher biLSTM dropout [0,0.5] 0.1

LearningRate [1e− 4, 1e− 3] 1e− 3
Optimizer {Adam,WAdam} Adam

Epochs - 50
Batch size [16, 32] 32

Table 14: Optimal hyperparameters for BiLSTM-MoE models

Parameter Search Range LOWNER optimal WNUT17 optimal
Feedforward #layers [1,3] 1 1

Feedforward dimensions - 768 768
Feedforward activation {linear,tanh,relu} linear linear

Matcher dimension [20,100] 50 50
Matcher biLSTM hidden - 384 384
Matcher biLSTM dropout [0,0.5] 0.1 0.1

1-Stage lr [1e− 5, 1e− 3] 3e− 4 1.5e− 3
1-Stage Optimizer {Adam,BERT_Adam} Adam BERT_Adam

2-Stage lr [1e− 5, 1e− 4] 3e− 5 3e− 5
2-Stage Optimizer - BERT_Adam BERT_Adam

Epochs - 50 50
Batch size [16, 32] 25 32

Table 15: Optimal hyperparameters for BERT-MoE models

Dataset Model
PER GRP LOC CORP CW PROD

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

LOWNER
Baseline 93.2 96.3 94.8 80.3 83.1 81.6 91.4 90.4 90.9 82.0 67.7 74.2 74.1 70.9 72.5 54.0 49.7 51.8

Ours 96.8 96.6 96.7 91.3 88.9 90.1 94.0 92.2 93.1 85.9 87.9 86.9 85.3 80.3 82.7 65.0 60.3 62.5

MSQ-NER
Baseline 68.1 85.0 75.6 28.7 23.2 25.7 61.0 39.6 48.0 50.0 18.3 26.8 23.6 15.1 18.4 46.2 8.9 15.0

Ours 97.6 97.3 97.4 82.8 83.2 83.0 92.5 79.5 85.5 85.5 83.6 84.5 87.0 69.3 77.2 92.1 69.4 79.2

ORCAS-NER
Baseline 33.9 64.4 44.4 20.9 13.6 16.5 39.5 23.2 29.2 21.3 12.2 15.5 13.9 10.9 12.2 54.0 8.3 14.4

Ours 78.2 91.9 84.5 69.7 78.2 73.7 81.6 70.6 75.7 66.7 78.2 72.0 72.8 74.3 73.6 91.3 65.7 76.4

Table 16: Per-class performance across entity types. We show the optimal model (Ours) for each dataset, which
is BERT+MoE+Two-stage for LOWNER, and BiLSTM+MoE for MSQ-NER and ORCAS-NER. The baselines are
BERT, BiLSTM and BiLSTM without gazetteer, respectively.


