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Abstract

The ability to continuously expand knowledge
over time and utilize it to rapidly generalize to
new tasks is a key feature of human linguis-
tic intelligence. Existing models that pursue
rapid generalization to new tasks (e.g., few-
shot learning methods), however, are mostly
trained in a single shot on fixed datasets,
unable to dynamically expand their knowl-
edge; while continual learning algorithms are
not specifically designed for rapid generaliza-
tion. We present a new learning setup, Con-
tinual Learning of Few-Shot Learners (CLIF),
to address the challenges of both learning
settings in a unified setup. CLIF assumes
a model learns from a sequence of diverse
NLP tasks arriving sequentially, accumulating
knowledge for improved generalization to new
tasks, while also retaining performance on the
tasks learned earlier. We examine how the gen-
eralization ability is affected in the continual
learning setup, evaluate a number of continual
learning algorithms, and propose a novel regu-
larized adapter generation approach. We find
that catastrophic forgetting affects generaliza-
tion ability to a lesser degree than performance
on seen tasks; while continual learning algo-
rithms can still bring considerable benefit to
the generalization ability1.

1 Introduction

The ability to recall acquired knowledge for learn-
ing new tasks quickly and efficiently over time has
been seen as a crucial metric of general linguistic
intelligence (Yogatama et al., 2019). Progress on
this research problem has led to remarkable im-
provements in recent works on few-shot learning
(Brown et al., 2020; Gao et al., 2021). However,
these methods have primarily focused on learning
from a static set of tasks (datasets) in an offline man-
ner, without dynamically expanding the acquired

1Code and data are publicly available at https://
github.com/INK-USC/CLIF
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Figure 1: Overview of the Training and Evaluation
setup in CLIF. The model learns over a number of
training tasks sequentially and is evaluated over all the
seen tasks. We also evaluate its ability to adapt to new
tasks with only a small number of labeled examples.

knowledge over time. This training scheme is in
contrast with the way humans process natural lan-
guage (Chomsky, 2002; Montague, 1970): humans
are able to process novel meanings by retaining
past knowledge, combining/decomposing chunks
of language into prior learned language compo-
nents, and avoid learning from scratch.

Motivated by this observation, we study whether
NLP models could accumulate generalizable
knowledge continuously over a sequence of tasks
and learn to generalize to new tasks rapidly (i.e.,
with few examples). This problem has not been
investigated in the existing works — a related line
of efforts that look to learn from sequentially ar-
riving tasks, known as continual learning (CL) or
lifelong learning (Robins, 1995; Sun et al., 2020;
de Masson d’Autume et al., 2019), mainly focus on
retaining the performance on seen tasks when the
model is continuously updated on new tasks (i.e.,
to overcome the catastrophic forgetting issue).

To study this ability, we propose the Continual
LearnIng of Few-shot Learners (CLIF) setup (il-
lustrated in Figure 1) to simulate the challenge:
In CLIF, the model learns over a sequence of NLP
tasks (arriving one by one; without revisiting), and
then evaluated in terms of (i) generalization to new

https://github.com/INK-USC/CLIF
https://github.com/INK-USC/CLIF
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(few-shot learning) tasks; and (ii) preserving its
performance on solving seen tasks. We train and
evaluate over a diverse set of NLP tasks, spanning
over entity typing, sentiment analysis, natural lan-
guage inference, and other classification tasks.

With the CLIF setup, we conduct a series of
experiments on existing models, in order to under-
stand the relationship between continuous knowl-
edge accumulation and few-shot generalization.
Our first analysis is to understand how the gen-
eralization ability evolves during continual train-
ing, and whether catastrophic forgetting affects the
acquisition of generalization ability. We find a neg-
ative effect of catastrophic forgetting on the gener-
alization ability, and a stronger negative effect on
the performance over the seen tasks.

In a follow-up analysis, we find most exist-
ing CL methods hardly benefit models’ general-
ization ability, even they are shown to alleviate
catastrophic forgetting. This implies some non-
trivial challenges for accumulating knowledge that
can help model generalization. Inspired by re-
cent research on Hypernetworks for few-shot learn-
ing (Requeima et al., 2019) and continual learn-
ing approach using Hypernetworks (von Oswald
et al., 2020), we propose Bi-level Hypernetworks
for Adapters with Regularization to address chal-
lenges of the CLIF. We evaluate these approaches
extensively by varying the number of training ex-
amples and the orders of tasks at training.

To summarize, the main contribution of this
work is threefold (1) we propose CLIF setup, its
data streams and protocols to comprehensively eval-
uate lifelong knowledge accumulation in NLP, and
(2) we compare existing algorithms to demonstrate
weaknesses of these algorithms (3) and propose
Bi-level Hypernetworks for Adapters with Regular-
ization as a solution to inspire future works.

2 Problem Formulation

2.1 The CLIF Problem

We assume there is an NLP model f trained con-
tinually on different tasks over time (i.e., continual
learning), and then rapidly generalizes to many un-
seen tasks with few-shot examples (i.e., few-shot
adaptation). In the continual learning stage, the
model encounters an ordered list of Nu upstream
tasks: [T 1

u , . . . , T Nu
u ], where each task has its own

training and test sets. To test the few-shot learning
ability of the sequentially trained model f , we then
adapt it on a set of Nv few-shot tasks individually

Task 1 Task 2 Task 3 Task 4 …

Evaluate ②

Evaluate ①

Evaluate ③

Few-shot 
Task 1

Few-shot 
Task 2

Few-shot 
Task K

① - few shot performance ② - instant performance ③ - final performance

…

Figure 2: Evaluations setups in CLIF. (1) and (2)
measure generalization ability to new tasks; while (3)
indicate forgetting on seen tasks.

