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Abstract

We propose a novel method of homonymy-
polysemy discrimination for three Indo-
European Languages (English, Spanish
and Polish). Support vector machines and
LASSO logistic regression were success-
fully used in this task, outperforming base-
lines. The feature set utilised lemma prop-
erties, gloss similarities, graph distances
and polysemy patterns. The proposed ML
models performed equally well for English
and the other two languages (constituting
testing data sets). The algorithms not only
ruled out most cases of homonymy but also
were efficacious in distinguishing between
closer and indirect semantic relatedness.

1 Introduction
Lexical polysemy is the word property of being
a signifier for different but semantically related
senses. Homonymy, on the other hand, is the ac-
cidental identity of word-forms, with no traces of
real semantic relatedness. Homonyms have dif-
ferent etymologies, while polysemes are the prod-
uct of the sense extending diachronic processes
(Lyons, 1995, pp. 54-60). In fact, homony-
mous words – as semantically unrelated – should
be treated as separate words. For Natural Lan-
guage Processing this task is completely valid
since homonyms frequently appear in textual cor-
pora. Wordnets suffer from the absence of explicit
links between related meanings and do not distin-
guish between the two types of ambiguity, mak-
ing the task harder (Freihat et al., 2013b; Mihalcea,
2003).

In this paper we present a machine learning ap-
proach to automatic discrimination of homonymy
from polysemy in three languages: English, Span-
ish and Polish. We randomly drew samples of
noun polysemous lemmas from each wordnet and

generated all possible sense couplings. Then we
cross-checked them in traditional dictionaries in
search of their homonymy/polysemy status (Sec-
tion 3.1). Each pair was annotated with four differ-
ent groups of features, representing: lemma prop-
erties (Sec. 3.2.1), semantic similarities between
glosses (3.2.2), graph properties of nodes (3.2.3)
and polysemy patterns (3.2.4). Having trained ML
models on English data, we checked their efficacy
on Spanish and Polish sense pairs (Sec. 4.1). Then,
we passed to the analysis of each model behavior
on the subset of English words with known sense
distances (we transformed macro- and microstruc-
tures of Oxford Lexico and Merriam-Webster Dic-
tionary into graphs, Sec. 4.2). We also intro-
duced a definitional guidelines for distinction be-
tween close and indirect polysemy relationship. At
the end, we manually inspected 300 sense pairs to
assess how well homonymy-polysemy discrimina-
tion served close polysemy recognition (Sec. 6).

We define homonyms or homographs as etymo-
logically unrelated sets of senses, having the same
part of speech (POS) category and signified by the
same lemma. We abstract from other grammati-
cal properties of nouns, such as the mass/countable
noun distinction in English or gender differences
in Spanish. We say that two nominal senses repre-
sent homonymy, if they share the same lemma and
whose dictionary equivalents are noted under dis-
tinct entries (i.e., in disjoint entry microstructures).

2 Related Work
Polysemy and homonymy attracted huge re-
searchers’ attention. Approaches to dissolve the
problem could be divided roughly into three main
camps: (i) regular polysemy pattern recogni-
tion, (ii) polysemy instance recognition and (iii)
ontology-based discrimination. Our method be-
longs to the second group.

(i) Numerous papers were devoted to recognis-
ing regular polysemy types (patterns), i.e. classes
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of polysemy instances (actual sense pairs), sharing
the same two superordinate semantic categories
(Apresjan, 1974). Those pairs of categories in-
clude animal – food, container – content, insti-
tution – building etc. To computational linguis-
tics this approach was introduced first by Buitelaar
(Buitelaar, 2000, 1998). Wordnets were searched
for polysemy patterns since then by many scientific
teams. Peters and Peters (2000) and Peters et al.
(1998) tested WordNet unique beginners, as well
as, different combinations of indirect hypernyms
as representatives of semantic domains (“concep-
tual signposts”) for English, Spanish, and Dutch,
see also (Peters, 2003). Freihat et al. (2016), Frei-
hat et al. (2013b) and Freihat et al. (2013a) iden-
tified polysemy patterns and homonymy through
the automatic analysis of WordNet taxonomy and
logical-like inferences. They searched for parental
semantic categories below the upper levels of
WordNet hierarchy. Precisions as high as 90%
were reported by different research groups. Since
the automatic assessment of recall was impossible
in this methodology (cf. Barque and Chaumartin
(2009)), instead, the coverage ratio for wordnets
was often given.

