
Proceedings of NAACL-HLT 2021: Demonstrations, pages 8–17
June 6–11, 2021. ©2021 Association for Computational Linguistics

8

Machine-Assisted Script Curation

Manuel R. Ciosici Joseph Cummings, Mitchell DeHaven, Alex Hedges, Yash Kankanampati,
Dong-Ho Lee, Ralph Weischedel, Marjorie Freedman

manuelc@isi.edu, weisched@isi.edu, mrf@isi.edu
Information Sciences Institute, University of Southern California

Abstract

We describe Machine-Aided Script Cura-
tor (MASC), a system for human-machine col-
laborative script authoring. Scripts produced
with MASC include (1) English descriptions
of sub-events that comprise a larger, complex
event; (2) event types for each of those events;
(3) a record of entities expected to participate in
multiple sub-events; and (4) temporal sequenc-
ing between the sub-events. MASC automates
portions of the script creation process with sug-
gestions for event types, links to Wikidata, and
sub-events that may have been forgotten. We
illustrate how these automations are useful to
the script writer with a few case-study scripts.

1 Introduction

Scripts have been of interest for encoding procedu-
ral knowledge and understanding stories for over
40 years (Schank and Abelson, 1977). In the form
of checklists, recording procedural knowledge has
revolutionized fields like medicine and aviation by
encoding expert knowledge and best practices (De-
gani and Wiener, 1993; Gawande, 2010). In the last
few years, researchers have turned their attention
to automatic script discovery from text (Chambers,
2013; Weber et al., 2020, 2018). However, ex-
clusively data-driven sub-event discovery methods
face the challenge that narrative descriptions often
omit common knowledge.1

We aim for a process for building a library of
scripts through human-machine collaboration lever-
aging NLP techniques to augment human back-
ground knowledge. The resulting demonstration
system serves two related purposes. First, it is a
knowledge acquisition tool that supports the de-
velopment of a repository of scripts for use by
downstream applications. Second, it is an anno-
tation tool that supports the creation of a library to

1Common knowledge might be missing from narrative
descriptions due to the quantity and relevance maxims (Grice,
1975).

aid our understanding of how people create scripts.
Such a library can inform and/or benchmark future
script discovery approaches. Each script includes
a natural language description of the steps in the
complex event with links to an ontology. Events
within a script are connected by (a) temporal order
(e.g., negotiating the price of a car happens before
buying the car) and (b) by shared argument (e.g.,
the person buying a car is also the person who ne-
gotiated its price). We designed Machine-Aided
Script Curator (MASC), our script-creation tool, to
be used by non-NLP experts.

While approaches to script discovery suffer from
the incompleteness of text, human attempts to
write machine-interpretable scripts suffer from the
writer’s own tendency to omit steps and, where
required, the challenge of mapping to a formal on-
tology. To assist the script creators, MASC makes
three types of suggestions: (1) the ontological type
for each event; (2) a fine-grained ontological type
for suggested arguments; and (3) steps that the cu-
rator might have forgotten.

In the following sections, we describe the pro-
cess of creating a script in MASC and the NLP
components that support suggestions.2 While a
large-scale script repository is beyond this paper’s
scope, we have created five sample scripts, which
we use as case studies for understanding the script
creation process and the suggestion capabilities. In
Section 4, we use these scripts to measure the utility
of MASC’s suggestion capabilities. In Section 5,
we describe the scripts’ characteristics.

2 Related Work

Schank and Abelson (1977) proposed organizing
knowledge about human behavior using scripts. Re-
cent approaches attempt to “induce” scripts from

2A video of MASC is available at https://youtu.
be/slvZWAYkRmA, and the source code and the sam-
ple scripts are at https://github.com/isi-vista/
MASC.

https://youtu.be/slvZWAYkRmA
https://youtu.be/slvZWAYkRmA
https://github.com/isi-vista/MASC
https://github.com/isi-vista/MASC
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Figure 1: Adding events to the buying a car script.

large amounts of data rather than write scripts man-
ually (Rudinger et al., 2015; Weber et al., 2018).
Although improving year over year, these models
still perform poorly (Recall@100 of ~7%, Weber
et al., 2020) at predicting next events, given a set
of preceding events - a necessary building block
of scripts. These models’ training data was ob-
tained by asking human annotators to decide if
event B happened because of event A. In contrast,
the scripts produced by our curation tool incorpo-
rate the complexities of many different events in
various causal orderings.