{T i
v }

Nv
i=1, where only a few training examples are

available for each unseen task. We name this learn-
ing setting as CLIF, which stands for continual
learning for few-shot adaptation. In addition to the
traditional objective in CL to preserve performance
on seen tasks, in CLIF it is also crucial to retain
generalizable knowledge to achieve better few-shot
learning performance at the end of training.

Evaluation Protocol As illustrated in Figure 2,
there are three major aspects for evaluating a
method to the CLIF setting: few-shot performance,
final performance, and instant performance.

1) Few-shot Performance. First, we evaluate the
continually trained model f on a set of unseen
tasks, by fine-tuning it for each task T i

v individ-
ually with a few annotated examples when the
training over upstream tasks T 1

u ..T Nu
u ends. Thus,

we can assess the few-shot generalization ability.
We note the few-shot accuracy for a task T i

v as
siFS = F (Y i

v, Ŷ i
v), where Ŷ i

v is the predictions over
the test examples of task T i

v , Y i
v is the set of ground

truth labels, and F is the metric function (e.g., ac-
curacy). We report sFS averaged over all few-shot
tasks, i.e., sFS = 1

Nv

∑Nv
i=1 s

i
FS. We also compute a

relative improvement ∆FS =
sFS−s′FS

s′FS
over the per-

formance s′FS of the models separately trained on
each few-shot task.

2) Instant Performance. We evaluate the perfor-
mance of an upstream task T i

u right after the model
f finishes the learning on it. We note the set of
model prediction on the test set of task T i

u right
after the model f learns the task j as Ŷ i,j

u . The
instant performance over task T i

u is defined as
siinst. = F (Y i

u, Ŷ
i,i
u ). For example, we evaluate

the performance of f on T 2
u after the model f is

trained on the data of T 1
u and T 2

u , before further
train it on T 3

u . The performance of f on T 2
u now

can thus tell us how well the model transfers its
knowledge from learning T 1

u to learn T 2
u — using
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Learning Stage Tasks # Tasks

CLIF-26
Continual (Tu) GLUE (Wang et al., 2019a) Nu =9
Few-shot (Tv) DivFSL (Bansal et al., 2020) Nv =17

CLIF-55
Continual (Tu) SuperGLUE-RTE, TweetEval-

Sentiment, Scicite, GLUE-MRPC,
Scitail, KILT-Fever, ...

Nu =45

Few-shot (Tv) SuperGLUE-CB, Dbpedia-14,
Wiki-QA, emo, Yelp-Polarity,
ethos-religion, tab-fact, financial-
phrasebank, ANLI, ethos-race

Nv =10

Table 1: Overview of datasets employed for up-
stream continual training and few-shot learning.
We include the full list of tasks in Appendix A.

the performance when f is trained only on T 2
u as

a reference. We compute average instant perfor-
mance of all upstream tasks, sinst. = 1

Nu

∑Nu
i=1 s

i
inst.

We additionally compute a relative improvement
∆Inst. =

sinst.−s′inst.
s′inst.

over the performance s′inst. of
models separately trained on each upstream task to
indicate benefit of upstream learning.

3) Final Performance. We also evaluate the perfor-
mance of f at the end of the continual learning over
upstream tasks to know how much the model f for-
gets the knowledge about the task after it learns to
solve more tasks. The final accuracy sifinal of a task
T i
u is defined as F (Y i

u, Ŷ
i,Nu
u ). Similarly, we report

the averaged final accuracy over all tasks, noted as
sfinal = 1

Nu

∑Nu
i=1 s

i
final.. For a single model, the

forgetting can be quantified as sinst − sfinal.

Challenges The CLIF setting is particularly chal-
lenging for existing few-shot learning methods.
Most few-shot learning methods assume that the
upstream training datasets for all tasks are always
available and there is no temporal order for learning.
Hence, the upstream tasks can be learned jointly in
a multi-task learning setting. However, the CLIF
problem follows a continual learning setup, where
the tasks are visited sequentially without revisiting.
Thus, methods relying on random sampling from a
task distribution are not applicable.

2.2 Tasks and Data Streams

To push the CLIF challenge to a more practical
setup, we consider a diverse set of NLP tasks to
perform CL and few shot learning. We consider
two dataset combinations, referred to as CLIF-26
and CLIF-55 tasks, summarized in Table 1. In the
first combination, following Bansal et al. (2020),
we use the GLUE (Wang et al., 2019a) bench-

mark as our upstream tasks for CL stage for ex-
periments which consists of Nu = 9 tasks. We
then evaluate the few-shot learning ability over
Nv = 17 DivFSL (Bansal et al., 2020) tasks,
spanning over diverse NLP tasks including sen-
timent analysis, entity typing and natural language
inference. In CLIF-55, we train and test the
model over Nu = 45 and Nv = 10 tasks selected
from Huggingface datasets library2. The selected
datasets span over a broad family of NLP tasks,
including natural language inference, emotion clas-
sification, topic classification, fact checking, hate
speech detection, paraphrasing, and others.

