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Abstract

In a world filled with serious challenges like
climate change, religious and political con-
flicts, global pandemics, terrorism, and racial
discrimination, an internet full of hate speech,
abusive and offensive content is the last thing
we desire for. In this paper, we work to iden-
tify and promote positive and supportive con-
tent on these platforms. We work with sev-
eral transformer-based models to classify so-
cial media comments as hope speech or not-
hope speech in English, Malayalam and Tamil
languages. This paper portrays our work for
the Shared Task on Hope Speech Detection for
Equality, Diversity, and Inclusion at LT-EDI
2021- EACL 2021. The codes for our best sub-
mission can be viewed1.

1 Introduction

Social Media has inherently changed the way peo-
ple interact and carry on with their everyday lives
as people using the internet (Jose et al., 2020;
Priyadharshini et al., 2020). Due to the vast
amount of data being available on social media
applications such as YouTube, Facebook, an Twit-
ter it has resulted in people stating their opinions
in the form of comments that could imply hate or
negative sentiment towards an individual or a com-
munity (Chakravarthi et al., 2020c; Mandl et al.,
2020). This results in people feeling hostile about
certain posts and thus feeling very hurt (Bhardwaj
et al., 2020).

Being a free platform, social media runs on
user-generated content. With people from multi-
farious backgrounds present, it creates a rich so-
cial structure (Kapoor et al., 2018) and has become
an exceptional source of information. It has laid
it’s roots so deeply into the lives of people that
they count on it for their every need. Regardless,

1https://github.com/karthikpuranik11/
Hope-Speech-Detection-

this tends to mislead people in search of credible
information. Certain individuals or ethnic groups
also fall prey to people utilizing these platforms
to foster destructive or harmful behaviour which
is a common scenario in cyberbullying (Abaido,
2020).

The earliest inscription in India dated from
580 BCE was the Tamil inscription in pottery
and then, the Asoka inscription in Prakrit, Greek
and Aramaic dating from 260 BCE. Thunchaththu
Ramanujan Ezhuthachan split Malayalam from
Tamil after the 15th century CE by using Pallava
Grantha script to write religious texts. Pallava
Grantha was used in South India to write San-
skrit and foreign words in Tamil literature. Mod-
ern Tamil and Malayalam have their own script.
However, people use the Latin script to write
on social media (Chakravarthi et al., 2018, 2019;
Chakravarthi, 2020b).

The automatic detection of hateful, offensive,
and unwanted language related to events and sub-
jects on gender, religion, race or ethnicity in so-
cial media posts is very much necessary (Rizwan
et al., 2020; Ghanghor et al., 2021a,b). Such harm-
ful content could spread, stimulate, and vindicate
hatred, outrage, and prejudice against the targeted
users. Removing such comments was never an
option as it suppresses the freedom of speech of
the user and it is highly unlikely to stop the per-
son from posting more. In fact, he/she/they would
be prompted to post more of such comments2

(Yasaswini et al., 2021; Hegde et al., 2021). This
brings us to our goal to spread positivism and hope
and identify such posts to strengthen an open-
minded, tolerant, and unprejudiced society.

2https://www.qs.com/negative-comments-on-social-
media/

https://github.com/karthikpuranik11/Hope-Speech-Detection-
https://github.com/karthikpuranik11/Hope-Speech-Detection-
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Text Language Label
God gave us a choice my choice is to love, I would die for that kid English Hope
The Democrats are.Backed powerful rich people like Soros English Not hope
ESTE PSICÃ“PATA MASÃ“N LUCIFERIANO ES HOMBRE TRANS English Not English
Neega podara vedio nalla iruku ana subtitle vainthuchu ahh yella language papaga Tamil Hope
Avan matum enkita maatunan... Avana kolla paniduven Tamil Not hope
I can’t uninstall mY Pubg Tamil Not Tamil
ooororutharum avarude ishtam pole jeevikatte . k. Malayalam Hope
Etraem aduthu nilkallae Arunae Malayalam Not hope
Phoenix contact me give you’re mail I’d I hope I can support you sure! Malayalam Not Malayalam

Table 1: Examples of hope speech or not hope speech

2 Related Works

The need for the segregation of toxic comments
from social media platforms has been identified
back in the day. Founta et al. (2018) has tried
to study the textual properties and behaviour of
abusive postings on Twitter using a Unified Deep
Learning Architecture. Hate speech can be classi-
fied into various categories like hatred against an
individual or group belonging to a race, religion,
skin colour, ethnicity, gender, disability, or nation3

and there have been studies to observe it’s evolu-
tion in social media over the past thirty years (Ton-
todimamma et al., 2021). Deep Learning methods
were used to classify hate speech into racist, sexist
or neither in Badjatiya et al. (2017).