Both symbolic and neural approaches suffer
from the lack of generic knowledge to “fill-in-the-
blanks” or reject impossible events. Training sys-
tems to incorporate common-sense knowledge (Lin
et al., 2019; Shwartz et al., 2020) has not yet ad-
dressed script creation. Another source of informa-
tion for script discovery could be extraction from
multiple languages and modalities. While some
extraction systems have incorporated these other
sources (Li et al., 2020), such extractions have not
yet fed into script discovery. Resolving the co-
occurrence of events or entities between languages
and modalities often relies on a common mapping,
e.g., a structured ontology, such as ACE (Walker
et al., 2006) or ERE (Song et al., 2015). While
our Machine-Aided Script Curator (MASC) does
employ a structured ontology, it does not currently
incorporate multi-modal or non-English sources.
However, the limited ontology allows the event-
sequencing background knowledge we encode to
be used as a supplement to state-of-the-art infor-
mation extraction systems, like OneIE (Lin et al.,
2020) and DYGIE++ (Wadden et al., 2019), provid-
ing connections between otherwise disconnected
extractions.

3 Overview of Script Creation

The curator initiates script creation by providing a
name and description for the script and then enters,
as text, the events in the script (Figure 1). Step
entry is free-form, but we have noticed a tendency
for curators to enter short, imperative sentences
around a central agent’s actions (e.g., go to a car
dealership, take a test drive). Currently, script cre-
ation, unlike traditional annotation, is decoupled
from any particular document. In cases where the
curator is not familiar with a topic, we have used ex-
ternal resources to provide context (e.g., a Wikihow
page open in a different window). In this setting,
curation is akin to annotation that encourages the
annotator to use both the material they read and
prior knowledge.

The curators assign an ontology type to the main
event in each step (e.g., Movement for both go
to a car dealership and take a test drive). The
ontology is configurable and can be replaced. We
include a project-specific ontology with MASC’s
source code. When saved, scripts include both the
curators’ description and the selected ontology type
(described in Section 4.1). This choice allows type
decisions to be revisited if the ontology changes
and limits the degree to which the small number of
event types constrains the script’s expressiveness.
Downstream applications can choose whether to
use the linguistic representation of the events or the
normalized ontology types.

After the curators finish entering events, they
encode connections between the events (Figure 2).
There are two ways to connect events: the first,
traditionally the focus of scripts, is temporal or-
der; and the second is shared arguments (e.g., the
same person is the agent of both Movement events
go to a car dealership and take a test drive). To
add sequential order, the curators enter pairwise
before relations. Alternatively, they select multi-
ple events and anchor them as coming before or
after a single event. The latter method is conve-
nient when the complete order is under-defined.3

The curators add shared arguments to the script
by selecting multiple events with the same argu-
ment, naming the argument (e.g., buyer, seller in
Figure 2), and assigning an entity type (e.g., PER
in Figure 2) and ontological role to each argument

3For example, after arriving at the car dealership, the
potential buyer is likely to both walk around looking at cars
and talk to a salesperson, but there is no defined order between
the walking and talking.
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Figure 2: Adding details to events. For each event on the left, curators can add arguments. On the right side, curators
can establish temporal order and visualize the script as an interactive graph.

(e.g., Identifier, Researcher in Figure 2). While
this process is mostly manual, MASC uses the on-
tology’s constraints to limit the available label op-
tions. In addition to project-specific entity types,
MASC suggests links to the much larger set of
types available using Wikidata entities (e.g., sug-
gesting Q786803 for car dealership). These links
provide a connection to an extensive knowledge
graph and can provide additional information when
the scripts are applied.

Finally, the curators review events that are au-
tomatically generated based on the manually en-
tered description and initial script (described in
Section 4.3). The suggestions can add intermediate
steps that the curators may have missed, complete
a script that was intentionally unfinished by the
curator, or suggest alternative related paths (e.g.,
leasing instead of purchasing a car).

4 Suggestion Capabilities

To aid script creation, MASC incorporates three
suggestion capabilities: suggestions for the onto-
logical event type, suggestions for links to Wiki-
data, and suggestions for additional events to incor-
porate in the script. Below, we describe the models
behind these capabilities and, for each model, re-
port the accuracy using the five sample scripts cre-
ated for this paper. Given the small sample size, the
five sample scripts are best thought of as case stud-
ies, not a benchmark. Table 1 provides per-script

analysis.

