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Abstract

Despite recent advances in semantic role la-
beling propelled by pre-trained text encoders
like BERT, performance lags behind when ap-
plied to predicates observed infrequently dur-
ing training or to sentences in new domains.
In this work, we investigate how semantic
role labeling performance on low-frequency
predicates and out-of-domain data can be im-
proved by using VerbNet, a verb lexicon that
groups verbs into hierarchical classes based on
shared syntactic and semantic behavior and de-
fines semantic representations describing rela-
tions between arguments. We find that Verb-
Net classes provide an effective level of ab-
straction, improving generalization on low-
frequency predicates by allowing them to learn
from the training examples of other predicates
belonging to the same class. We also find
that joint training of VerbNet role labeling and
predicate disambiguation of VerbNet classes
for polysemous verbs leads to improvements
in both tasks, naturally supporting the extrac-
tion of VerbNet’s semantic representations.

1 Introduction

Semantic role labeling (SRL) is a form of shallow
semantic parsing that involves the extraction of
predicate arguments and their assignment to consis-
tent roles with respect to the predicate, facilitating
the labeling of e.g. who did what to whom (Gildea
and Jurafsky, 2000). SRL systems have been
broadly applied to applications such as question
answering (Berant et al., 2014; Wang et al., 2015),
machine translation (Liu and Gildea, 2010; Bazraf-
shan and Gildea, 2013), dialog systems (Tur and
Hakkani-Tür, 2005; Chen et al., 2013), metaphor
detection (Stowe et al., 2019), and clinical infor-
mation extraction (Gung, 2013; MacAvaney et al.,
2017). Recent approaches to SRL have achieved

∗Work done prior to joining Amazon.

Billy consoled the puppy

PB Arg0 console.01 Arg1
VN Stimulus amuse-31.1 Experiencer

Billy walked the puppy

PB Arg0 walk.01 Arg1
VN Agent run-51.3.2-2-1 Theme

Table 1: Comparison of PropBank (PB) and VerbNet
(VN) roles for predicates console and walk. VerbNet’s
thematic role assignments (e.g. Stimulus vs. Agent
and Experiencer vs. Theme) are more dependent on
the predicate than PropBank’s numbered arguments.

large gains in performance through the use of pre-
trained text encoders like ELMo and BERT (Peters
et al., 2018; Devlin et al., 2019). Despite these ad-
vances, performance on low-frequency predicates
and out-of-domain data remains low relative to
in-domain performance on higher frequency predi-
cates.

The assignment of role labels to a predicate’s
arguments is dependent upon the predicate’s sense.
PropBank (Palmer et al., 2005) divides each pred-
icate into one or more rolesets, which are coarse-
grained sense distinctions that each provide a set
of core numbered arguments (A0-A5) and their
corresponding definitions. VerbNet (VN) groups
verbs into hierarchical classes, each class defining
a set of valid syntactic frames that define a direct
correspondence between thematic roles and syntac-
tic realizations, e.g. Agent REL Patient (e.g. John
broke the vase) or Patient REL (e.g. The vase broke)
for break-45.1 (Schuler, 2005).

Recent PropBank (PB) semantic role labeling
models have largely eschewed explicit predicate
disambiguation in favor of direct prediction of se-
mantic roles in end-to-end trainable models (Zhou
and Xu, 2015; He et al., 2017; Shi and Lin, 2019).
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This is possible for several reasons: First, Prop-
Bank’s core roles and modifiers are shared across
all predicates, allowing a single classifier to be
trained over tokens or spans. Second, although
definitions of PB roles are specific to the different
senses of each predicate, efforts are made when
creating rolesets to ensure that A0 and A1 exhibit
properties of Dowty’s prototypical Agent and pro-
totypical Patient respectively (1991). Finally, PB
rolesets are defined based on VN class membership,
with predicates in the same classes thus being as-
signed relatively consistent role definitions (Bonial
et al., 2010).