Hope is support, reassurance or any kind
of positive reinforcement at the time of crisis
(Chakravarthi, 2020a). Palakodety et al. (2020)
identifies the need for the automatic detection of
content that can eliminate hostility and bring about
a sense of hope during times of wrangling and
brink of a war between nations. There have also
been works to identify hate speech in multilingual
(Aluru et al., 2020) and code-mixed data in Tamil,
Malayalam, and Kannada language (Chakravarthi
et al., 2020b,a; Hande et al., 2020). However, there
have been very fewer works in Hope speech detec-
tion for Indian languages.

3 Dataset

The dataset is provided by (Chakravarthi, 2020a)
(Chakravarthi and Muralidaran, 2021) and con-
tains 59,354 comments from the famous online
video sharing platform YouTube out of which
28,451 are in English, 20,198 in Tamil, and 10,705
comments are in Malayalam (Table 2) which can

3http://www.ala.org/advocacy/
intfreedom/hate (Accessed January 16, 2021)

be classified as Hope speech, not hope speech and
other languages. This dataset is split into train
(80%), development (10%) and test (10%) dataset
(Table 3).

Subjects like hope speech might raise confu-
sions and disagreements between annotators be-
longing to different groups. The dataset was an-
notated by a minimum of three annotators and the
inter-annotator agreement was determined using
Krippendorff’s alpha (krippendorff, 2011). Re-
fer table 1 for examples of hope speech, not hope
speech and other languages for English, Tamil and
Malayalam datasets respectively.

Class English Tamil Malayalam
Hope 2,484 7,899 2,052
Not Hope 25,940 9,816 7,765
Other lang 27 2,483 888
Total 28,451 20,198 10,705

Table 2: Classwise Data Distribution

Split English Tamil Malayalam
Training 22,762 16,160 8564
Development 2,843 2,018 1070
Test 2,846 2,020 1071
Total 28,451 20,198 10,705

Table 3: Train-Development-Test Data Distribution

4 Experiment Setup

In this section, we give a detailed explanation of
the experimental conditions upon which the mod-
els are developed.

http://www.ala.org/advocacy/intfreedom/hate
http://www.ala.org/advocacy/intfreedom/hate
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Figure 1: Context-independent representations in BERT and CharacterBERT (Source: El Boukkouri et al. (2020))

4.1 Architecture

4.1.1 Dense

The dense layers used in CNN (convolutional neu-
ral networks) connects all layers in the next layer
with each other in a feed-forward fashion (Huang
et al., 2018). Though they have the same for-
mulae as the linear layers i.e. wx+b, the out-
put is passed through an activation function which
is a non-linear function. We implemented our
models with 2 dense layers, rectified linear units
(ReLU) (Agarap, 2019) as the activation function
and dropout of 0.4.

4.1.2 Bidirectional LSTM

Bidirectional LSTM or biLSTM is a sequence pro-
cessing model (Schuster and Paliwal, 1997). It
uses both the future and past input features at a
time as it contains two LSTM’s, one taking input
in the forward direction and another in the back-
ward direction (Schuster and Paliwal, 1997). The
backward and forward pass through the unfolded
network just like any regular network. However,
BiLSTM requires us to unfold the hidden states
for every time step. It produces a drastic increase
in the size of information being fed thus, improv-
ing the context available (Huang et al., 2015). Re-
fer Table 4 for the parameters used in the BiLSTM
model.