(ii) Regular polysemy does not exhaust the pos-
sible polysemous link types, since polysemous
senses might be related irregularly, according to
metonymy or metaphor paths specific to one or
very few pairs. This topic is of high interest for
Word Sense Disambiguation, because finding pre-
cise semantic links between senses may lead di-
rectly to sense merging and – the so called –
polysemy reduction (Palmer et al., 2007; Navigli,
2009; Mihalcea, 2003). Some general kinds of
polysemy are being distinguished, like metaphor,
metonymy or specialisation/generalisation (Peters
et al., 1998). Barque and Chaumartin (2009) and
Peters (2006) constructed rules and imposed key-
word constrains on glosses. Veale (2004) investi-
gated the broader range of possible rules relying
not only on glosses but also on local graph topo-
logical properties. New models/algorithms may be
used to adding new instances of polysemy to Word-
Net, cf. for instance a metonymy enrichment in
(Hayes et al., 2004).

(iii) Instead of investigating sense pair status,
Utt and Padó (2011) carried out the division at the
lemma level. They made use of polysemy patterns,
based on basic types of Buitelaar’s CoreLex, and
looked for n most frequent polysemy types. They

found the fact that polysemous words tended to
have more frequent patterns than homonyms useful
in homonymy-polysemy discrimination.

3 Method

3.1 Resources and Samples
In discriminating homonymy from polysemy we
relied on traditional dictionaries. For English
they were Oxford Lexico1 and American English
Merriam-Webster Dictionary2. For Spanish we
utilised Diccionario de la lengua española of Real
Academia Española3 and Lexico Spanish Dictio-
nary of Oxford University Press4. Polish dictio-
naries included Uniwersalny słownik języka pol-
skiego5, Doroszewski’s Słownik języka polskiego6

and Słownik języka polskiego7, all published by
Wydawnictwo Naukowe PWN.

We used Open Multilingual WordNet (version
1, Bond and Paik (2012); Bond and Foster (2013))
as the source of polysemous lemmas. We focused
on English WordNet (Fellbaum, 1998), Spanish
part of the Multilingual Central Repository (At-
serias et al., 2004; Gonzalez-Agirre et al., 2012)
and Polish WordNet (Maziarz et al., 2016). For
each wordnet we randomly sampled a set of pol-
ysemous noun lemmas. Then each lemma was
checked in the dictionaries in order to find whether
it was homonymous or not. If so, we carefully
checked all couplings of lemma senses and de-
cided their homonymy/polysemy status. For lem-
mas that were considered polysemous we automat-
ically assumed polysemy of their sense pairs. Then
we added a couple dozen potentially homonymous
nouns to increase the number of homonymy cases.8
We searched the potential homonyms in the liter-
ature on homonymy. These new nouns were then
cross-checked with dictionaries, pair by pair. In

1https://www.lexico.com/
2https://www.merriam-webster.com/
3https://dle.rae.es/
4https://www.lexico.com/es/
5https://usjp.pwn.pl/
6http://doroszewski.pwn.pl/
7https://sjp.pwn.pl/
8Having added new homonymy cases to our data sets, we

must have distorted the real proportion between homonymy
and polysemy. This choice affected the subsequent measure-
ments of precision and recall. Consequently, the calculated
homonymy recognition precision will be treated as the upper
bound for the real homonymy precision, while the obtained
polysemy precision will be regarded as the lower bound for
the real polysemy precision. Random sampling enables us to
directly assess recall of ML models, which is an obvious ad-
vantage.
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https://www.merriam-webster.com/
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https://www.lexico.com/es/
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http://doroszewski.pwn.pl/
https://sjp.pwn.pl/


the case of English we simply borrowed 25 English
homonymous lemmas from a previously made re-
source,9 see Sec. 4.2 for details. Table 1 presents
statistics of final data sets. As could be seen the
data set was unbalanced.