4.1 Event Type Classification

Each sub-event is ontologized with one of 41 event
types through a semi-automated process. The on-
tology labels support connecting information to
extraction engines and thus allow a script to pro-
vide potential event-event relations given informa-
tion extraction output. Furthermore, the ontology
labels provide language- and media-independent
knowledge for identifying potential instances of
the scripts.

There has been much work on automatic de-
tection of event types (and triggers) in text (e.g.,
Bronstein et al. (2015); Lin et al. (2020); Peng
et al. (2016)). Here, our input data (and goals) are
slightly different. The ontology we use, while over-
lapping with ACE (Walker et al., 2006), introduces
several new event types for which we do not have
annotated training examples. Instead, the ontology
provides a short definition and template for each
event type. The curator’s input events tend to be
short imperative sentences with different linguistic
characteristics than the text annotated in, e.g., ACE.
Unlike standard information extraction, we need
not identify a specific trigger phase.4 Thus, we use
a different approach to event labeling.

4Triggers are often used as a means to identify arguments
of interest. But here, partly because of the telegraphic nature of
the text entries, the arguments are often missing and, therefore,
explicitly added.

https://www.wikidata.org/wiki/Q786803
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To map from the curators’ description of an
event to the ontology, we use a version of Sentence-
RoBERTa (Reimers and Gurevych, 2019)5 to es-
timate the similarity of the curators’ text input to
the prose description of each action in the ontology.
For example, for the user input go to a car deal-
ership, the action description Explicit mention of
granting or allowing entry or exit from a location
receives the highest similarity score, and the cor-
responding action type Movement.Transportation
becomes one of the recommendations. MASC sug-
gests the three ontology actions most similar to
the user’s description. The user can accept one of
the suggestions or pick a different type from the
ontology (Figure 1, second column).

As mentioned earlier, the event type similarity
depends on the ontology event type definitions and
the event type templates. In preliminary experi-
ments, we found using both together outperformed
using either only the definitions or only the tem-
plates. While MASC’s event type classification
does not require training data, it depends on both
the presence of templates and definitions in the
ontology and their quality.

Performance on Case-Study Scripts The five
scripts contain 58 events. We measure how often
the model correctly predicts the event type that the
curator selects. Accuracy of the top-1, -3, and -5
are 24, 48, and 55, respectively.6 MASC presents
the top-three suggestions to the curator; thus, accu-
racy at top-3 most closely relates to the curator’s
experience.

4.2 KGTK
In Section 2, we describe identifying the key re-
peating arguments of script events and labeling
those arguments with their entity type and their
role in each event using an ontology. That on-
tology provides only coarse distinctions between
entities (e.g., a single category for facilities that
does not distinguish a car dealership from a school
or a bank). To support finer-grained distinctions
and, in the future, leverage external knowledge
sources, we incorporate connections to Wikidata7

using KGTK (Ilievski et al., 2020). MASC’s links
aim to ground descriptive noun phrases (e.g., car

5Our Sentence-RoBERTa model is trained on more data.
We use the two data sets in the original paper, SNLI (Bowman
et al., 2015) and MNLI (Williams et al., 2018), and add the
newer ANLI (Nie et al., 2020).

6The mean reciprocal rank (MRR, Radev et al., 2002)
was 0.35 on the top three model predictions.

7https://www.wikidata.org

Figure 3: Reviewing the Wikidata link suggestions.

dealership) in the large Wikidata ontology and do
not require grounding specific, named entities (e.g.,
Toyota).

KGTK is an open-source toolkit that simplifies
searching and interacting with various knowledge
graphs, including Wikidata. KGTK provides a sim-
ple API for searching Wikidata entries, via Elastic-
search,8 based on their titles and aliases (e.g., the
Wikidata entry motor car also has the aliases auto,
automobile, and car). KGTK also provides filtering
functionality for candidate Wikidata entries. Since
we are not interested in grounding specific named
entities, we only return Wikidata entries represent-
ing Wikidata classes. Within MASC, KGTK allows
users to link terms used in events to Wikidata. Dur-
ing argument creation, the curator provides a text
label for each key argument. A background process
then queries KGTK using the text label assigned
to each argument. Candidates from KGTK are
reranked using the Sentence-RoBERTa model to
generate similarity scores between the label strings
and the candidate Wikidata text descriptions. Be-
fore finishing a script, for each term in the script,
the curator can select one of the candidates from
KGTK or None of the above (Figure 3).