Parameter Value
Number of LSTM units 256
Dropout 0.4
Activation Function ReLU
Max Len 128
Batch Size 32
Optimizer AdamW
Learning Rate 2e-5
Loss Function cross-entropy
Number of epochs 5

Table 4: Parameters for the BiLSTM model

4.2 Embeddings

4.2.1 BERT

Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019). The
multilingual base model is pretrained on the
top 104 languages of the world on Wikipedia
(2.5B words) with 110 thousand shared wordpiece
vocabulary. The input is encoded into vectors with
BERT’s innovation of bidirectionally training the
language model which catches a deeper context
and flow of the language. Furthermore, novel
tasks like Next Sentence Prediction (NSP) and
Masked Language Modelling (MLM) are used to
train the model.

The pretrained BERT Multilingual model bert-
base-multilingual-uncased (Pires et al., 2019)
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from Huggingface4 (Wolf et al., 2020) is executed
in PyTorch (Paszke et al., 2019). It consists of 12-
layers, 768 hidden, 12 attention heads and 110M
parameters which are fine-tuned by concatenating
with bidirectional LSTM layers. The BiLSTM
layers take the embeddings from the transformer
encoder as the input which increases the informa-
tion being fed, which in turn betters the context
and accuracy. Adam algorithm with weight decay
fix is used as an optimizer. We train our models
with the default learning rate of 2e − 5. We use
the cross-entropy loss as it is a multilabel classifi-
cation task.

4.2.2 ALBERT

It has a similar architecture as that of BERT but
due to memory limitations and longer training
periods, ALBERT or A Lite BERT introduces
two parameter reduction techniques (Chiang et al.,
2020). ALBERT distinguishes itself from BERT
with features like factorization of the embedding
matrix, cross-layer parameter sharing and inter-
sentence coherence prediction. We implemented
albert-base-v2 pretrained model with 12 repeating
layers, 768 hidden, 12 attention heads, and 12M
parameters for the English dataset.

4.2.3 DistilBERT

DistilBERT is a distilled version of BERT to
make it smaller, cheaper, faster, and lighter (Sanh
et al., 2019). With up to 40% less number of
parameters than bert-base-uncased, it promises
to run 60% faster while preserving 97% of
it’s performance. We employ distilbert-base-
uncased for the English dataset and distilbert-
base-multilingual-cased for the Tamil and Malay-
alam datasets. Both models have 6-layers, 768-
hidden, 12-heads and while the former has 66M
parameters, the latter has 134M parameters.

4.2.4 RoBERTa

A Robustly optimized BERT Pretraining Ap-
proach (RoBERTa) is a modification of BERT (Liu
et al., 2020). RoBERTa is trained for longer, with
larger batches on 1000% more data than BERT.
The Next Sentence Prediction (NSP) task em-
ployed in BERT’s pre-training is removed and dy-
namic masking during training is introduced. It’s
additionally trained on a 76 GB large new dataset

4https://huggingface.co/transformers/
pretrained_models.html

(CC-NEWS). roberta-base follows the BERT ar-
chitecture but has 125M parameters and is used
for the English dataset.

4.2.5 CharacterBERT
CharacterBERT (CharBERT) (El Boukkouri et al.,
2020) is a variant of BERT (Devlin et al., 2019)
which uses CharacterCNN (Zhang et al., 2015)
like ELMo (Peters et al., 2018), instead of relying
on WordPieces (Wu et al., 2016). CharacterBERT
is highly desired as it produces a single embedding
for any input token which is more suitable than
having an inconstant number of WordPiece vec-
tors for each token. It furthermore replaces BERT
from domain-specific wordpiece vocabulary and
enables it to be more robust to noisy inputs.

We use the pretrained model general-
character-bert5 which was pretrained on the
same corpus of that of BERT, but with a different
tokenization approach. A CharacterCNN module
is used that produces word-level contextual repre-
sentations and it can be re-adapted to any domain
without needing to worry about the suitability
of any wordpieces (Figure 1). This approach
helps for superior robustness by approaching the
character of the inputs.

4.2.6 ULMFiT
Universal Language Model Fine-tuning, or ULM-
FiT, was a transfer learning method introduced to
perform various NLP tasks (Howard and Ruder,
2018). Training of ULMFiT involves pretraining
the general language model on a Wikipedia-based
corpus, fine-tuning the language model on a tar-
get text, and finally, fine-tuning the classifier on
the target task. Discriminative fine-tuning is ap-
plied to fine-tune the model as different layers cap-
ture the different extent of information. It is then
trained using the learning rate scheduling strategy,
Slanted triangular learning rates (STLR), where
the learning rate increases initially and then drops.
Gradual unfreezing is used to fine-tune the target
classifier rather than training all layers at once,
which might lead to catastrophic forgetting.