wordnet sample # sense pairs
lang #nS #L #S/L H P

∑
eng 82k 159 4.1 325 1,241 1,566
spa 26k 135 4.0 87 1,060 1,147
pol 29k 111 2.5 39 232 271

Table 1: English, Spanish and Polish polysemous
wordnet nouns with annotated homonymy cases.
Symbol: #nS – number of noun synsets in a word-
net, #L – number of lemmas in a sample, #S/L –
an average number of senses per lemma.

3.2 Features

We used a set of 19 features, representing dif-
ferent properties of sense pairs (Fig. 1). We
started from Open Multilingual Wordnet and its
language-dependent lemma-synset pairings. Hav-
ing obtained the set of – let’s say – n noun senses,
we generated all possible n×(n−1)

2 combinatorial
pairs of senses. We treated PWN network struc-
ture, synset glosses, synset semantic domains etc.
as means of meaning description. English served
as the metalanguage for language specific lemma-
sense pairs, not only in the case of Spanish and
Polish, but also in the case of English itself. Thus
English language was used in a two-fold way: as a
semantic metalanguage (via PWN), and also as the
object of semantic description (via OMW). Thanks
to such an approach, our analysis and developed
statistical models hopefully could be applicable to
virtually any OMW language.

The features that we used could be roughly di-
vided into four main groups: (a) lemma properties
(standardised to obtain language independent mea-
sures), (b) gloss similarities, (c) graph measures
and (d) polysemy patterns. We give them a sharp
description below.

9https://github.com/MarekMaziarz/
PolysemyTheories/blob/master/
LEX-MW-merged-graph-distances.txt

<language, lemma, POS> OMW {<language, lemma, POS, synseti>i∈{1,2,...,n}}

PWN

● gloss
● gloss links
● relations
● lexicographer files
● WNDomains

synset pair features
gloss similarities
 distL, distLT, simDT
graph distances
 simWN, simWNg, simg
other WN graph properties
 meanDeg, shL, shLN
equality of domains
 equlf, equwnd
frequency of polysemy patterns
 dFreqPT, fpt, pi14

lemma features
 nPoly, relLEN

word 
embeddings

gloss similarities
 cosGV, cosBERT

the exemplar 
algorithm

sense links
 alg

standardised
the metalanguage of 
semantic description

language-dependent lemma-sense pairings

the enrichment of the 
PWN metalanguage

levels of 
description

Figure 1: Feature calculation stages.

3.2.1 Lemma properties
nPoly – is a standardised number of senses of a
given lemma l:

nPoly(l) :=
nsen(l)−m

s
, (1)

where nsen(l) is the number of lemma l senses, m
– a mean lemma sense number in a language and
s – a standard deviation of lemma sense number in
the language.

relLEN – is a standardised length of a given
lemma l in characters, given by the formula:

relLEN(l) :=
nchar(l)−m

s
, (2)

where nchar(l) is the lemma l length in charac-
ters, m – a mean lemma length in a language and s
– a standard deviation of lemma length in the lan-
guage.