Unlike PropBank, VerbNet’s thematic roles are
shared across predicates and classes with consis-
tent definitions. However, VN roles are more de-
pendent on the identity of the predicate (Zapirain
et al., 2008; Merlo and Van Der Plas, 2009). Ex-
amples of PropBank and VerbNet roles illustrating
this are given in Table 1. Consequently, VN role
labeling models may benefit more from predicate
features than PropBank. Furthermore, while it is
possible to identify PB or VN roles without classi-
fying predicate senses, linking the resulting roles
to their definitions or to the syntactic frames and
associated semantic primitives in VN does require
explicit predicate disambiguation (Brown et al.,
2019). Therefore, predicate disambiguation is of-
ten an essential step when applying SRL systems
to real-world problems.

In this work, we evaluate alternative approaches
for incorporating VerbNet classes in English Verb-
Net and PropBank role labeling. We propose a
joint model for SRL and VN predicate disambigua-
tion (VN classification), finding that joint training
leads to improvements in VN classification and
role labeling for out-of-domain predicates. We also
evaluate VN classes as predicate-specific features.
Using gold classes, we observe significant improve-
ments in both PB and VN SRL. We also observe
improvements in VN role labeling when using pre-
dicted classes and features that incorporate all valid
classes for each predicate1.

2 Background and Related Work

VerbNet VerbNet is a broad-coverage lexicon
that groups verbs into hierarchical classes based on
shared syntactic and semantic behavior (Schuler,
2005). Each VN class is assigned a set of thematic

1Our code is available at https://github.com/
jgung/verbnet-parsing-iwcs-2021.

roles that, unlike PB numbered arguments, main-
tain consistent meanings across different verbs and
classes. VN classes provide an enumeration of syn-
tactic frames applicable to each member verb, de-
scribing how the thematic roles of a VN class may
be realized in a sentence. Every syntactic frame en-
tails a set of low-level semantic representations
(primitives) that describe relations between the-
matic role arguments as well as changes throughout
the course of the event (Brown et al., 2018). The
close relationship between syntactic realizations
and semantic representations facilitates straightfor-
ward extraction of VN semantic predicates given
identification of a VN class and corresponding the-
matic roles. VN primitives have been applied to
problems such as machine comprehension (Clark
et al., 2018) and question generation (Dhole and
Manning, 2020).

Comparing VerbNet with PropBank Yi et al.
(2007) use VN role groupings to improve label
consistency across verbs by reducing the overload-
ing of PropBank’s numbered arguments like A2.
Comparing SRL models trained on PB and VN,
Zapirain et al. (2008) find that their VerbNet model
performs worse on infrequent predicates than their
PB model, and suggest that VN is more reliant on
the identity of the predicate than PB based on exper-
iments removing predicate-specific features from
their models. They suggest that the high consis-
tency of A0 and A1 enables PB to generalize better
without relying on predicate-specific information.

Merlo and Van Der Plas (2009) provide an
information-theoretic perspective on the compari-
son of PropBank and VerbNet, demonstrating how
the identity of the predicate is more important to
VN SRL than for PB by comparing the conditional
entropy of roles given verbs as well as the mutual
information of roles and verbs. In multilingual
BERT probing studies comparing several SRL for-
malisms, Kuznetsov and Gurevych (2020) find that
layer utilization for predicates differs between PB
and VN. PB emphasizes the same layers used for
syntactic tasks, while VN uses layers associated
with tasks used more prevalently in lexical tasks.
These findings reinforce the importance of predi-
cate representations to VerbNet.

SRL and Predicate Disambiguation Previous
work has investigated the interplay between pred-
icate sense disambiguation and SRL. Dang and
Palmer (2005) improve verb sense disambiguation

https://github.com/jgung/verbnet-parsing-iwcs-2021
https://github.com/jgung/verbnet-parsing-iwcs-2021
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(VSD) using features based on semantic role labels.
Moreda and Palomar (2006) find that explicit verb
senses improve PB SRL for verb-specific roles like
A2 and A3, but hurt on adjuncts. Yi (2007) find
that using gold standard PB roleset IDs as features
in an SRL model improves performance only on
highly polysemous verbs. Dahlmeier et al. (2009)
propose a joint probabilistic model for preposition
disambiguation and SRL, finding an improvement
over independent models.