To adopt it for our learning setting, we specify
an order on the tasks presented to the model for
CLIF-26 and CLIF-55 (details in Appendix A).
We also consider alternative task orders in our ex-
periments. The model sequentially visits each task
during training. We limit the number of train-
ing examples in each GLUE task in CLIF-26 to
10,000 to avoid overly imbalanced datasets. For
CLIF-55, we use 90 examples per class for con-
tinual learning. We use k = 16 examples per
class in few-shot learning tasks for both CLIF-26
and CLIF-55 if not specified, and include more
setups of k in the experiments. As the test labels
for GLUE are not publicly available, we report per-
formance on validation sets. We convert regression
tasks (e.g. STS-B) to binary classification tasks by
setting the threshold in the middle of the maximum
and minimum regression scores.

All examples are converted into sequence-
to-sequence question-answering formats follow-
ing (McCann et al., 2018) to allow a single model
to solve all tasks. We consider exact match be-
tween the generated answer span and the ground-
truth span as a correct prediction. For both the
upstream tasks and few-shot tasks in CLIF-26
and CLIF-55, we use the prediction accuracy as
the metric function.

3 Method

This section presents baseline methods to set up
the lower bounds for the CLIF problem, and ap-
proaches to improve the performance. We view an
approach by its base model and the learning algo-
rithm. We first introduce the base models in our
study (Sec. 3.1); Then, we introduce a few existing
methods for continual learning and continual meta-
learning (Sec. 3.2). Finally, we present a novel

2https://huggingface.co/datasets

https://huggingface.co/datasets
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regularized bi-level adapter generation framework
to better address the CLIF problem (Sec. 3.3).

3.1 Base NLP Models

BART and BART-Adapter. As we formulate
the NLP tasks in the CLIF problem in a unified
text-to-text format, we use pre-trained language
models (LMs) as the architecture of the model
f and fine-tune the entire model during train-
ing. We mainly use the BART-base (Lewis et al.,
2020) model for our experiments. We also include
Adapter training (Houlsby et al., 2019) as an alter-
native to fine-tuning the entire BART model. Here,
adapters (Houlsby et al., 2019) are two-layer Multi-
Layer Perceptrons (MLPs) plugged after each layer
of BART. Given the output h` at the `-th layer of
the transformer, the adapted output is computed as
h′` = h` + fa

` (h`), where fa
` is the adapter layer

at layer `. Only adapters are learned during train-
ing, while the BART model is frozen. We note
two approaches BART and BART-Adapter re-
spectively.

Hyper-Networks for Adapter Generation. In
addition to BART and BART Adapter, we also
use consider a HyperNetwork (HNet) architecture.
The hypernetwork, noted as g, takes a task repre-
sentation z as input and generates model parameter
of another prediction model, noted as f to solve the
task. In few-shot learning, z is usually computed as
the average representation of training examples of
the task, z = 1

|Di
tr|

∑
(xj ,yj)∈Di

tr
fe(xj ,yj), where

Di
tr is the training set of the task T i and fe in an

encoder model. In our case, we use a BART model
as fe and feed it the concatenation of x and label
y in text format to obtain the task representation
z. As the model allows flexible control of model
parameters with training examples, it is broadly ap-
plied for few-shot learning (Requeima et al., 2019;
Gidaris and Komodakis, 2018); besides, z can also
be randomly initialized and end-to-end learned (Ha
et al., 2017). As the parameter space of large-
scale PTLMs like BART is huge, following (Ye
and Ren, 2021), we generate model parameters
only for adapters.

In summary, we consider BART fine-tuning,
BART-Adapter learning and HNet for adapter
generalization as three base NLP models. In sec-
tion 3.2, we introduce algorithms to learn these
models in the CLIF setting.

3.2 Baseline Learning Algorithms

Single Task Learning To understand the refer-
ence performance of a base model on an upstream
task without any knowledge transfer, we apply the
single task learning (STL) method, which trains
and tests a model f on the dataset of each task in
isolation. In this case, we ignore the sequential
nature of the CLIF problem so we can use this STL
performance to assess the effectiveness of different
continual methods (introduced below). Ideally, a
valid CL algorithm should have a better few-shot
accuracy than STL results, meaning that it accu-
mulates knowledge and effectively transfer it for
learning. Similarly, to know the reference perfor-
mance of the few-shot tasks, we learn a model f
for each few-shot task on the given examples, with-
out any upstream training, so that we can use such
performance to assess how well a CLIF method
improves the generalization ability.

Continual Learning Algorithms As a straight-
forward baseline method, we use Vanilla to
denote simply training the model f sequentially
on the upstream tasks. Specifically, it trains the
model f on T i

u until its performance converges
and then continually train f on the data of T i+1

u .
Note that the access of the data on previous tasks
is not allowed in CL. We also consider CL al-
gorithms such as EWC (Kirkpatrick et al., 2017),
MbPA++ (de Masson d’Autume et al., 2019) and
meta-MbPA (Wang et al., 2020) in our experi-
ments. We use an online variant of EWC (Schwarz
et al., 2018). EWC regularizes the change of im-
portant model parameters during training. The
MbPA++ method performs test-time adaptation
over a few training examples stored in the memory.
The meta-MbPAmethod includes a meta-learning
objective to adapt fast.

As a comparator that does not suffer from for-
getting, we also report the results of multi-task
learning over upstream tasks (MTL) for reference.