3.2.2 Gloss similarities
distL – is a synset gloss dissimilarity measured
on strings of letters through Levensthein edition
distance:

distL(g(s1), g(s2)) :=

L(g(s1), g(s2))

max(nchar(g(s1)), nchar(g(s2)))
,

(3)

where s1, s2 are synsets, g(s) - is a gloss of synset
s, nchar(·) - is a string length in characters, L(·, ·)
- is a Levensthein edition distance between two
strings.

distLT – is a synset gloss dissimilarity measured
on sequences of tagged glosses through Levens-

https://github.com/MarekMaziarz/PolysemyTheories/blob/master/LEX-MW-merged-graph-distances.txt
https://github.com/MarekMaziarz/PolysemyTheories/blob/master/LEX-MW-merged-graph-distances.txt
https://github.com/MarekMaziarz/PolysemyTheories/blob/master/LEX-MW-merged-graph-distances.txt


thein edition distance:

distLT (g(s1), g(s2)) :=

L(T (g(s1)), T (g(s2)))

max(nchar(T (g(s1))), nchar(T (g(s2))))
,

(4)

where T (·) denotes a sequence of glosses lemma-
tised by the Stanford Tagger, and all other symbols
defined exactly as in the definition of distL.

simOV – is a synset gloss similarity measured as
the overlap between two sets of gloss lemmas. Let
V = (v1, ..., vn) and W = (w1, ..., vm) be the se-
quences of words constituting glosses g(s1) = V
and g(s2) = W , respectively. Let then ST (X)
denotes the set of tagged words constituting the
gloss sequence X = (x1, ..., xn), i.e., ST (X) =
ST (x1, ..., xn) = {T (x1), ..., T (xn)}. Thus we
define simOV similarity as follows:

simOV (g(s1), g(s2)) :=

|ST (V ) ∩ ST (W )|
min(|ST (V )|, |ST (W )|)

,
(5)

where |A| denotes a cardinality of the set A.

cosGV – is a cosine of two 50D vectors rep-
resenting mean of GloVe vectors for all words
constituting a gloss of a synset. Let GV (w) be
a 50D GloVe vector of the word w. We define
GV (g(s)) = GV (W ) as a mean vector of all
words constituting the sequenceW of length n, i.e.

GV (W ) =
GV (w1) + ...+GV (wn)

n
. (6)

Then, if V = g(s1) and W = g(s2),

cosGV (V,W ) := cos(GV (V ), GV (W )). (7)

cosBERT – cosine of BERT vectors represent-
ing two glosses of paired synsets.

3.2.3 Graph properties
Six measures were based on graph properties:

simWN – was measured on the bidirectional
graph of sole WordNet relations:

simWN(s1, s2) :=
1

distWN (s1, s2)2 + 1
. (8)

Here distWN (s1, s2) describes Dijkstra’s distance
on WordNet graph.

simWNg – was defined on WordNet graph ex-
panded with bidirectional gloss relations:

simWNg(s1, s2) :=
1

distWNg(s1, s2)2 + 1
.

(9)

simg – was defined accordingly on the graph of
gloss relations:

simg(s1, s2) :=
1

distg(s1, s2)2 + 1
. (10)

meanDeg – is a mean degree of two synsets mea-
sured in bidirectional WordNet graph as follows:

meanDeg(s1, s2) :=
F (s1) + F (s2)

2
, (11)

where F (s) is a geometric mean of a square root
of the instance degree

√
degi(s) of the synset s

(total number of instance relations coming to and
from the node s) and the type degree degt(s) (to-
tal number of relation types the node s is involved
within), i.e.

F (s) :=
2 · degt(s) ·

√
degi(s)

degt(s) +
√
degi(s)

, (12)

shL – is a shared lemma index, i.e. the intersec-
tion of sets of lemma synsets divided by the cardi-
nality of the smallest lemma set:

shL(s1, s2) :=
|lem(s1) ∩ lem(s2)|

min(|lem(s1)|, |lem(s1)|)
,

(13)

lem(s) being the set of all lemmas of the synset s.

shLN – is a shared lemma neighborhood index.
Let Nb(s) = {s1, ..., sm} be the set of all m
synsets that are one step apart from the synset s in
bidirectional WordNet graph. Let Lem be a func-
tion such that

Lem(Nb(s)) = lem(s1) ∪ ... ∪ lem(sm). (14)