Predicate disambiguation plays a critical role
in FrameNet (Baker et al., 1998) parsing, in part
because FrameNet’s role inventory is more than
an order of magnitude larger than that of PB and
VN. This richer, more granular role inventory lends
advantages to approaches that constrain role iden-
tification to the set of valid roles for the predicted
frame (Das et al., 2014; Hermann et al., 2014),
or that jointly encode argument and role represen-
tations given identified frames (FitzGerald et al.,
2015).

LM Pre-training and SRL Language model
(LM) pre-training has become ubiquitous in nat-
ural language processing tasks, with LM encoders
like ELMo propelling forward the state of the art
in SRL (Peters et al., 2018). We are interested
in whether a strong baseline model using a LM
encoder such as BERT can be further improved
by incorporating external knowledge from lexical
resources like VN.

BERT (Devlin et al., 2019) is a Transformer en-
coder (Vaswani et al., 2017) jointly trained using
two objectives: a masked language modeling ob-
jective to predict the identity of randomly-masked
tokens in the input, as well as a next sentence pre-
diction task (NSP) intended to encourage the model
to encode the relationship between sentence pairs
(henceforth referred to as Sent. A and Sent. B). Sen-
tences are tokenized using WordPiece (Wu et al.,
2016). As a Transformer encoder, BERT applies
multiple layers of a multi-headed self-attention
mechanism to progressively build contextual token-
level representations. In our experiments, we use
encodings from the final layer.

3 Semantic Role Labeling with BERT

Our baseline SRL model closely follows Shi and
Lin (2019). We thus approach SRL as a sequence
tagging task, predicting per-word, IOB-encoded
(In, Out, Begin) role labels independently for each
predicate in a sentence. A predicate-aware encod-

ing of a sentence is produced using the target pred-
icate as the Sent. B input to BERT. For example,
the sentence I tried opening it is processed as:

CLS I tried opening it SEP opening SEP

for the verb open. This enables BERT to incorpo-
rate the identity of the predicate in the encoding of
each word while clearly delineating it from tokens
in the original sentence.

To simplify notation, we’ll treat LM(a,b) ∈
RTa×DLM as shorthand for the final layer BERT en-
coding for a pair of sentences a = w1, ..., wTa and
b = w1, ..., wTb

with Ta and Tb words respectively,
where DLM gives BERT’s hidden size. This is pro-
duced by applying WordPiece tokenization (WP)
to each word in each sentence and concatenating
the resulting sequences of token IDs with standard
BERT-specific IDs:

w =
[

CLS,WP(a), SEP,WP(b), SEP
]

The resulting sequence of tokens w is encoded
using BERT. We use the final layer outputs, taking
vectors only for the first WordPiece token for each
original word in Sent. A (a), filtering out vectors
corresponding to Sent. B (b), SEP or CLS. The
resulting matrix consists of a vector per word in
Sent. A, avoiding any discrepancies between IOB-
encoded word-level output labels and WordPiece
tokens used as inputs.

Following previous work (Zhou and Xu, 2015;
He et al., 2017), we use a marker feature as an
indicator for the specific location of the predicate
within the sentence. For a sentence, w1, ..., wT ,
with a predicate given by index p ∈ 1...T , we com-
pute a predicate-aware, contextualized embedding
xpt of each word as

xpt =
[
LM(w1...T , wp)(t);W

(mark)
(t=p)

]
(1)

with W(mark) ∈ R2×Dmark and xpt ∈
RDLM+Dmark , where Dmark provides the size of
the predicate marker embedding.

The predicate’s positional information from
the marker is integrated using a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997), con-
catenating the hidden states for the forward and
backward LSTMs at each timestep (omitting the p
from xpt for brevity):

h
(fw)
t = LSTM(fw)(x1...T )(t)

h
(bw)
t = LSTM(bw)(xT...1)(T−t)

h
(fb)
t =

[
h
(fw)
t ;h

(bw)
t

] (2)
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The BiLSTM output at each timestep t is con-
catenated with that of the predicate’s timestep and
passed through a sequentially-applied linear trans-
formation followed by a leaky ReLu (α = 0.1):

x
(mlp)
pt = σ

(
W(mlp)