Hyper-Networks for CL. von Oswald et al.
(2020) proposed a hypernetwork-based continual
learning algorithm, where the high-level idea of
mitigating catastrophic forgetting is to penalize the
hypernetwork for the change of generated model
weights for previous tasks when it learns a new task.
While the original work generates entire parameters
of a model, we adapt it to PTLMs by generating
the weights of adapters only. We note the approach
as HNet-Reg.
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Specifically, when the model has just finished
learning the task T i−1

u and right before learning
the task T i

u in the continual learning stage, we com-
pute the adapter weights generated by our current
hypernetwork for all prior tasks T 1

u ..T i−1
u , noted

as {θ̂i−1
1 , θ̂i−1

2 , . . . , θ̂i−1
i−1}— where the generation

is controlled by applying the hypernetwork h on
the stored task representations of previous tasks
1..i − 1, noted as M = {z1

h, . . . ,z
i−1
h }. Here,

the task representation zi for task T i
u is randomly

initialized before learning the task and optimized
jointly while learning the task. Then, in each step
of learning T i

u , we randomly sample a prior task
T j
u (j < i) to regularize the hypernetwork learning.

It penalizes the `2 distance between the adapter
weights generated at the current step θj and the
pre-computed one, i.e., ||θj − θ̂i−1

j ||22. Therefore,
we avoid the hypernetwork g changes its output for
a prior task too much during the continual learning
stage, so that the knowledge accumulation is better
guaranteed for the learned model.

Limitations. EWC and HNET-Reg are not well-
designed for the CLIF problem, which addition-
ally tries to improve the few-shot generalization on
unseen tasks after continual learning. While the
test-time adaptation in MbPA and meta-MbPA may
benefit few-shot learning, such ability is not studied
in these works. Besides, as these two algorithms
store real examples of previous training tasks, it
is not applicable in privacy sensitive applications
where data from earlier task is no longer accessible,
which is a typical scenario in continual learning.

3.3 Our Extension: Bi-level Hypernetworks
for Adapters with Regularization

Inspired by hypernetwork approaches for few-shot
learning and continual learning, we extend the
hypernetwork-based CL methods for CLIF. We
present a novel method, Bi-level Hypernetwork
for Adapters with Regularization (BiHNet+Reg),
which learns to use the bi-level task representa-
tions to generate adapter weights for learning a
fast adaptive model over a sequence of tasks, while
mitigating the forgetting effect via regularization.

As shown in Figure 3, the proposed method con-
sists of three components: (1) a context predic-
tor to generate bi-level task representations (i.e.,
high-resource and few-shot representations) from
training examples, (2) a hypernetwork to generate
weights of adapters given the task representations,
and (3) a regularization term to discourage weight
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replay
Memory

(stored examples)

retrieve

Memory-Based CL (MbPA++)

HyperCL (Our BiHNet+Reg)

Adapter Generation

Figure 3: A comparison between different typi-
cal continual methods to the CLIF problem. The
Vanilla CL method simply trains the model on a se-
quence of tasks Tu. Memory-based methods such as
MbPA++ (de Masson d’Autume et al., 2019) store
a small set of examples of prior tasks and then re-
play them during learning. Our BiHNet+Reg method
uses a hypernetwork to generate the weights of model
adapters according to bi-level (high-resource and few-
shot) task representations.

changes of seen tasks to avoid forgetting follow-
ing (von Oswald et al., 2020). We discuss each
individual component below.

Context Predictor. We propose to generate two
task representations for each task t to model it
in the high-resource and few-shot cases respec-
tively, denoted as zth and ztf , with a frozen BART
model. The high-resource representations are
used to encourage the knowledge transfer dur-
ing continual learning; the few-shot task repre-
sentations help us mimic the few-shot tasks in
the few-shot learning stage for better generaliza-
tion, similar to meta-learning. Specifically, we
use an LM (e.g., BART) as the context represen-
tation model R for encoding an example (x,y):
we feed x and y to the encoder and the decoder
of the model R, and use the latent representation
from this last-layer activation. The high-resource
task representation is then computed as the av-
erage of all examples’ representations in task t,
noted as zth = 1

|Dt|
∑

(xi,yi)∈Dt
R(xi,yi); while

the few-shot task representation ztf uses the aver-
age of a limited number (say, K) of sampled exam-
ples ztf = 1

K

∑
(xi,yi)∈Γ(Dt,K) R(xi,yi), where

Γ(Dt,K) means sampled K examples in Dt.
Note that the high-resource representations of

upstream tasks are stored in a memory module over
time during the continual learning,M = {zth|t ∈
{T i

u}
Nu
i=1} . In the few-shot learning stage, we set

K as the number of given examples, so the zh =
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zf for any tasks.

Adapter-Wise Hypernetworks. Following the
practice introduced in Sec. 3.1, we use a hypernet-
work g to generate weights of adapters between the
layers of the frozen BART model f . During train-
ing, we use high-resource and sampled task repre-
sentations zth and ztf to generate adapter weights

separately, noted as θht and θft . We optimize the
prediction loss with both adapters.

Regularization. Given that the HyperNetwork is
the only trainable part in our model, we impose
regularization on generated adapters to mitigate
forgetting following HNet+Reg introduced in 3.2.
While our BiHNet is trained to generate adapters
from both high-resource and low-resource task rep-
resentations, we find it sufficient to only store and
regularize outputs from high-resource task repre-
sentations.

Summary and Highlights To sum up, our pro-
posed method first generates bi-level task repre-
sentations for training adapter-wise hypernetworks
with a regularization term dedicated for avoiding
forgetting over time. Unlike replay-memory based
CL approaches (e.g., MbPA (de Masson d’Autume
et al., 2019)), our method does not store any real
training examples. Instead, it uses task representa-
tions for storing the memory, and thus allows the
method to be applied in privacy-sensitive scenarios.