The shLN measure is given by the formula:

shLN(s1, s2) :=

|Lem(Nb(s1)) ∩ Lem(Nb(s2))|
min(|Lem(Nb(s1))|, |Lem(Nb(s1))|)

.
(15)

3.2.4 Polysemy patterns
The last group of features relies on our ability to
capture polysemy patterns and relations.



alg – is a binary function which checks whether
a given sense pair is predicted by a sense linking
algorithm, called exemplar algorithm (cf. Ramiro
et al. (2018)). The exemplar algorithm links word
senses into a polysemy net according to their prox-
imity in WordNet+glosses graph. At each step we
join a new sense that is the closest to all already
linked senses. The algorithm starts from the synset
with the highest vertex degree (given by the for-
mula (12)).

equlf – is a binary function that checks equal-
ity of semantic domains as defines by lexicogra-
pher files. Let LF (s) be a semantic domain of the
synset s given in lexicographer files.

equlf(s1, s2) =

{
1 if LF (s1) = LF (s2)
0 otherwise.

(16)

equwnd – is a binary function that checks equal-
ity of semantic domains as defined by WordNet
Domains.10 Let WND(s) be a semantic domain
of the synset s given by WND, then

equlf(s1, s2) =

{
1 if WND(s1) = WND(s2)
0 otherwise.

(17)

fpt – is a binary function that checks whether a
given sense pair belongs to the 5% of the most
frequent polysemy patterns. Let’s define a poly-
semy type PT as a pair of semantic domains, i.e.
PT (s1, s2) = (LF (s1̃), LF (s2̃)) (ordered alpha-
betically from left to right, which we mark symbol-
ically with a tilde mark). If we arrange PTs into a
ranking list according to their frequency in Word-
Net (that is in the set of all possible pairs of pol-
ysemous senses) and establish the set FreqPT of
most frequent PTs which accounts altogether for at
most 5% of PT occurrences in WordNet, then

fpt(s1, s2) =

{
1 if PT (s1, s2) ∈ FreqPT
0 otherwise.

(18)

dFreqPT – is a cumulative distribution of a
given polysemy pattern. Let N be the total number
of all polysemy pairs in a wordnet, m be the total
number of polysemy patterns, i be the rank of the

10If there were more than one category ascribed to a synset,
we manually picked the most representative.

polysemy type PTi and Freq(PTi) be the count
of all occurrences of PT in the wordnet.

N =
m∑
i=1

Freq(PTi). (19)

Then

dFreqPT (s1, s2) =

∑p
i=1 Freq(PTi)

N
, (20)

where PTp = PT (s1, s2), p ≤ m.

pi14 – is the measure inspired by the π81-score
from (Utt and Padó, 2011). Let FreqPT be the
set of most frequent polysemy patterns, as defined
above, Pw be the set of polysemy patterns PT of a
given lemma l, then

pi14(l) :=
|FreqPT ∩ Pw|

|Pw|
, (21)

i.e., it is the ratio of language most frequent PTs
in the set of PT characteristic for a given l.

4 Results
4.1 Polysemy vs. Homonymy
To cope with the unbalanced data problem a resam-
pling methodology was applied for the smaller ‘H’
class.11 Data were divided into 10 folds according
to their lemmas.12 Models were presented itera-
tively 9 training folds and then evaluation was per-
formed on the 10th fold. The final tests were per-
formed on Spanish and Polish (broken down into 5
folds for the comparison with baselines). LR was
optimised through LASSO methodology (with 1
SE optimisation).13 SVM was run with default pa-
rameters. Tables 2, 3 and 4 present the results for
English, Spanish and Polish, respectively.

The obtained results prove that our two classes
are not easily separable. This is caused not only
by the choice of particular features, but also by the
actual nature of polysemy. As soon as we matched
various sense pairs of polysemous words, we had
to deal with different parts of polysemy nets. Some

11We presented a ML model each homonymy pair four
times.