[
h
(fb)
t ;h(fb)

p

]
+ b(mlp)

)
(3)

We apply a final linear projection from x
(mlp)
pt to

IOB-encoded role labels:

s
(srl)
pt = W(srl)x

(mlp)
pt + b(srl) (4)

where s
(srl)
pt ∈ RK provides the unnormalized

scores for each of K possible role labels, with the
probability of predicting a label for a given token t
and predicate p given by:

P (y
(srl)
pt |w1...T , wp) = softmax(s

(srl)
pt ) (5)

Like He et al. (2017), we apply constrained Viterbi
decoding to restrict inferred label sequences to pro-
duce valid IOB sequences.

4 VerbNet Classes as Predicate Features

Verbs belonging to the same VN class share syn-
tactic and semantic properties and the same set of
thematic roles and syntactic frames. Replacing a
predicate in a sentence with a different verb from
the same class typically produces a syntactically
coherent sentence and does not impact the propo-
sition’s thematic role labels. VN classes may thus
provide an effective level of abstraction for predi-
cates in SRL.

We hypothesize that using VN classes as
predicate-specific features may help reduce spar-
sity issues for low-frequency and out-of-vocabulary
(OOV) verbs. Intuitively, training examples for
each member verb within a class contribute to the
estimation of parameters associated with all other
members of the same class, enabling the fine-tuning
of predicate-level features even for OOV predicates.
For example, a verb like traipse may rarely or never
occur during training, but may belong to a class
which appears hundreds of times in the form of
more common verbs like run or rush. We investi-
gate whether by sharing parameter updates across
VN members, we can further improve generaliza-
tion on infrequent verbs.

Methodology Intuitively, BERT’s NSP pre-
training task encourages some level of focus on
Sent. B tokens from attention heads when pro-
cessing tokens in Sent. A. The predicate feature
presented by Shi and Lin (2019) and applied in our
baseline model uses the predicate token as the Sent.
B input to BERT and thus allows the encodings of
tokens in a sentence to be conditioned directly on
the predicate.

We propose to include tokens corresponding to
the predicate’s VN class as additional features as
part of Sent. B. To realize this, we concatenate
the corresponding VN class ID to Sent. B along
with the predicate, updating the inputs given in
Equation 1:

LM(w1...T , wpws) (6)

where ws is a token corresponding to the VN class
of the predicate wp

2.

VerbNet Classification VN classes can be pre-
dicted automatically using a word sense disam-
biguation system. We propose a simple model
for VerbNet classification: fine tune a pre-trained
BERT encoder by applying a feedforward multi-
layer perceptron (MLP) classifier over all VN
classes to the BERT encoding associated with the
first WordPiece of the target predicate.

We again condition BERT on the target predicate
by including it as a feature (wp) in Sent. B:

xp = LM(w1...T , wp)(p)

x(mlp)
p = σ

(
W(mlp)xp + b(mlp)

)
s(vncls)p = W(vncls)x(mlp)

p + b(vncls)

(7)

where W(vncls) ∈ RDmlp×V projects over all V
VN classes for all predicates. The probability for
predicting a VN class y(vncls)p for a given predicate
and sentence is given by:

P (y(vncls)p |w1...T , wp) = softmax(s(vncls)p ) (8)

This single classifier formulation is possible for
lexicons like VN and FrameNet in which predi-
cates share senses from a global sense inventory.
While individual predicates have a specific set of
valid senses, their senses are shared from the global
lexicon. Kawahara and Palmer (2014) demonstrate

2In preliminary experiments, we found that directly modi-
fying Sent. A drastically reduces the performance of the model
and slows convergence.
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that a single classifier approach to VN classifica-
tion achieves competitive performance when using
shared semantic features. Intuitively, by training
the classifier across multiple verbs, the model pa-
rameters specific to each sense receive more up-
dates, with infrequent verb-class pairs also ben-
efiting from the examples of other verbs within
the same class. At inference time, we constrain
sense predictions to predicate-sense combinations
observed in the training data, selecting the highest-
scoring valid sense given the predicate. We evalu-
ate models using both predicted and gold (ground
truth) classes for ws as PREDICTED CLASS and
GOLD CLASS respectively.