Performance on Case-Study Scripts. To eval-
uate entity linking, we treat the scripts created by
the curators (and the mapping from the reference
variables to Wikidata) as the labels. This is neces-
sary since we do not have a ground-truth mapping
from strings to Wikidata entities, and curators can
use the same string to reference different entities.
For example, car can refer to an automobile, a rail-
way carriage, or a streetcar. The metric we use
measures the ratio of reference variables linked to
a specific Wikidata entity to the total number of

8https://www.elastic.co/
elasticsearch/

https://www.wikidata.org
https://www.elastic.co/elasticsearch/
https://www.elastic.co/elasticsearch/
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Figure 4: GPT-2 recommendations for buying a car.

reference variables used. We find that curators link
67% of the unique reference variables to Wikidata
(e.g., buyer in Figure 3). We have not measured
the ceiling on using Wikidata as an argument ontol-
ogy. However, we suspect that refining the linking
approach could yield more connections to Wiki-
data. Even at this low level of recall, at least a few
concept-specific elements match for most scripts.
In the future, these connection points could sup-
port script augmentation using common-sense and
domain knowledge from Wikidata.

4.3 Event Recommendations

Since even the most experienced curators may over-
look an action in an event script, we explored hy-
pothesizing omitted events using GPT-2 (Radford
et al., 2019) without any fine-tuning.

The first challenge is formulating input to GPT-2.
We provide the title/name of the schema (e.g., buy-
ing a car), a description of the complex event (e.g.,
Purchasing a car is a large investment that requires
careful documentation and consideration of trans-
portation requirements.), and a request (e.g., De-
scribe steps of buying a car.), followed by the first
few events of the script. In the initial version, we
used a form of the events as First, Identify your
needs. Then, Decide on your budget. Next, Identify
car models you can afford. However, a numeri-
cal formulation proved much more effective (e.g.,
1. Identify your needs 2. Decide on your budget
3. Identify car models you can afford 4.) and re-
sulted in more coherent events.

To filter undesirable or redundant output, we
pass GPT-2 outputs through a sequence of filters.
We remove undesired strings characteristic of neu-
ral text generation, like empty strings (Stahlberg
and Byrne, 2019), and outputs that are invalid in the
context of schema creation: strings of less than two
words and those with sequences of non-alphabetic

characters. We address duplicated output, a con-
siderable concern for GPT-2, especially given the
short and similar inputs.9 The filters eliminate
strings with duplicates in the alternatives or the
human-curated schema. To account for semantic
duplicates, such as go to dealership and go to the
car dealership, we use a variant of Gestalt Pattern
Matching (Ratcliff and Metzener, 1988) through
Python’s difflib. For usability, we suggest at most
12 sub-events per script. Figure 4 shows the inter-
face for reviewing event recommendations.

Performance on Case Studies. We measure the
performance of GPT-2 recommendations in two
ways. First, we generate recommendations for five
scripts created by curators and ask the curators
to accept relevant GPT-2 recommendations. We
instruct curators to accept recommendations even
if the recommended events represent alternative
paths (or are semantically redundant). With these
instructions, the curators accept 98% of GPT-2’s
recommendations. The high acceptance rate in-
dicates that even with our simple setup for event
recommendation using a language model, the sys-
tem suggests domain-relevant events.

For the second evaluation, we instruct the cura-
tors to accept only those GPT-2 recommendations
that add to their existing script. In other words, they
only accept events that add details to the scripts or
supply some missing information. We instruct cu-
rators to reject recommendations for alternative
script scenarios. With these instructions, curators
accept 23% of GPT-2’s recommendations. This
result illustrates the feasibility of supplementing
human knowledge with generations from language
models. Since MASC uses GPT-2 after the human
felt the script was complete, the machine identifies
events previously overlooked by the human.

Mixed-Initiative script curation. Given the
success of GPT-2 recommendations after script cu-
ration, a natural next step is for curators to work
with GPT-2 interactively. In the mixed-initiative
mode, a curator specifies a script’s name, defini-
tion, and first step. GPT-2 then suggests multiple
options for the next step. The curator can use one
of the suggestions, edit it, or ignore all the sugges-
tions and manually input the next step. Every time
the curator adds a step to the script, GPT-2 follows
with suggestions for the next step. We found that

9GPT-2 often generates strings with a similar meaning,
but lexically different, e.g., for a script on buying a car, it
might generate buy, buy the car, and purchase the car. It is
superfluous to show users all three suggestions.
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Figure 5: Mixed-Initiative: GPT-2’s suggestions for the
script buying a car, given the first step Identify your
needs.

automated step generation took less than 3 seconds
in the slowest case on modern hardware (NVIDIA
GeForce RTX2080Ti).