Pretrained model, AWD-LSTM (Merity et al.,
2017) with 3 layers and 1150 hidden activation per
layer and an embedding size of 400 is used as the
language model for the English dataset. Adam op-
timizer with β1 = 0.9 and β2 = 0.99 is imple-
mented. Later, the start and end learning rates are

5https://github.com/helboukkouri/
character-bert

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/pretrained_models.html
https://github.com/helboukkouri/character-bert
https://github.com/helboukkouri/character-bert
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Architecture Embeddings F1-Score validation F1-Score test
BiLSTM bert-base-uncased 0.9112 0.9241

Dense

bert-base-uncased 0.9164 0.9240
albert-base 0.9143 0.9210

distilbert-base-uncased 0.9238 0.9283
roberta-base 0.9141 0.9235

character-bert 0.9264 0.9220
ULMFiT 0.9252 0.9356

Table 5: Weighted F1-scores of hope speech detection classifier models on English dataset

Architecture Embeddings F1-Score validation F1-Score test

BiLSTM

mbert-uncased 0.8436 0.8545
mbert-cased 0.8280 0.8482

xlm-roberta-base 0.8271 0.8233
MuRIL 0.8089 0.8212

Dense

mbert-uncased 0.8373 0.8433
indic-bert 0.7719 0.8264

xlm-roberta-base 0.7757 0.7001
distilmbert-cased 0.8312 0.8395

MuRIL 0.8023 0.8187

Table 6: Weighted F1-scores of hope speech detection classifier model on Malayalam dataset

Architecture Embeddings F1-Score Validation F1-Score test

BiLSTM

mbert-uncased 0.6124 0.5601
mbert-cased 0.6183 0.5297

xlm-roberta-base 0.5472 0.5738
MuRIL 0.5802 0.5463

Dense

mbert-uncased 0.5916 0.4473
mbert-cased 0.5946 0.4527

indic-bert 0.5609 0.5785
xlm-roberta-base 0.5481 0.3936
distilmbert-cased 0.6034 0.5926

MuRIL 0.5504 0.5291

Table 7: Weighted F1-scores of hope speech detection classifier models on Tamil dataset

set to 1e-8 and 1e-2 respectively and fine-tuned by
gradually unfreezing the layers to produce better
results. Dropouts with a multiplier of 0.5 were ap-
plied.

4.2.7 XLM-RoBERTa
XLM-RoBERTa (Ruder et al., 2019) is a pre-
trained multilingual language model to execute
diverse NLP transfer tasks. It’s trained on over
2TB of filtered CommonCrawl data in 100 differ-
ent languages. It was an update to the XLM-100
model (Lample and Conneau, 2019) but with in-
creased training data. As it shares the same train-

ing routine with the RoBERTa model, ”RoBERTa”
was included in the name. xlm-roberta-base with
12 layers, 768 hidden, 12 heads, and 270M pa-
rameters were used. It is fine-tuned for classifying
code-mixed Tamil and Malayalam datasets.

4.2.8 MuRIL

MuRiL6 was introduced by Google Research In-
dia to enhance Indian NLU (Natural Language
Understanding). The model has a BERT based
architecture trained on 17 Indian languages with

6https://tfhub.dev/google/MuRIL/1

https://tfhub.dev/google/MuRIL/1
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Language Hope-Speech Not-hope speech Other Language Macro Avg Weighted Avg
Precision

English 0.9464 0.6346 0.0000 0.5270 0.9193
Malayalam 0.6540 0.9032 0.8941 0.8171 0.572
Tamil 0.4824 0.5819 0.5709 0.5451 0.5403

Recall
English 0.9781 0.4108 0.0000 0.4630 0.9293
Malayalam 0.7113 0.9021 0.7525 0.7886 0.8534
Tamil 0.2687 0.7812 0.6525 0.5675 0.5579

F1-Score
English 0.9620 0.4987 0.0000 0.4869 0.9220
Malayalam 0.6815 0.9026 0.8172 0.8004 0.8545
Tamil 0.3452 0.6670 0.6090 0.5404 0.5207

Table 8: Classification report for our system models based on the results of test set

Wikipedia, Common Crawl7, PMINDIA8 and
Dakshina9 datasets. MuRIL is trained on trans-
lation and transliteration segment pairs which give
an advantage as the transliterated text is very com-
mon in social media. It is used for the Malayalam
and Tamil datasets.