12Sense pairs representing the same lemma landed in the
same fold

13We optimalised λ parameter of the LASSO logistic re-
gression on each training data set, then for the whole training
data set the optimalised λ (corresponding to the most parsi-
monious model within 1 SE from the minimal error model)
was established. The number of features was reduced to 13,
with the most prominent being relLEN, simWN, simWNG,
cosBERT, equlf, meanDeg, nPoly, pi14 and shL.



English prediction efficiency
class P H Prec. Recall

SVM P 716 525 .94∗∗ .58∗
H 43 282 .35∗ .87∗∗

LR P 661 580 .97∗∗ .53
H 19 306 .34∗ .94∗∗

mBL P 1241 0 .79 1∗∗
H 325 0 – 0

rBL P 620.5 620.5 .79 .50
H 162.5 162.5 .21 .50

Table 2: Confusion matrices for English test set,
10-fold cross-validation. Baselines: ‘mBL’ – the
majority class, ‘rBL’ – random (uniform distribu-
tion). Results significant at 5% significance level
are marked with an asterisk (Holm’s correction
for multiple comparisons was applied, see Holm
(1979)). In superscripts we give the comparison
with mBL, while in subscripts – to rBL. In the case
of mBL baseline, in superscript we present com-
parison to SVM and in subscript – to LR.

Spanish prediction efficiency
class P H Prec. Recall

SVM P 600 460 .98∗∗ .57
H 10 77 .14∗ .88∗∗

LR P 525 535 1∗∗ .50
H 0 87 .14∗ 1∗∗

mBL P 1060 0 .92 1∗∗
H 87 0 – 0

rBL P 530 530 .92 .50
H 47.5 47.5 .08 .50

Table 3: Confusion matrices for Spanish test set.
5-fold cross-validation (with Benjamini-Hochberg
correction, see Benjamini and Hochberg (1995)).

pairs were semantically as close as an extended
sense and its base sense. Another represented dis-
tant relationships, i.e. indirect links. Although the
polysemy class contained only related senses, the
real nature of their semantic proximity was not de-
termined. As a result the polysemy relationship
class might have been torn apart between closer
relationships and the heavy body of (resampled)
homonymy class – representing the opposite poles
of the polysemy-homonymy axis.14

14Lyons (1977, p. 550) perceived polysemy as a non-binary
relation ranging from vagueness of meaning shades to total
unrelatedness of homonymy.

Polish prediction efficiency
class P H Prec. Recall

SVM P 149 83 .96∗∗ .64∗
H 6 33 .28∗ .85∗∗

LR P 116 116 .96∗∗ .50
H 5 34 .23∗ .87∗∗

mBL P 232 0 .86 1∗∗
H 39 0 – 0

rBL P 116 116 .86 .50
H 19.5 19.5 .14 .50

Table 4: Confusion matrices for Polish test set.
5-fold cross-validation (Benjamini-Hochberg cor-
rection).

It seems that both SVM and logistic regression
aimed at capturing as many cases of homonymy as
possible, with slight predominance of the logistic
regression in this task. Both models led to ruling
out many semantically related pairs, thus as a result
we obtained a heterogeneous class of homonymy
predictions and homogeneous polysemy class. De-
spite these weaknesses both models easily outper-
formed majority baselines, as well as random ones.

4.2 Close vs. Distant Polysemy
To check how well the two models cope with close
(direct) and distant (indirect) polysemy, we con-
trasted their outputs with external data from Lex-
ico and Merriam-Webster Dictionary. We anal-
ysed 57 nominal lemmas.15 Onto each noun and its
senses we mapped corresponding Princeton Word-
Net synsets. Then we transformed dictionary mi-
crostructures into graphs – according to sense or-
dering and polysemy hierarchy. It enabled us to
measure distances between PWN senses in both
dictionary-based graphs.16

Figure 2 presents both prediction classes “P”
and “H” projected onto the plane of seman-
tic distances measured either in Lexico graph
(“distLEX”), or in Merriam-Webster (“distMW”).
Homonymy resides in the top right most corner

15This comprised following nouns: angle, band, bank,
bark, bat, board, can, chapter, chop, clip, concealment, crest,
cylinder, date, degree, duck, fall, fame, file, fly, gloss, intellect,
lump, master, match, palm, pasturage, plant, ring, rock, rose,
saw, scale, score, sentence, shilling, sink, skimmer, spring,
stage, stalk, table, term, tie, tongue, trepan, trip, tune, veneer,
vermin, victim, voucher, well, whirl, wrapping and wreck.