To evaluate the effectiveness of mixed-initiative
mode, we asked four curators to create a total of
twelve scripts using the mode. We instructed the
curators to accept event suggestions only when
they are a natural continuation of the script. Out of
GPT-2’s 105 suggestion sets, the curators accepted
an event from 50 sets (48% acceptance rate). In six
more cases, the curators used a GPT-2 suggestion
as a starting point and edited the suggestions to
suit the script better. We found the mixed-initiative
scripts to be just as comprehensive as the scripts
detailed in Table 1, where GPT-2 suggested miss-
ing events only after the curators created an initial
script.

5 Discussion and Future Work

With this demonstration system, we provide an ap-
proach to human-machine collaboration for build-
ing a repository of scripts. Having such a repos-
itory, for a diverse set of events, will allow us to
investigate how procedural knowledge introduced
to the AI community 40 years ago (Schank and
Abelson, 1977) can be broadly applied. By facili-
tating the human creation of scripts, we can better
understand what is required to develop automatic
script discovery approaches.

While we have not yet created a large reposi-
tory of scripts, we have created five scripts with
which we start this analysis. The scripts cover top-
ics with varying degree of “common knowledge”:
Planning and Managing an Evacuation (EVAC),
Ordering Food at a Restaurant (FOOD), Finding
and Starting a New Job (JOB), Obtaining Medical
Treatment (MED), and Corporate Merger or Acqui-
sition (MERGER). A single curator created these
scripts, which we use to illustrate future directions
for MASC and interesting properties of the scripts
themselves. Having multiple curators for even a
small number of scripts would provide insights into

the diversity, prior knowledge, and level of detail
a script author uses. In our analysis, we have seen
that the scripts created with MASC encode knowl-
edge that is uncommon in news-like data sets. For
example, our curator included sign confidentiality
agreement as an event in the script for a MERGER.
While news frequently reports the final step of a
merger, the full process is rarely described.

Table 1 summarizes the key characteristics of
each of these scripts. They vary in (a) the number
of steps initially created (row 1), with only 5 steps
for MED and 16 for both EVAC and JOB; and
(b) the time required for initial script creation (row
6). The script that took the longest was not the
one with the most steps (or the most arguments).
Instead, it was the domain that the curator knew
the least about (and thus chose to research). For all
five scripts, there were cases where the event type
suggestions were correct, but for three of the five,
MASC suggested the correct type less than half the
time, suggesting that better automatic event typing
could increase the curators’ speed.

All scripts contain entities that play a role in mul-
tiple events (row 3, first and second numbers). For
example, in EVAC, the evacuation manager plays
some role in all events, while the evacuee plays a
role in most but not all. While some arguments
cannot be linked to Wikidata, all five scripts con-
tain at least one argument that can be linked (row
3, last number). Future work could both improve
linking accuracy and use Wikidata as a source of
knowledge to provide additional context (and sug-
gestions) to the curator.

While the prototypical script is a timeline with
complete order between all pairs of events, we see
sub-graphs with unordered steps in our data. Three
of the five sample scripts display this behavior; for
example, in JOB, searching for open positions and
notifying network that they are looking for a job
are unordered. The visualization of the schema
in Figure 2 illustrates this pattern with no order
between E2 and E3.

MASC incorporates machine suggestions of un-
recorded events. In four of the five scripts, the
curator accepted at least one suggestion. Interest-
ingly, the curator incorporated more suggestions
for two events that one thinks of as everyday ex-
periences (FOOD and MED) than they did for the
script they were unfamiliar with (MERGER). This
suggests that the recommendation functionality can
be useful even in a familiar domain; by capturing
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EVAC FOOD JOB MED MERGER
1 # Events in initial script 16 9 16 5 12
2 Accuracy at top-1, 3, 5 for event types 25/44/50 11/33/67 13/44/44 20/60/60 50/67/67

3
# Entity instances, occurrences of those
entities, and unique links to Wikidata

2/26/1 5/18/3 2/24/2 3/11/3 3/24/2

4
# Event suggestions selected for single
script and all relevant (max. 12 per script)

4/8 3/12 0/11 5/12 2/12

5 Non-linear path Y Y Y N N
6 Self-reported time 1.5 hrs 0.5 hr 1 hr 0.5 hr 2.5 hrs

Table 1: Characteristics of five sample scripts.

what the curator omits through forgetfulness or be-
cause they assume common knowledge. Further
exploration of how a machine can aid a person
whose knowledge may be incomplete or may for-
get to be explicit seems promising. Examples of
possible research directions include incorporating
suggestions from approaches that discover scripts
(e.g., Rudinger et al. (2015); Weber et al. (2018,
2020)) and leveraging background knowledge (e.g.,
Wikidata).