4 Results and Analysis

We address our two major research questions in this
section: (1) how models accumulate generalizable
knowledge over time in a CL setup compared to
offline setups given potential catastrophic forget-
ting, and (2) whether continual learning approaches
reduce catastrophic forgetting of both seen-task per-
formance and generalizable knowledge. We experi-
ment with various combinations of model architec-
tures in 3.1 and learning algorithms 3.2. We note a
method by its model architecture and CL algorithm
applied, e.g., BART-Vanilla, BiHNet-EWC. We in-
clude details of implementation in Appendix A.

4.1 Examining Knowledge Accumulation
In this section, we present analysis of model’s abil-
ity to acquire generalizable knowledge in offline
and CL setup. We note BiHNet methods, which cor-
respond to learning to generate adapters, should be
compared with BiHNet-Single and BART-Adapter-
Single, which are zero-knowledge baselines that

0 1 2 3 4 5 6 7 8 9
Seen GLUE Tasks

52.5

55.0

57.5

60.0

Fe
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sh
ot

 A
cc
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BiHNet-MTL
BiHNet-Van
BiHNet-Reg

Figure 4: Few-shot learning performance on CLIF-26
test tasks evaluated after each checkpoint of the model
as the model sequentially visit upstream continual
learning tasks.

learns to generate or learn adapters from random
initialization; similarly, BART methods should be
compared with BART-Single. We focus on identi-
fying challenges in CLIF, and leave discussions of
methodology in the next subsection.

Q1: Is knowledge from upstream tasks help-
ful for a model’s few-shot generalization in of-
fline and continual learning setups? To answer
the question, we compare the performance of
MTL with learning separate models per few-shot
task without learning upstream tasks. Table 2
summarizes the results. On both CLIF-26 and
CLIF-55 datasets, we see BiHNet-MTL could
outperform zero-knowledge baselines in few-shot
Acc. by 0.4% and 1.0%, which implies upstream
tasks are helpful for few-shot generalization in stan-
dard offline learning setups. For BART models, we
notice BART-MTL improves over BART-Single
on CLIF-55 datasets by 2.5%. However, we no-
tice the opposite for CLIF-26. Given that the
entire BART parameters are optimized in these
models, we hypothesize that BART-MTL may have
suffered from the forgetting of knowledge in the
pre-trained BART model itself; while in adapter
and BiHNet models, the BART model is frozen.
Therefore, in the rest of the section, we focus more
on BiHNet approaches.

Q2: How does the model’s generalization abil-
ity evolve over time? We focus on BiHNet-
Vanilla and BART-Vanilla approaches and answer
three sub-questions.

Is the knowledge being monotonically accumu-
lated over upstream tasks? In comparison to
two zero-knowledge baselines, we notice BiHNet-
Vanilla generally improves both Instant Accuracy
(4.2% on CLIF-26 and 6.8% on CLIF-55) and
Few-shot Accuracy (0.8% on CLIF-55), except

3Note that, for single-task learning baselines, “Inst. Acc."
column is used to refer to the averaged accuracy of individual
models trained for each upstream task.
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CLIF Dataset CLIF 26 (GLUE→ DivFSL) CLIF 55 (Classification)

Methods ↓Metrics→ Final Acc. Inst. Acc. F-S Acc. ∆Inst. ∆FS. Final Acc. Inst. Acc. F-S Acc. ∆Inst. ∆FS.

Single Task-Learning

BART-Single - 79.39±0.7 60.99±0.5 - - - 69.32±0.3 68.49±0.7 - -
BART-Adapter-Single - 74.98±0.7 59.00±1.9 - - - 65.15±0.5 65.70±0.8 - -

BiHNet-Single - 76.67±0.4 52.66±0.9 - - - 66.44±0.2 64.57±1.1 - -

Continual learning

BART-Vanilla 19.73±0.2 79.92±0.2 58.96±3.2 0.7% -3.3% 49.46±1.7 71.26±0.6 66.08±0.6 2.8% -3.5%
BART-MbPA++ 59.52±1.0 77.48±0.5 56.26±1.4 -2.4% -7.8% 51.75±1.5 67.18±1.0 61.03±3.5 -3.1% -10.9%

BART-meta-MbPA 55.69±0.9 78.63±0.5 57.88±1.0 -0.9% -5.1% 51.55±2.3 67.92±1.2 61.30±2.0 -2.0% -10.5%
BiHNet-Vanilla 53.15±2.1 79.90±0.2 58.76±1.6 4.2% -0.4% 44.03±1.7 70.97±1.6 66.23±0.6 6.8% 0.8%
BiHNet-EWC 56.15±1.6 78.73±0.3 58.36±1.7 2.7% -1.1% 7.15±2.1 72.43±1.0 58.08±0.8 9.0% -11.6%
BiHNet-Reg 77.22±1.1 80.24±0.4 60.09±1.1 4.7% 1.8% 56.16±1.6 73.04±0.6 68.46±0.2 9.9% 4.2%

Multi-Task Learning

BART-MTL 74.07±0.4 - 55.02±2.5 - -9.7% 63.78±0.0 - 70.20±0.4 - 2.5%
BiHNet-MTL 78.20±0.3 - 59.22±0.8 - 0.4% 64.93±0.0 - 66.40±3.6 - 1.1%

Majority 55.22 - 47.04 - - 52.74 - 59.52 - -

Table 2: Final accuracy (Final Acc.) and instant accuracy (Instant Acc.) over upstream tasks and accuracy over
few-shot learning tasks (Few-shot Acc.) on CLIF-26 and CLIF-55 tasks. We compute relative improvement
of instant accuracy (∆Inst.) and few-shot accuracy (∆FS) over zero-knowledge baselines (the better one between
BART-Adapter-Single and BiHNet-Single for BiHNet, and BART-Single for BART approaches).3

in few-shot Acc. on CLIF-26 (-0.4%). The re-
sults confirm positive knowledge accumulation to
some extent. In Figure 4, we plot the few-shot
accuracy on CLIF-26 when the model sequen-
tially visits each upstream training task. We note
the few-shot accuracy of BiHNet-Vanilla does not
monotonically increase, which implies interference
between these upstream learning tasks or forgetting
of generalizable knowledge.