16The transformation followed two main rules: (1) link
main senses into a chain according to their ordering, (2) link
a subsense to its superordinate.



of the plane, while direct polysemy occupies the
area close to the origin of the coordinate system,
i.e. the point (0, 0). Graph distances themselves
are highly correlated if we include homonymy
cases.17. Spearman’s rank correlation ρ = 0.771.
If we exclude homonymy the correlation drops to
the moderate values, ρ = 0.453 (sole polysemy
cases). Intuitively, we could define close polysemy
as a pair of senses which are (at least in one dictio-
nary graph):

• either adjacent nodes in the chain of ordered
senses,

• or a main sense and its subsense.

More formally we would say that two senses si and
sj of the same word represents the relation of close
polysemy (cP ) if the following condition holds:

cP := {(si, sj) ∈ S × S :

distLEX(si, sj) ≤ 1 ∨ distMW (si, sj) ≤ 2},
(22)

where S = s1, ..., sn is the set of n senses of the
same word, while distLEX and distMW are mea-
sured on Lexico and Merriam-Webster graphs, re-
spectively.18 The ‘dP’ class was a set-theoretic
complement of the ‘cP’ set to the ‘P’ class, i.e.

dP := {(si, sj) ∈ S × S : (si, sj) /∈ H∧
distLEX(si, sj) > 1 ∧ distMW (si, sj) > 2},

(23)

where H is the set of homonymy cases.
Figure 3 and Table 5 illustrate how well the lo-

gistic classifier and the SVM model deal with the
two different types of polysemy: close, ‘cP’, and
distant, ‘dP’, as well as with homonymy pairs, ‘H’.
As could be seen, the prediction class ‘H’ com-
prises almost all homonymy cases and most cases
of distant polysemy. Almost half cases of close
polysemy belongs there also. When one looks at
the prediction ‘P’ class, the reversed picture is re-
vealed. It contains nearly no cases of homonymy,
and 2 times more close polysemy pairs than dis-
tant polysemy. It seems that the prediction class
‘P’ approximates close polysemy (with 67% pre-
cision and 50% recall), although we did not teach
models the direct recognition of this class.

17Transforming infinities to maximum values for
homonymy, i.e. Inf −→ max(dist) + 1.

18Since Merriam-Webster has more fine-grained sense dis-
tinctions, we used different thresholds for both dictionaries.

English prediction efficiency
class P H P R

SVM
cP 170 125 .59∗∗ .58∗
dP 105 172 .67∗∗ .68∗∗H 11 80

LR
cP 157 138 .66∗∗ .53
dP 80 197 .67∗∗ .78∗∗H 2 89

mBL cP 295 0 .44 1∗∗
dPH 368 0 – 0

rBL cP 147.5 147.5 .44 .50
dPH 184 184 .56 .50

Table 5: The subset of LR and SVM confusion ma-
trices presented in Table 2 limited to Lexico and
Merriam-Webster data. Three grades of seman-
tic similarity/dissimilarity represent: close poly-
semy (‘cP’) – distant polysemy (‘dP’) – homonymy
(‘H’), as cross-tabulated with binary logistic pre-
dictions (‘P’, ‘H’). Efficiency measures were cal-
culated for the ‘cP’ class and for the joint ‘dP’ +
‘H’ class. Two baselines were calculated: ‘mBL’,
i.e., the majority class and ‘rBL’ – random base-
line. Benjamini-Hochberg correction was applied
in the comparison with baselines on 5 random folds
(5% significance was marked with asterisks).