VerbNet Classes without Disambiguation
Like SRL, VerbNet classification accuracy declines
in the long tail of low frequency senses and
predicates. For this reason, incorrect sense
predictions may negate the benefits of VN class
features on precisely the instances for which they
might be expected to be beneficial: OOV or rare
predicates.

To avoid this problem while still retaining the
benefits of parameter sharing for low frequency
predicates with higher-frequency predicates belong-
ing to the same VN class, we propose including the
set of all possible classes for a given predicate as
Sent. B features. To incorporate multiple senses,
we simply concatenate them sequentially to Sent.
B:

LM(w1...T , wpws1...k) (9)

This allows the BERT encoder to attend over all
possible VerbNet classes for a given predicate and
sentence, without making a discrete decision about
which class is correct. The extent and way in which
the model incorporates the Sent. B tokens associ-
ated with the available classes is learned during
training. The inputs to this model, later referred
to as ALL CLASSES are identical to PREDICTED

CLASS and GOLD CLASS models for monosemous
predicates.

5 Joint VerbNet Classification and SRL

Features that are useful for SRL may also be useful
in predicting the sense of a predicate. For example,
surface-level syntactic awareness that the argument
of a predicate is a clause instead of a noun phrase
may change the expected sense of a verb (bring-
11.3 vs. characterize-29.2):

Bob took Mary to the doctor.
John took Mary to be a doctor.

The semantic classes of arguments are also often
important in determining the sense of a given pred-
icate (dub-29.3.2 vs. get-13.5.1):

John called Mary a name.
John called Mary a car.

This dependency between SRL and predicate sense
disambiguation together with the prevalence of
shared features between the two tasks makes them
a good candidate for multi-task learning (Caruana,
1998).

Multi-task Model Much of recent work in multi-
task learning for SRL has focused on syntactic
tasks such as syntactic parsing as auxiliary objec-
tives (Strubell et al., 2018; Swayamdipta et al.,
2018; Xia et al., 2019; Zhou et al., 2020). We first
investigate an MTL approach that predicts seman-
tic role labels and predicate senses independently
given a shared BERT encoder. We extend our base-
line SRL model, adding an additional head that is
trained to predict the target predicate’s sense, as de-
scribed in Equation 8. The negative log likelihood
of a single training instance with predicate p and
token sequence x = w1...T with T tokens is then
given by:

−
T∑
t=1

[
logP (y

(srl)
pt |x, p)

]
+ λvncls logP (y

(vncls)
p |x, p)

(10)

with λvncls weighting the contribution of VerbNet
class prediction to the overall objective. For brevity,
we henceforth refer to this model as SRL + VSD.

We also investigate conditioning role labeling di-
rectly on predicted predicate senses. We implement
this by concatenating a weighted label embedding
of the target predicate’s predicted class to each of
the SRL head’s input vectors, x(srl)

pt . To compute
the weighted label embedding of a given VN class
y
(vncls)
p we follow Hashimoto et al. (2017):

y(vncls)
p =

K∑
k=1

P (y(vncls)p = k|x, p)W(vncls)
(k)

(11)

with W(vncls) ∈ RK×Dvncls and y
(srl)
p ∈ RDvncls .

The input to the SRL head is then given by:

x
(srl)
pt =

[
LM(w1...T , wp)(t);

W
(mark)
(t=p) ;y(vncls)

p

] (12)
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VerbNet class embeddings are initialized using
the average of word embeddings corresponding to
members of each class. During training, we use
embeddings of predicted labels to avoid a discrep-
ancy between the inputs to the SRL head between
training and inference, when the gold labels are
no longer available. In preliminary experiments,
we used gold labels, similar to teacher forcing as
described in Williams and Zipser (1989), but found
that performance degraded when applied to pre-
dicted labels. We refer to the model described in
this section as SRL | VSD.