Does the order of the tasks matter? Figure 5
present performance of methods under different
orders of tasks on CLIF-26. We order the tasks
by increasing and decreasing relevance to few-shot
learning tasks, where the relevance is defined as
few shot accuracy when the model transfers from a
single upstream tasks. The results show in both or-
ders BiHNet-Vanilla is less competitive than BART-
Adapter-Single. It implies that in continual learning
the knowledge accumulation is less robust without
CL algorithms.

Q3: Does model’s catastrophic forgetting hin-
der its knowledge accumulation? In Table 2,
we see clear differences between final accuracy
of Vanilla and MTL approaches (by around 20
points), which verifies the catastrophic forgetting
of seen-task performance when training examples
are not i.i.d. However, we find the gap between
MTL and Vanilla training is close for few-shot
learning performance, where BART-Vanilla is even
better than BART-MTL, which can be a positive
outcome of adequate forgetting for alleviating over-
fitting (Wang et al., 2020). It indicates the catas-
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Figure 5: Few-shot learning performance of BiHNet-
Vanilla and BiHNet-Reg on CLIF-26 tasks when
training tasks are presented in different orders.

trophic forgetting influence generalization ability
to a lesser degree compared to its effect on seen-
task performance.

4.2 Effect of Continual Learning Algorithms

With the insights obtained for earlier questions, we
now analyze whether baseline continual learning
algorithms and the proposed approach help knowl-
edge accumulation and improve models’ (few-shot)
generalization ability.

Q1: Do continual learning algorithms miti-
gate catastrophic forgetting? From Table 2, we
notice MbPA++, meta-MbPA, EWC clearly im-
prove final accuracy over BART-Vanilla or BiHNet-
Vanilla on CLIF-26, which confirm positive
effects on mitigating catastrophic forgetting.
On CLIF-55, which features much more training
tasks and less examples per tasks, we find baseline
CL algorithms fail to improve final accuracy. For
memory-based approaches such as MbPA++ and
meta-MbPA, it can because of significant overfit-
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CLIF 26 CLIF 55
Final Acc. Few-shot Acc. Final Acc. Few-shot Acc.

BiHNet-Reg 77.22±1.1 60.09±1.1 56.16±1.6 68.46±0.2

-Few-shot TR 78.78±1.3 59.01±0.6 55.90±1.4 68.13±0.5

+Train Embs 65.50±1.5 61.60±0.1 44.87±0.1 66.14±0.2

Table 3: Ablation study on BiHNet-Reg: after remov-
ing few-shot task-representations (-Short-term TR),
and replacing context predictors with trainable embed-
dings (+Train Embs.).

ting to stored examples. In contrast, BiHNet-Reg
is effective in both datasets.

Q2: Does mitigating catastrophic forget-
ting better retain generalization ability? On
CLIF-26, by comparing the few-shot accuracy of
BiHNet-Vanilla and BiHNet-Reg, we notice an rel-
ative improvement of few-shot accuracy and instant
accuracy by 2.3% and 0.4% on two datasets. We
see a similar trend on CLIF-55. From Figure 5,
we see BiHNet-Reg outperforms BiHNet-Vanilla
in the default and decreasing relevance order; while
we observe an outlier in BiHNet-Reg runs in the
increasing relevance order. From Figure 4, we see
few-shot learning accuracy improves more stable
as BiHNet-Reg learns more upstream tasks.

Q3: Does BiHNet-Reg improve over HNet-
Reg? The major differences of BiHNet-Reg com-
pared to HNet-Reg (von Oswald et al., 2020) are
(1) few-shot task representations and (2) inferring
task representations with context predictors instead
of learning them as trainable embeddings. As an
ablation study, we progressively replace out two
components in BiHNet , as shown in Table 3. We
see removing few-shot task-representation causes
the few-shot accuracy to drop on both datasets by
1.08 and 0.33 points; while replacing the context
predictor with trainable task embedding caused a
clear drop of final accuracy by more than 10 points.
We notice the few-shot accuracy of trainable em-
beddings is slightly higher on CLIF-26 by 1.5
points, but lower on CLIF-55 by 2.3 points which
has more upstream training tasks.

Q4: Sensitivity Analysis: how do models per-
form under various number of few-shot train-
ing examples. Figure 6 summarizes few-shot per-
formance of different methods under different num-
ber of training examples per class on CLIF-26
and CLIF-55. We observe BiHNet-Reg always
achieves the best performance and the improve-
ment is generally more significant when the train-
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Figure 6: Few-shot learning performance of BART-
Vanilla, BiHNet-Vanilla, BiHNet-MTL, and BiHNet-
Reg under different number of training examples per
class (k = 4, 8, 16) on CLIF-26 and CLIF-55.

ing sets are smaller.