4.3 Manual evaluation

Table 6 presents results of the independent man-
ual evaluation by the first (#1) and the second
(#2) author of this paper. #2 annotated 300 sense
pairs (100 for each language), randomly selected
from the outcome ‘P’ class of the English lo-
gistic regression model. #1 evaluated a subset
of 100 of those pairs. Sense pairs were judged
against their PWN definitions. Two senses were
considered a close polysemy pair (‘cP’) if only
they could be classified as one of the following
polysemy subtypes: (i) metaphor, (ii) metonymy
(including situation-argument relationships), (iii)
sense broadening/narrowing, (iv) co-hyponymy,
(v) antonymy and (vi) near-synonymy (cf. (Cruse,
2006, pp. 133-4), (Taylor, 2000, pp. 128-9)). Oth-
erwise they were considered ‘dP’ (if they were se-
mantically related) or ‘H’ case (if there was no re-
lationship at all).

The resulting agreement was moderate, with
Cohen’s κ = 0.4 (‘dP’ and ‘H’ class were identi-
fied). 24 remaining disagreement cases were then
again independently rejudged, resulting a higher
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Figure 2: On the left – SVM, on the right: logistic regression. Prediction classes “P” and “H” compared
with Lexico and Merriam-Webster distances (distLEX and distMW, respectively). Real homonymy cases
occupy the top right corner, while direct polysemy cases take up the bottom left area. Please note, this is
the subset of 10-fold cross-validation data (Table 2) limited to Lexico and Merriam-Webster lemmas.
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Figure 3: On the left (A, B) – SVM outcome, on the right (C and D) – LR model. Prediction classes ‘P’
and ‘H’ as compared to close and distant polysemy, ‘cP’, ‘dP’ and real homonymy ‘H’. A, C – facets by
prediction classes, B, D – facets by cP, dP and real homonymy.



pred. ‘P’ eng* spa pol in total
class n n n

∑
CI [%]

#1 cP 24 26 28 78 69-86
dPH 10 7 5 22 14-31∑

34 33 33 100 100%

#2 cP 58 70 71 199 61-72
dPH 42 30 29 101 28-39∑

100 100 100 300 100%

Table 6: Manual evaluation of the prediction class
‘P’ given by the LR classifier with regard to ‘cP’,
‘dP/H’ classes. Symbols: * – cross-validation re-
sults, CI – a 95% confidence interval. The annota-
tor #2 validated 300 cases, out of which the anno-
tator #1 annotated 100. Cohen’s κ = 0.4.

kappa, κ = 0.6, with the percentage IAA = 86%.
Taking into account only the agreed 86 cases, we
got CI for ‘cP’ equal to 68%-86%. Though the
agreement was not perfect, the experiment proved
that the majority of ‘P’ class instances was indeed
close polysemy. The obtained confidence inter-
vals are almost in perfect concordance with the au-
tomatic evaluation performed on the Lexico and
Merriam-Webster graphs.

5 Conclusions

In a small-scale study of 400 nouns from three lan-
guages representing different branches of the Indo-
European family we checked usefulness of two
ML models (logistic regression and SVM) in dis-
criminating homonymy from polysemy. We pro-
posed a new set of 19 language-independent fea-
tures, which comprised: lemma properties (like
length), gloss similarities (including embeddings),
graph properties (like graph distances) and fre-
quent polysemy patterns. LR and SVM were
trained on English data and tested on Spanish and
Polish. The results were comparable, suggest-
ing that our method could be transferred to non-
congenial languages. Machine learning models
performed above baselines for all languages.

Comparison with traditional dictionaries
showed that trained classifiers preserved not only
the polysemy-homonymy distinction, but also
favoured direct polysemy over indirect relation-
ships (in the prediction class ‘P’, with the reversed
situation for ‘H’ predictions). Manual inspection
of the LR ‘P’-class outcome confirmed this
finding: majority of sense pairs were classified as

close rather than indirect semantic links.
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