4.2.9 IndicBERT
IndicBERT (Kakwani et al., 2020) is an ALBERT
model pretrained on 12 major Indian languages
with a corpus of over 9 billion tokens. It per-
forms as well as other multilingual models with
considerably fewer parameters for various NLP
tasks. It’s trained by choosing a single model
for all languages to learn the relationship be-
tween languages and understand code-mixed data.
ai4bharat/indic-bert model was employed for the
Tamil and Malayalam task.

5 Results

In this section, we have compared the F1-scores
of our transformer-based models to successfully
classify social media comments/posts into hope
speech or not hope speech and detect the usage
of other languages if any. We have tabulated the
weighted average F1-scores of our various models
for validation and test dataset for English, Malay-
alam and Tamil languages in tables 5, 6 and 7 re-
spectively.

Table 5 demonstrates that the character-aware
model CharacterBERT performed exceptionally

7http://commoncrawl.org/the-data/
8http://lotus.kuee.kyoto-u.ac.jp/WAT/

indic-multilingual/index.html
9https://github.com/

google-research-datasets/dakshina

well for the validation dataset. It beat ULMFiT
(Howard and Ruder, 2018) by a mere difference of
0.0012, but other BERT-based models like BERT
(Devlin et al., 2019) with dense and BiLSTM ar-
chitecture, ALBERT (Chiang et al., 2020), Distil-
BERT (Sanh et al., 2019) and RoBERTa (Liu et al.,
2020) by about a percent. This promising result
shown by character-bert for the validation dataset
made it our best model. Unfortunately, few mod-
els managed to perform better than it for the test
dataset. The considerable class imbalance of about
2,484 hope to 25,940 not hope comments and the
interference of comments in other languages have
significantly affected the results.

Similar transformer-based model trained on
multilingual data was used to classify Malay-
alam and Tamil datasets. Models like multilin-
gual BERT, XLM-RoBERTa (Ruder et al., 2019),
MuRIL, IndicBERT 10 and DistilBERT multilin-
gual with both BiLSTM and Dense architectures.
mBERT (Multilingual BERT) uncased with BiL-
STM concatenated to it outperformed the other
models for the Malayalam validation dataset and
continued its dominance for the test data as well.

The data distribution for the Tamil dataset
seemed a bit balanced with an approximate ratio
of 4:5 between hope and not-hope. mBERT cased
with BiLSTM architecture appeared to be the best
model with an F1-score of 0.6183 for validation
but dropped drastically by 8% for the test data. We
witnessed a considerable fall in the scores of other
models like mBERT and XLM-RoBERTa with lin-
ear layers of up to 15%.

Multilingual comments experience an enor-
10https://indicnlp.ai4bharat.org/indic-bert/

http://commoncrawl.org/the-data/
http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html
http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html
https://github.com/google-research-datasets/dakshina
https://github.com/google-research-datasets/dakshina
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mous variety of text as people tend to write
in code-mixed data and other non-native scripts
which are inclined to be mispredicted. A varia-
tion in the concentration of such comments be-
tween train, validation and test can result in a
fluctuation in the test results. The precision, re-
call and F1-scores of CharacterBERT, mBERT-
uncased, and mBERT-cased are tabulated under
English, Malayalam, and Tamil respectively, as
shown in Table 8. They were the best performing
models on the validation set.

6 Conclusion

During these unprecedented times, there is a need
to detect positive, enjoyable content on social me-
dia in order to help people who are combating
depression, anxiety, melancholy, etc. This pa-
per presents several methodologies that can de-
tect hope in social media comments. We have tra-
versed through transfer learning of several state-
of-the-art transformer models for languages such
as English, Tamil, and Malayalam. Due to its su-
perior fine-tuning method, ULMFiT achieves an
F1-score of 0.9356 on English data. We observe
that mBERT achieves 0.8545 on Malayalam test
set and distilmBERT achieves 0.5926 weighted
F1-score on Tamil test set.
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