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Abstract

Sequence-to-sequence neural networks have
been widely used in language-based applica-
tions as they have flexible capabilities to learn
various language models. However, when
seeking for the optimal language response
through trained neural networks, current exist-
ing approaches such as beam-search decoder
strategies are still not able reaching to promis-
ing performances. Instead of developing vari-
ous decoder strategies based on a “regular sen-
tence order” neural network (a trained model
by outputting sentences from left-to-right or-
der), we leveraged “reverse” order as addi-
tional language model (a trained model by
outputting sentences from right-to-left order)
which can provide different perspectives for
the path finding problems. In this paper,
we propose bidirectional strategies in search-
ing paths by combining two networks (left-to-
right and right-to-left language models) mak-
ing a bidirectional beam search possible. Be-
sides, our solution allows us using any simi-
larity measure in our sentence selection crite-
rion. Our approaches demonstrate better per-
formance compared to the unidirectional beam
search strategy.

1 Introduction

Seq2seq models have shown state-of-the-art per-
formance in tasks such as machine translation
(Sutskever et al., 2014), neural conversation (Li
et al., 2016b), image captioning (Venugopalan
et al., 2015), and text summarization (Nallapati
et al., 2016), exhibiting human-level performance
(Johnson et al., 2017). Despite some drawbacks
(e.g huge parallel corpora are needed to train
seq2seq models, expert knowledge required to set
the hyperparameters), seq2seq models are becom-
ing increasingly popular and are now deployed in
real world applications (McCann et al., 2019). Dur-
ing inference, a trained seq2seq model aims to find

the best sentence given a source sentence. Since
searching for all the possible paths is not practical
but also computationally expensive, existing work
relies on beam search based algorithms to solve this
issue (Lipton, 2015). Current solutions have lim-
ited performances due to three major constraints:
(1) beam search sentence selection is based on like-
lihood regardless of the evaluation metric, (2) dur-
ing the generation process, only left to right depen-
dencies (right to left are ignored) are considered
by the model, (3) seq2seq strongly foster safe sen-
tences (Li et al., 2016a): during generation, the
influence of the input decreases while words are
generated (Zhang et al., 2018) meaning that the
end of the sequence is less likely to be input rele-
vant. Those limitations constraint beam search per-
formances: on Switchboard Corpus with a Beam
Size of 50 optimal re-ranking would yield to an
improvement of 128% (see Supplementary for full
table). For the evaluation metric we follow Li et al.
(2016a); Colombo et al. (2019) adopt the BLEU-4
score to compare the algorithms.
In this work, we introduce two novel algorithms
based on beam search (VBS) with different rank-
ing procedure: (1) BidiS a generalisation of the
work of Wen et al. (2015); Mimura et al. (2018)
that uses a ”reverse” decoder to re-score the pro-
duced sentence penaliszing sentences whose end is
less likely given the input, (2) BidiA an algorithm,
that looks at the closest pair by incorporating the
similarity measure between two beams of hypoth-
esis; one with sentences generated in the regular
order, the other with sentences generated in the re-
verse order. Our results show that leveraging the
reverse order can boost beam search performance
leading to higher BLEU-4 score and more diverse
responses compared to VBS. Complexity analysis
further shows that our proposed algorithms have
dramatically reduced computational cost compared
to the traditional approaches.



2 Models

We notice that limitation (2) and (3) previously
introduced can be solved by introducing bidirec-
tionally in the beam search. Indeed, training a
seq2seq to output the sentence in the reverse order
can model right to left dependencies and reduces
the path length between the input and the end of
the sentence (the shorter the paths are, the easier it
is to model dependencies) making the end of the
sentence more dependent of the input and produc-
ing more diverse sequences and model right to left
dependencies as well.

2.1 Preliminaries

Vanilla Beam Search (VBS) We denote B as the
beam size, T as the maximum sentence length and
V as the vocabulary size. A RNN encoder takes
an input sequence X = (x1, ..., xT ), to learn the
language model word by word during the training
phase. When a language task is given, the decoder
travels through paths at each time and keeps the B
most likely sequences. At each step, VBS considers
at most V ×B hypothesis. The sequence likelihood
is measured by using the score function in (Wu
et al., 2016)

s(Y,X) =
logP (Y |X)

lp(Y )
(1)

where X is the source, Y is the current target,
and lp(Y ) = (5+|Y |)α

(5+1)α is the length normalization
factor. We select α = 0.6, which produce a higher
BLEU score as illustrated in (Wu et al., 2016). The
beam search is stopped when exactly B finished
candidates have been found (Luong et al., 2015).
In the worst case, the algorithm will run for a max-
imum of T steps.