6 Ethical Considerations

Many technological innovations require ethical con-
siderations, even more so for those involving ma-
chine learning while also being a demonstration
paper that provides working technology. Below we
address the review questions raised in the NAACL
Ethics Review Questions.10

Bias. The bias in generative language models
has been well documented. In general, using a
human-in-the-loop process means that rather than
treating an automatically generated label or event
as correct, we treat it as a suggestion that the curator
can ignore. Still, the suggestions can influence the
curator. Thus it is vital that the metrics reported in
this paper be interpreted with an understanding of
the potential for bias and any use of MASC account
for bias.

MASC incorporates both a predefined ontology
and the ability to link to an extensive external re-
source (Wikidata). Given the size of the predefined
ontology is small, to apply MASC to a new domain,
users would likely need to update the ontology.
MASC’s approach to aligning English descriptions
to the ontology makes adding new event classes
easy. Wikidata, while much larger and growing, is
also subject to the bias of Wikidata’s editors, their
knowledge, and their choices about what to include.

10https://2021.naacl.org/ethics/
review-questions/

Wikidata over-represents some issues, while some
socially important ones are under-represented or
missing. Wikidata linking is optional; thus in a
domain that is not well covered, a curator can skip
the linking step or replace Wikidata with a domain-
relevant resource.

The suggestion capabilities described in Sec-
tion 4 use pretrained language models (GPT-2 and
RoBERTa). The bias of these algorithms, measur-
ing that bias, and mitigating it is an active area
of work. Recent work has provided data sets for
measuring bias (Nadeem et al., 2020) and meta-
studies of the approaches taken to study and ad-
dress bias (Blodgett et al., 2020). Much work
has focused on bias as it impacts demographic
groups. MASC focuses on events, not individu-
als. The publicly available GPT-2 models have
learned from data that might not cover current
events (e.g., GPT-2 was trained before the COVID-
19 epidemic), represents only English dialects from
the inner-circle (Dunn and Adams, 2020), and con-
tains toxic language (Gehman et al., 2020). In our
immediate context, we mitigate against the chal-
lenge presented by language model bias by requir-
ing manual review of all automatically suggested
output. If the ideas in this paper were extended to
a fully automatic approach, language model and
domain-specific studies of the impact of bias on
LM-based suggestions would be necessary.

Data Set. To understand how the tool is used and
future research directions, we created five sample
scripts which we included in the supplementary ma-
terial. These scripts provide interesting examples
of what we could learn from a larger scale data set;
however, they are not large enough themselves to
serve as a new benchmark. The five scripts were
created by full-time research staff compensated fol-
lowing US state and federal law. The scripts were
created by a single individual and represent that
individual’s pre-existing knowledge (and their im-

https://2021.naacl.org/ethics/review-questions/
https://2021.naacl.org/ethics/review-questions/
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plicit biases). To counter bias in a large-scale script
repository, we recommend that the curator work-
force is diverse and that any given activity is repre-
sented in scripts written by multiple people. Any
released repository should have sufficient reporting
about the data set creators to provide users with
an understanding of data bias. The paper reports
empirical results based on this five script sample.
However, the paper acknowledges that the sample
is small and treats these results as case studies for
MASC, not a new benchmark.

Intended Use. The most immediate use of
MASC is to create a repository of script informa-
tion – either broadly available to researchers or
within a specific research community. In some
cases, e.g., the steps to plan a rescue operation,
both the generation of the script and its application
are generally understood as positive. In other cases,
e.g., the steps in grooming an individual for human
trafficking, the script’s conclusion is negative, but
understanding the process is necessary to prevent
the activity. As AI’s ability to discover and apply
such knowledge increases, it will be necessary to
regularly audit the use cases to ensure the focus
remains a benefit to society. If the human-in-the-
loop approaches used here were integrated into a
fully automated system, further auditing of bias
(and accuracy) would be necessary.

Compute Time and Power. Most of the mod-
els used for this demonstration are pretrained and
publicly available. The pretraining and fine tuning
described in Section 4.1 took less than 20 hours
using a single GPU.
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