6 Experiments

All models are implemented using Tensorflow
1.13 (Abadi et al., 2016) and are trained on a single
NVIDIA GTX 1080 Ti GPU. We use the 110M
parameter cased BERT-Base model available in
Tensorflow Hub3, with DLM = 768. To align with
Shi and Lin (2019), Dmark is set to 10, and LSTM
and MLP hidden state sizes are set to 768 and 300
respectively. Dropout rates of 0.1 are applied to
BERT outputs as well as after ReLu transforms in
MLPs. Recurrent dropout (Gal and Ghahramani,
2016) with a rate of 0.1 is applied in LSTMs on hid-
den states and outputs. To initialize VerbNet class
embeddings, we use 100-dimensional GloVe em-
beddings (Pennington et al., 2014) averaged over
member verbs (Dvncls = 100). λvncls is set to 0.5
after a preliminary search over {0.1, 0.5, 1.0}.

We follow the fine-tuning methodology
described in Devlin et al. (2019), using
Adam (Kingma and Ba, 2014) with a batch
size of 16. The learning rate is warmed up linearly
from 0 to 5e-5 for 10% of training, then decayed
linearly to 0 for the rest of training. Models are
trained for up to 8 epochs. The best-performing
checkpoint on the development set, evaluated at
every half epoch, is selected for evaluation.

Unless otherwise mentioned, we train and evalu-
ate all models with at least 7 independent random
initializations, and present mean scores in our com-
parisons. To establish statistical significance, we
apply a test for Almost Stochastic Dominance (Dror
et al., 2019) between test score distributions, using
α = 0.05. Numbers in bold indicate highest aver-
age performance within a given evaluative setting,
with a single star indicating statistical significance
of almost stochastic dominance over our baseline

3https://tfhub.dev/google/bert_cased_
L-12_H-768_A-12/1

CoNLL-2005 CoNLL-2012
System WSJ Brown Test

Peters et al. (2018) 84.6
He et al. (2018) 87.4 80.4 85.5
Ouchi et al. (2018) 87.6 78.7 86.2
Li et al. (2019) 87.7 80.5 86.0
Shi and Lin (2019) 88.1 80.9 86.2
Our Baseline 87.5±0.2 81.2±0.4 86.2±0.1

Table 2: Comparison of baseline SRL system on
CoNLL-2005 and CoNLL-2012 against models apply-
ing pre-trained encoders of comparable size (F1).

models for each experiment, and two stars indicat-
ing stochastic dominance (ε = 0). For example,
a value in a table of 88.2??±0.2 indicates that a
model has a mean test score (e.g. F1 or accuracy)
of 88.2, with a standard deviation of 0.2, and is
stochastically dominant over the baseline.

Datasets We use English PropBank datasets
from CoNLL-2005 (Carreras and Màrquez, 2005)
and the CoNLL-2012 split (Pradhan et al., 2013)
for OntoNotes (Hovy et al., 2006) in order to sit-
uate our baseline mode among recent work in PB
SRL. We compare against models of similar size
(120M parameters) with pre-identified predicates.

The SemLink corpus (Palmer, 2009) is currently
the only dataset that contains explicit VerbNet the-
matic role annotations with VN sense annotations.
SemLink contains mappings between VN, PB and
FrameNet, with annotations performed over a sub-
set of the CoNLL-2005 PB WSJ annotations and
Brown corpus out-of-domain test set (Carreras and
Màrquez, 2005). Using SemLink thus allows us
to evaluate performance for both PB and VN roles
on the same source text. Following Zapirain et al.
(2008), we restrict evaluation to propositions with
PB core arguments fully mapped to VN thematic
roles. This accounts for 56% of the original corpus.
We include PB modifier roles in addition to VN
thematic roles.

Baseline Comparisons Our baseline SRL model
achieves comparable performance to Shi and Lin
(2019) on both CoNLL-2012 and CoNLL-2005
and thus has performance similar to state-of-the-art
models of the same size.

To compare our VerbNet classification models
against prior work, we train and evaluate a publicly
available state-of-the-art VN classification system
directly on the SemLink corpus. We use Clear-

https://tfhub.dev/google/bert_cased_L-12_H-768_A-12/1
https://tfhub.dev/google/bert_cased_L-12_H-768_A-12/1
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WSD4, which is a sense disambiguation library tai-
lored for verb sense disambiguation based on linear
models over features constructed from an ensem-
ble of word representations applied over syntactic
relations (Palmer et al., 2017).