Regular and Reverse model training For the
bidirectional beam search we train two different
networks over the same dataset. The first seq2seq
network called ”regular” is trained to predict the
sentence in the regular order. The second network
called ”reverse” is trained to predict the sentence
in the reversed order. For example, if the regular
network is trained with the pair “What do you like
?” / “I like cats !”, the reversed is trained with the
pair “What do you like ?” / “! cats like I”. During
decoding, the reverse model estimates right-to-left
dependencies while the regular model estimates
left-to-right dependencies. 1 Two different settings

1From graph topology viewpoints, the decoder procedure

have been explored: (1) training two independent
seq2seq, (2) sharing the encoder of the two seq2seq
and training using the following loss L where:

L = αLRg + (1− α) ∗ LRe (2)

LRg is the Cross Entropy loss computed with the
regular decoder and LRe is the Cross Entropy loss
computed with the reverse decoder. Since both
approaches exhibit comparable performances, we
choose to share the encoder to minimise the number
of parameters in our model.

2.2 Beam Search with Bidirectional Scoring
(BidiS)

A Beam search generates word by word from left
to right: the token generated at time step t only
depending on past token, but would not affected
by the future tokens. Inspired by the work of (Li
et al., 2016a), we propose a Beam Search with
Bidirectional Scoring (BidiS), which scores the B
best candidates generated by the regular seq2seq
model as follows:

s(YT , X) =
logP (Y +

T |X)

lp(YT )
+ λ× logP (Y −T |X)

lp(YT )
(3)

where Y +
T and Y −T represents the final sequence in

the regular order and reversed order respectively.
Moreover, P (Y +

T |X) is computed by using the reg-
ular model while P (Y −T |X) is computed by using
the reverse model. λ2 is optimized in the valida-
tion. The intuition here is as follows: after genera-
tion of B sentences from the regular seq2seq, the
reverse model computes P (Y −T |X), and assigns
higher probabilities to sequences presenting a more
likely right-to-left structure and more likely end-
ing given the input. Since B best lists produced
by our models are grammatically correct, the final
selected options are well-formed and present the
best combination of both directions.

2.3 Beam Search with bidirectional
agreement (BidiA)

The previous algorithm has two weaknesses. Firstly
it introduces a hyperparameter λ. Secondly, the re-
verse model is only used to re-score the sentences

from the right side is very different from the left sides. During
exploring graph from left to right the regular seq2seq faces
a huge very likely first token while the reverse seq2seq has a
very restraint choice (mainly punctuation). More details are
included in Supplementary.

2Optimisation process shows that λ compensate the differ-

ence of scale between logP (Y +
T
|X)

lp(YT )
and logP (Y−

T
|X)

lp(YT )



generated by the regular model, meaning that po-
tentially good sentences generated by the reverse
model are not considered. We solve these two
problems by proposing a Beam Search with bidi-
rectional agreement (BidiA); a hyperparameter free
algorithm that uses B

2 best sequences according
to the reverse seq2seq model. Formally if S and
S′ are the sets containing B

2 sequence generated
by the regular and reverse model respectively, we
output Yn0 such that:

(Yn0 , Yr0) = argmin
Yn∈S,Yr∈S′

1− sim(Yn, Yr) (4)

where sim represents any similarity measure
between two sentences 3. For our experiment, we
propose two different choices: (1) an adaptation of
the BLEU score, BLEUT where the corpus length
is set to T to foster longer responses formally:

BLEUT = BPT × exp(
N∑

n=1

wnlog(pn)) (5)

where the brevity penalty is set to BPT = exp(1−
T
c )

4, pn is the geometric average of the modified
n-gram precisions, using n-grams up to length
N and wn are positive weights summing to one,
(2) an adaptation of the Word Mover’s Distance
(WMDT ) (Kusner et al., 2015) (stopwords are re-
moved and final score is multiplied by BPT ) that
captures the relationship between words, by com-
puting the “transportation” from one phrase to an-
other conveyed by each word 5.