Discussion. Our results indicate BiHNet-Reg
could effectively improve knowledge accumula-
tion over time compared to similar adapter learning
frameworks (BiHNet-Single and BART-Adapter-
Single). However, BiHNet-Reg does not rival
BART-Single in terms or few-shot learning accu-
racy. We believe this is due to the restricted model
capacity of adapter, as compared to fine-tuning en-
tire transformer. This opens up future work on
improving continual learning algorithms that are
compatible with PTLM fine-tuning.

5 Related Work

Continual Learning The primary challenge that
is addressed in CL literature is overcoming catas-
trophic forgetting. Generally, existing CL meth-
ods encompass memory and generative replay-
based approaches (Robins, 1995; Lopez-Paz and
Ranzato, 2017; Shin et al., 2017), regulariza-
tion based approaches (Kirkpatrick et al., 2017;
Nguyen et al., 2018) and model expansion based
approaches (Shin et al., 2017). Recently, continual
learning has drawn attention in the NLP field (Sun
et al., 2020; Wang et al., 2019b; Huang et al., 2021).

Continual Meta-Learning There exists litera-
ture that studies continual meta-learning outside
NLP application, with various definition of the
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problem. Some prior works (Xu et al., 2019;
de Masson d’Autume et al., 2019; Wang et al.,
2020) aim to develop algorithms that allows fast
recovery of previous performance when a few train-
ing examples of an early task are available again
at the test time. Caccia et al. (2020) proposed a
setup where models visit a sequence of potentially
re-occuring tasks and measured online cumulative
performance as metrics. Antoniou et al. (2020) as-
sumes the model visits a sequence of few-shot clas-
sification tasks while the test tasks consist of seen
classes at training. The problem setup of Jerfel
et al. (2019) is most related to ours which learns to
perform few-shot learning on new tasks better, but
is only studied for image classification tasks with
much smaller number tasks. To our best knowledge,
our work is the first to study continual knowledge
accumulation for few-shot learning in diverse NLP
tasks for large-scale transformer models.

6 Conclusion

We present the Continual Learning of Few-Shot
Learners (CLIF) challenge to simulate the scenario
where a learner continually accumulate (general-
izable) knowledge over a sequence of NLP tasks,
while retaining its performance on the seen tasks.
We propose evaluation protocols to study the per-
formance of existing continual learning algorithm,
and present our method BiHNet-Reg. We demon-
strate the potentials of building a NLP system that,
through continual training, can perform more tasks
and also become more efficient in mastering new
tasks. Future works include extending our work
to task agnostic scenarios where the distribution
of data may shift continuously and studying al-
gorithms for continual refinement of large-scale
pre-trained models with emerging unlabeled data.
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Trainable Params Total Params

BART 139M 139M
BART-Adapter 72M 212M
BiHNET 266M 405M
BiHNETd=4 40M 180M

Table 4: Statistics of trainable and total model parame-
ters in each model to learn 9 GLUE tasks.

Methods Final Acc. Inst. Acc. F-S Acc.

BART-Adapter-Single - 74.98±0.7 59.00 ±1.9

BiHNetd=4-Reg 72.50 ±2.3 79.45 ±0.5 60.68 ±1.5

Table 5: Performance when we use a smaller hidden
dimension (d=4) for the HyperNet in BiHNet-Reg.

A Implementation Details

We tune hyperparameters except the time steps
of few-shot training on the validation set of up-
stream continual learning tasks. We tune the hy-
perpameters on CLIF-26 and apply the same for
CLIF-55 for the same approaches. We tune learn-
ing rates by enumerating over [3e-4, 1e-4, 3e-5,
1e-5], and finally use a learning rate of 3e-5 for all
MTL approaches and fine-tuend BART approaches
(e.g., BART-EWC, BART-Vanilla), and a learning
rate of 1e-4 for BiHNet, HNet, and BART-Adapter-
Single. We use a batch size of 64 across experi-
ments. We train the model for at most 100 epochs
for each training task with a patience of 3 epochs
without validation performance improvement. Be-
fore training on a new task, we revert the model
to the checkpoint with the best validation perfor-
mance in the previous task. In the few-shot learning
stage, we use the same learning rate and train the
model for 400 epochs, assuming no validation sets
to perform early stopping. The number of train-
ing steps are decided based on the performance of
BiHNet-Vanilla on airline, conll, and disaster tasks.
We set the hidden size of adapters inserted between
layers of BART transformers as 256 and the one in
the classification head as 64. The weight generator
in BiHNet is implemented as a two-layer MLP with
a hidden size of 32. For replay based approaches
(MbPA++ and meta-MbPA), we store all examples
following these works and randomly draw mini-
batches to replay every 100 training steps. For
BiHNet, HNet, and EWC, we set the regulariza-
tion strength (coefficient before the regularization
loss term) as 0.01 without further tuning. We use
a sample size 64 to compute the few-shot task rep-
resentation on CLIF-26 and 10 for CLIF-55 at
training. Experiments are run on Nvidia Quadro

6000 or Quadro 8000 GPUs with cuda version 10.1
installed. Through out the experiments (including
the hyperparameter search), we run each method
with three random seeds.

Details of Datasets . For CLIF-26, we use the
train, validation, and test split from Bansal et al.
(2020). For a seen trained model, we evaluate its
few-shot ability over 5 different partitions of train-
test splits of a single few-shot task. For CLIF-55,
we use the train, validation, and test splits provided
in the datasets library4. The few-shot training and
validation sets are random samples of the official
train and validation splits; while we do not sub-
sample the test split. Similarly, we evaluate few-
shot learning ability over 5 different samples of
training and validation examples.