VerbNet Models The results of our experiments
are shown in Table 3. First, we find that incorporat-
ing gold VerbNet classes (GOLD CLASS) signifi-
cantly improves VerbNet SRL, providing a 15% rel-
ative error reduction on out-of-domain data (80.1 to
83.0), and 6% reduction on in-domain data (87.4 to
88.2). In PB SRL, gold classes are also beneficial,
but to a lesser degree. ALL CLASSES and PRE-
DICTED CLASS models improve both in-domain
and out-of-domain VN SRL.

Predicting both VN classes and semantic roles
from a single encoder reduces the total computa-
tional resources required to make predictions from
separate models, providing a practical benefit. Ad-
ditionally, we are interested in determining whether
our multi-task models lead to improvements in
generalization. Our multi-task model SRL + VSD,
which does not condition thematic role prediction
on predicted senses, does not have a significant ef-
fect on VN SRL performance. However, we do find
that conditioning SRL on VN class predictions in a
multi-task model (SRL | VSD) leads to a significant
improvement in performance on the out-of-domain
Brown test set for VN SRL. No significant change
is observed on the in-domain WSJ test set, or when
the model is applied to PB SRL.

We also evaluate the impact of multi-task learn-
ing on predicate disambiguation (VN classifica-
tion). First, we find that even our baseline model is
competitive with the highly-specialized approach
for verb sense disambiguation provided in Clear-
WSD (Table 4). Comparing our joint VN SRL
models with a single task baseline for VN classi-
fication, we observe a significant improvement on
WSJ test data when incorporating multi-task su-
pervision from SRL. This approach is related to
earlier use of SRL features for verb sense disam-
biguation reported in Dang and Palmer (2005), and
the positive result is consistent with their findings.

7 Analysis

Monosemous vs. Polysemous Predicates To
understand the impact of VerbNet class features,
we break down our evaluation by polysemous and

4https://github.com/clearwsd/clearwsd

monosemous verbs in Table 5. First, we observe
that incorporating VN classes improves F1 scores
for monosemous verbs in both models. This is ex-
pected, as monosemous verbs are typically lower
frequency, with low-frequency and OOV verbs ben-
efiting the most from parameter sharing with other
verbs belonging to the same VN classes. We also
observe a significant improvement on polysemous
verbs in the WSJ (in-domain) test set when includ-
ing VN features. However, polysemous verbs in the
Brown (out-of-domain) test set only benefit from
using explicitly predicted classes, but not when
using all valid classes for each predicate.

Why does ALL CLASSES improve performance
on out-of-domain data for monosemous verbs, but
not polysemous verbs? Intuitively, the per-verb
distributions of VerbNet classes may change con-
siderably between two domains. Using a correctly-
predicted class may help mitigate errors on verbs
for which one class was dominant during training,
but a different class or set of classes are observed
during testing in the new domain. This benefit
would not be observed with ALL CLASSES as for
a given verb, the same classes used as model inputs
during training would be used as inputs on out-of-
domain data. However, VN classes receive fewer
updates during training when using only predicted
classes. Thus, verbs appearing in classes that never
or rarely appeared during training will not benefit
from PREDICTED CLASS features. ALL CLASSES

may mitigate this issue, since even if a specific
class does not appear in the training data, it still
can receive updates from examples of polysemous
member verbs that belong to other classes (and im-
proved performance over PREDICTED CLASS on
monosemous verbs on the out-of-domain Brown
test set supports this). As future work, a promising
direction may therefore be to combine PREDICTED

CLASS and ALL CLASSES features.