3 Results

3.1 Corpora and Metrics
Corpora: We evaluate our algorithms on two spo-
ken datasets (specific phenomena appear when
working with spoken language (Dinkar et al., 2020)
compared to written text). (1) The Switchboard
Dialogue Act Corpus (SwDA)a telephone speech
corpus (Stolcke et al., 1998), consisting of about
2.400 two-sided telephone conversation. (2) The
Cornell Movie Corpus (Danescu-Niculescu-Mizil
and Lee, 2011) which contains around 10K movie
characters and around 220K dialogues.
Metrics: To evaluate the performance and lan-
guage response quality for each decoder strategy,

3sim does not need to be differentiable.
4Brevity penalty introduces diversity and foster longer

sentences.
5Implementation details are given in supplementary

we use two classical different metrics at the sen-
tence level. (1) A BLEU-4 score (Papineni et al.,
2002) is computed on the unigrams, bigrams, tri-
grams and four-grams; and then micro-averaged.
(2) A Diversity score: distinct-n (Li et al., 2016a) is
defined as the number of distinct n-grams divided
by the total number of generated words. Indeed,
in neural response generation, we want to avoid
generate generic responses such as ”I don’t know”,
”Yes”, ”No” and foster meaningful responses.

3.2 Response Quality
Figure 1 shows our proposed system results in
BLEU-4 score metric. We see that our proposed
methods (BidiS and BidiA) achieve better perfor-
mances than VBS showing that bidirectionality
boosts performances. BidiABLEUT achieves the
best result overall yielding to a relative improve-
ment of 9% on Cornell and 5% on SWA. From
Figure 1, we see that for two different metric sim
BidiA leads to better results than both other algo-
rithm. Improvement of BidiS over the baseline
VBS shows that the optimisation of λ on the valida-
tion set leads to good generalisation on the test set.
BidiABLEUT is slightly better than BidiAWMDT

which is likely to be related to the choice of eval-
uation metric. From Figure 1 we can see that
the BLEU-4 score of VBS stop increasing when
B > 10. BidiS and BidiA keep improving the
quality of the sequence while more hypothesis
are proposed. This suggests that our bidirectional
beam search is more efficient at extracting best
sentence as the number of hypothesis increases.
From Figure 1 we can see that VBS, BidiA and
BidiAWMDT present a drop in the performance
for a number of hypothesis of 20 and 40: when
performing the beam search for 20 hypothesis we
observe that the seq2seq is very confident about
sentences that lead to lower BLEU-4 score. Those
sentences are not considered whenB < 20 and bet-
ter sentences are extracted when the beam size in-
creases. BidiABLEUT does not present this drop of
performance this is due to the metric choice (based
on overlaps) that selected different sentences from
BidiAWMDT .

3.3 Rank Analysis
In this section we compare the index returned by
BidiA and Best Hypothesis as shown in Figure 2.
Figure 2 illustrates one of the limitation of like-
lihood based ranking when an off-shell metric is
used for evaluation: the very most likely sentences



Figure 1: BLEU-4 Scores for the proposed algorithms on two different datasets: Cornell (left) and SWA (right).
NB is the beam size for VBS and BidiS and 2 times the beam size for BidiAWMDT

and BidiABLEUT

Figure 2: Index of the response. Index is the position
of the sentence in the beam returned by VBS: the most
likely sequence is ranked 1, the less likely is ranked
25. Best Hypothesis is the sentence (hypothesis) in the
beam that yields to the highest BLEU-4.

are not the one with the highest BLEU-4. Inter-
estingly, index distribution of Best Hypothesis is
very similar for both Cornell and Switchboard,
whereas for BidiABLEU and BidiAWMDT

it varies.
BidiABLEU that has a better BLEU-4 (see Figure 1)
than BidiAWMDT

has a index distribution more
similar to Best Hypothesis than BidiAWMDT

.