Details of Task Orders. Table 7 summarize the
list of 45 upstream training tasks and 10 few-shot
training tasks. Table 6 further shows the order of
continual learning tasks.

B Parameter Efficiency

We show the statistics of trainable and total param-
eters in each compared architecture in Table 4 on
CLIF-26. In our default settings, BiHNet has
twice as many trainable parameters as BART and
above three times as BART-Adapter. However, we
could significantly reduce the number of parame-
ters by setting the hidden size d of the Hypernet-
work smaller than the number of the tasks. We
reduce d to 4, and summarize the results in 5. We
notice the approach achieves instant accuracy and
few-shot accuracy on par with BiHNet-Reg in the
standard setup. We notice the approach achieves
lower final accuracy compared to the default setup,
but the score is still more competitive than base-
lines, such as BART-MbPA and BART-meta-MbPA,
and BiHNet-Vanilla.

4https://huggingface.co/datasets
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Task Order Tasks

CLIF-26
Default cola, sst2, mrpc, qqp, stsb, mnli, qnli, wnli, rte
Relevance ↓ mnli, sst2, qqp, qnli, stsb, mrpc, cola, rte, wnli
Relevance ↑ wnli, rte, cola, mrpc, stsb, qnli, qqp, sst2, mnli

CLIF-55
Default ai2_arc, aqua_rat, boolq, codah, commonsense_qa, cosmos_qa, dream, eli5-askh, eli5-asks, eli5-eli5, freebase_qa, hel-

laswag, jeopardy, kilt_hotpotqa, kilt_nq, kilt_trex, kilt_zsre, lama-conceptnet, lama-google_re, lama-squad, lama-trex,
math_qa, mc_taco, numer_sense, openbookqa, qasc, quail, quarel, quartz-no_knowledge, quartz-with_knowledge, race-high,
race-middle, sciq, search_qa, social_i_qa, squad-no_context, superglue-copa, superglue-multirc, swag, web_questions,
wino_grande, wiqa

Table 6: Order of continual learning tasks in CLIF-26 and CLIF-55 datasets.
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Task Name Task Reference

Upstream tasks
ade_corpus_v2-classification other Gurulingappa et al. 2012
circa other Louis et al. 2020
discovery other Sileo et al. 2019
emotion emotion Saravia et al. 2018
ethos-directed_vs_generalized hate speech detection Mollas et al. 2020
ethos-disability hate speech detection Mollas et al. 2020
ethos-gender hate speech detection Mollas et al. 2020
ethos-sexual_orientation hate speech detection Mollas et al. 2020
glue-cola other Warstadt et al. 2019
glue-mnli nli Williams et al. 2018
glue-mrpc paraphrase Dolan and Brockett 2005
glue-qnli nli Rajpurkar et al. 2016
glue-qqp paraphrase (link)

glue-rte nli
Dagan et al. 2005; Bar-Haim et al. 2006
Giampiccolo et al. 2007; Bentivogli et al. 2009

glue-sst2 sentiment analysis Socher et al. 2013
glue-wnli nli Levesque et al. 2012
google_wellformed_query other Faruqui and Das 2018
hate_speech_offensive hate speech detection Davidson et al. 2017
hatexplain hate speech detection Mathew et al. 2020
health_fact fact checking Kotonya and Toni 2020
imdb sentiment analysis Maas et al. 2011
kilt_fever fact checking Thorne et al. 2018
liar fact checking Wang 2017
onestop_english other Vajjala and Lučić 2018
paws paraphrase Zhang et al. 2019
rotten_tomatoes sentiment analysis Pang and Lee 2005
scicite other Cohan et al. 2019
scitail nli Khot et al. 2018
sick nli Marelli et al. 2014
sms_spam other Almeida et al. 2011

superglue-rte nli
Dagan et al. 2005; Bar-Haim et al. 2006
Giampiccolo et al. 2007; Bentivogli et al. 2009

superglue-wic other Pilehvar and Camacho-Collados 2019
superglue-wsc other Levesque et al. 2012
trec other Li and Roth 2002; Hovy et al. 2001
trec-finegrained other Li and Roth 2002; Hovy et al. 2001
tweet_eval-emoji emotion Barbieri et al. 2020
tweet_eval-emotion emotion Barbieri et al. 2020
tweet_eval-irony emotion Barbieri et al. 2020
tweet_eval-offensive emotion Barbieri et al. 2020
tweet_eval-sentiment emotion Barbieri et al. 2020
tweet_eval-stance_abortion emotion Barbieri et al. 2020
tweet_eval-stance_climate emotion Barbieri et al. 2020
tweet_eval-stance_hillary emotion Barbieri et al. 2020
wiki_auto other Jiang et al. 2020
yahoo_answers_topics topic (link)
Few-shot learning tasks
superglue-cb nli de Marneffe et al. 2019
dbpedia_14 topic Lehmann et al. 2015
wiki_qa other Yang et al. 2015
emo emotion Chatterjee et al. 2019
yelp_polarity sentiment analysis Zhang et al. 2015; (link)
ethos-religion hate speech detection Mollas et al. 2020
financial_phrasebank sentiment analysis Malo et al. 2014
tab_fact fact checking Chen et al. 2020
anli nli Nie et al. 2020
ethos-race hate speech detection Mollas et al. 2020

Table 7: Datasets and tasks included in CLIF-55 for upstream training and few-shot learning.

http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
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