Out-of-Vocabulary Predicates How well do
models incorporating VerbNet features generalize
on out-of-vocabulary and rare predicates? We split
an evaluation on the WSJ development set into 5
bins by training set predicate frequency (shown
in Figure 1). Comparing development F1 scores
for ALL CLASSES and PREDICTED CLASS mod-
els against our baseline model, we note that VN
classes improve SRL performance most for pred-
icates appearing 0-50 times in the training data,
which account for 24.4% of instances in the devel-
opment set.

https://github.com/clearwsd/clearwsd
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PropBank VerbNet
System WSJ Brown WSJ Brown

Zapirain et al. (2008) 78.9±0.9 77.0±0.9 62.9±1.0

Baseline 88.5±0.1 82.4±0.5 87.4±0.2 80.1±0.4

SRL + VSD 88.2±0.2 82.8?±0.6 87.3±0.1 80.0±0.7

SRL | VSD 88.3±0.2 82.2±0.4 87.4±0.2 80.6??±0.4

PREDICTED CLASS 88.3±0.1 81.2±0.6 87.6??±0.1 80.9??±0.6

ALL CLASSES 88.6?±0.3 82.3±0.5 87.6??±0.2 81.1??±0.6

GOLD CLASS 88.7??±0.0 82.8?±0.2 88.2??±0.2 83.0??±0.9

Table 3: F1 scores of models incorporating different predicate representations and sense distinctions on VerbNet
and PropBank SRL on SemLink. SRL + VSD and SRL | VSD are multitask models for SRL and VerbNet clas-
sification, with the latter using predicted classes as features for SRL. ALL CLASSES, PREDICTED CLASS, and
GOLD CLASS are SRL models using VerbNet class features (the list of all VerbNet classes the predicate belongs
to, predicted VerbNet classes, and gold VerbNet classes respectively).

System WSJ Brown

ClearWSD 97.0±0 89.3±0

Baseline 97.3±0.1 90.7±0

SRL + VSD 97.7??±0.1 91.3±0.4

SRL | VSD 97.6??±0.1 91.3±0

Table 4: VerbNet classification (sense disambiguation)
accuracy on SemLink.

Focusing on low-frequency predicates, we fur-
ther divide our evaluation of predicates occurring
fewer than 50 times in the training data into 6 bins,
one of which is reserved for OOV predicates (Fig-
ure 2). From this analysis, we find that VN classes
are most impactful on predicates appearing fewer
than 10 times in the training data, with a large im-
provement over the baseline on OOV predicates
when applying predicted classes.

8 Conclusions and Future Work

We investigate VerbNet classes as an effective level
of abstraction for predicates when performing se-
mantic role labeling. We find that incorporating
features based on gold VerbNet classes improves
both VerbNet and PropBank SRL, but when pre-
dicted classes are used, this effect is only observed
for VerbNet. An improvement is also observed
without explicit prediction of classes by including
a list of all VerbNet classes the target predicate
belongs to as features. Breaking down our evalua-
tion into polysemous and monosemous predicates,
we find that predicted classes help more on out-
of-domain polysemous predicates, while using all
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Figure 1: Evaluation by training set predicate fre-
quency on the SemLink development data comparing
the impact of VerbNet features.

valid VerbNet classes helps more on out-of-domain
low-frequency predicates. In multi-task learning
experiments motivated by the interdependence of
VN classification and SRL, we find that joint train-
ing improves both tasks when conditioning role
labeling on predicted predicates, facilitating VN se-
mantic parsing. In future work, we will investigate
alternative approaches incorporating the structure
of VerbNet into the parsing of VerbNet semantic
representations. Finally, we hope to expand our
evaluations to larger, more diverse datasets to fur-
ther investigate domain transfer.
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Polysemous Monosemous
System WSJ Brown WSJ Brown

Baseline (+0.0) 88.2±0.3 (+0.0) 81.8±0.8 (+0.0) 85.9±0.3 (+0.0) 77.7±1.3

ALL CLASSES (+0.4) 88.6??
±0.2 (−0.2) 81.6±0.8 (+0.2) 86.1?±0.4 (+2.6) 80.3??

±0.8

PREDICTED CLASS (+0.3) 88.5??±0.2 (+0.5) 82.3?
±0.8 (+0.2) 86.1??

±0.2 (+0.9) 78.6?±1.3

Table 5: Evaluation of contribution of VerbNet features on polysemous vs. monosemous predicates for VerbNet
SRL averaged over all models. Average change over the baseline performance is given in parentheses.
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Figure 2: Evaluation by training set predicate fre-
quency similar to Figure 1, but focused on low-
frequency predicates. Most improvements are for predi-
cates appearing fewer than 10 times in the training data.
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