3.4 Diversity of the responses

Table 1 has shown the performance in diversity
metrics. Overall, BidiA has the best performance
among the other strategies (improvement up to 8%
over the baseline for Cornell). By looking for an
agreement between the reverse seq2seq and the reg-
ular one BidiA is able to extract sequences that are
less likely according to the VBS, but more diverse.
In all case, we see that bidirectionally helps to have
more diverse sentences. Since the influence of the
input decreases during the generation bidirectional
beam search will output sentences that have both
meaningful beginning and ending with respect to
the input.

3.5 Complexity Analysis

In practical application it is important to evaluate
the algorithm complexity when a limited amount of

distinct-n

Cornell Switchboard
Model n=1 n=2 n=1 n=2
VBS 0.051 0.250 0.042 0.231
BidiS 0.051 0.257 0.046 0.240

BidiABLEUT 0.056 0.261 0.050 0.240
BidiAWMDT 0.054 0.270 0.048 0.241

Table 1: Diversity Scores we report the diversity score
(distinct-n) for NB = 50.

Algorithm Complexity
CVBS T ×O(BV × log(BV ))
CBidiS T ×O(BV × log(BV ))

CBidiAWMDT
2T ×O(B2 V × log(

BV
2 )

CBidiABLEUT
2T ×O(B2 V × log(

BV
2 )

Table 2: Complexity of the different algorithms. V
is the size of the dictionary, B is the beam size, T is the
maximum sentence length.

resources are available. Table 2 shows that BidiA is
computationally cheaper than VBS and that BidiS
has the same complexity as VBS.

4 Conclusions

In this paper we show that bidirectional beam
search strategies can be leverage to boost the per-
formance of beam search. We have introduced two
novel re-ranking criterions that select sentences
with more diverse sentences and higher BLEU-4
and reduce computational complexity. Future work
includes testing our novel bidirectional strategies
with other pretrained models such as the one in-
troduced in (Jalalzai et al., 2020; Chapuis et al.,
2021, 2020; Witon et al., 2018), with other types of
data (e.g multimodal (Garcia et al., 2019; Colombo
et al., 2021a)), on differents tasks (e.g style transfer
(Colombo et al., 2021b)) as well as exploring other
stoping criterions (Colombo et al., 2021c).
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Figure 3: Word distribution on Cornell for different
word position in the sentence. This figure shows the
frequency of appearance of the 50 most common word
in the sentence extracted from Cornell. An example
of the regular order sentence is ”The cat is red.”, the
associated reverse order is: ”. red is cat The”. Top plot
shows the frequency of words appearing in position 1,
the second plot for words appearing in position 2, the
third plot for words appearing in position 3.

5 Supplementary Material

5.1 Corpus analysis: importance of reverse
model

In this section, we discuss the importance of using
a reverse model. Figure 3 shows the word distri-
bution on Cornell for 50 most common words at
each position. From top plot we observe that the
regular seq2seq faces a lot of likely choices: all the
fifty most common words appear more than 103

times in position 1. The reverse seq2seq faces less
than 5 very likely choices in position 1 that appear
more than 103 time. The reverse seq2seq is then
less likely to transmit a mistake at time step 2.

5.2 Ideal reranking

In Table 3 we report the BLEU-4 achieved by
VBS and Best Hypothesis: the best hypothesis alive
in the beam. It illustrates that the limitations of
the likelihood criterion and shows that making a
change in the final reranking and sentence selection
criterion can yield to higher BLEU-4.

5.3 Implementation of similarity measure
(sim)

In this section we describes the implementation of
each similarity sim used in section 3. We have
introduce a brevity penalty for two main reasons:

• preliminary experiments have shown that the

BLEU-4

Beam Size 1 6 10 50

C
or

n. VBS 1.19 1.23 1.30 1.30
Best Hypoth. 1.19 1.40 1.60 2.56

SW
A VBS 2.39 2.45 2.47 2.52

Best Hypoth. 2.39 3.40 4.30 5.77

Table 3: BLEU-4 Scores on Cornell (Corn.) and
Switchboard (SWA): VBS stands for the standard
beam search (see section 2) Best Hypoth. is the hypoth-
esis in the beam that leads to the highest BLEU-4. In
our work performances of Best Hypoth. can be seen as
an upper bound of the performances of VBS.

regular seq2seq tends to generate short sen-
tences due to the data distribution.

• if no brevity penalty is introduced and both
neural networks generate “I don‘t know” the
selected sentence will be “I don‘t know” since
the similarity measure will be 1. With a
brevity penalty, similarity metric can select
a less generic choice.

5.3.1 BLEUT

BLEUT has been implemented by using the nltk
librairyhttps://www.nltk.org/. In Equa-
tion 9 we set sim = 1−BLEUT .

5.3.2 WMT

WMT uses the wm-relax librairy (https:
//github.com/src-/wmd-relax), embed-
dings used are coming from FastText librairy (Bo-
janowski et al., 2017). At the first step stopwords
according nltk list are removed, Word Mover Dis-
tance is computed and multiplied by BPT pre-
viously defined. Formally, in Equation 9 we set
sim =WMT .

5.4 Architecture details

We evaluate our proposed algorithms by using off-
the-shelf seq2seq models. For the encoder, we use
two-layer bidirectional GRU (Chung et al., 2014)
(256 hidden layers). For the decoder, we use a
one-layer uni-directional GRU (512 hidden layers)
with attention (Luong et al., 2015). The embedding
layer is initialized with fastText pre-trained word
vectors (on Wikipedia 2017, the UMBC web-based
corpus and the statmt.org news dataset) and the
size is 300 (Bojanowski et al., 2017). We use the
ADAM optimizer (Kingma and Ba, 2014) with a

https://www.nltk.org/
https://github.com/src-/wmd-relax
https://github.com/src-/wmd-relax


learning rate of 0.001, which is updated by using
a scheduler with a patience of 100 epochs and a
decrease rate of 0.5. The gradient norm is clipped
to 5.0, weight decay is set to 1e−5, and dropout
(LeCun et al., 2015) is set to 0.1. The models have
been implemented with pytorch, they have been
trained on 97%, validated on 1%, and tested on 2%
of the data respectively. Since our purpose is to
show that bidirectionality can boost beam search
we set α = 1

2 in Equation 2.1.

5.5 Proofs of Complexity analysis
5.5.1 VBS complexity
For VBS, at each time step BV , hypotheses are
re-ranked and the B most likely are kept. The final
average complexity is:

CVBS = T ×O(BV × log(BV )) (6)

5.5.2 BidiS complexity
In the case of BidiS, the algorithm generates B
sequences using VBS, and then for generating se-

quence YT it computes logP (Y −T |X)

lp(YT )
with complex-

ity O(T ). The final step includes a sorting of com-
plexity O(B log(B)).6 BidiS complexity is:

CBidiS = T ×O(BV × log(BV )) (7)

5.5.3 BidiA complexity
Word Mover’s Distance criterion: According to
(Kusner et al., 2015) the computational cost of the
Word Mover’s Distance computation is O(p3 ×
log(p)), where p denotes the number of unique
words in the documents. In our case the distance
is computed between two sequences of length at
most T , hence p ≤ 2T . BidiAWMDT complexity
with Word Mover’s Distance as selection criterion
is given by the following formula:

CBidiAWMDT
=2T ×O(B

2
V × log(BV

2
))︸ ︷︷ ︸

two VBS with with beam size B
2

+
B2

8
×O(8T 3 × log(2T ))︸ ︷︷ ︸

pairwise WMD

+ O(T )︸ ︷︷ ︸
complexity of BPT

(8)

In general T 3 ≤ BV and T ≪ BV , in Equa-
tion 9 the second term is small compared to the first

6O(B log(B)) and O(T ) have much less order compared
to O(BV × log(BV )) so they can be neglected here.

term, hence CBidiAWMDT
≈ T×O(BV ×log(BV

2 )).
Even thought V dominates the complexity of the
algorithm, still BidiAWMDT is more efficient than
VBS. 7

BLEU criterion: the computational cost of the
BLEUT score is polynomial in T. BidiABLEUT

complexity with BLEU score as the selection crite-
rion is given by the following formula:

CBidiABLEUT
=2T ×O(B

2
V × log(BV

2
)) (9)

7For example if T = 30, B = 30, V = 35k we see that
CVBS = 1.4× CBidiA.


