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Abstract

In the last few years, several methods have
been proposed to build meta-embeddings. The
general aim was to obtain new representa-
tions integrating complementary knowledge
from different source pre-trained embeddings
thereby improving their overall quality. How-
ever, previous meta-embeddings have been
evaluated using a variety of methods and
datasets, which makes it difficult to draw
meaningful conclusions regarding the merits
of each approach. In this paper we propose
a unified common framework, including both
intrinsic and extrinsic tasks, for a fair and
objective meta-embeddings evaluation. Fur-
thermore, we present a new method to gen-
erate meta-embeddings, outperforming previ-
ous work on a large number of intrinsic evalu-
ation benchmarks. Our evaluation framework
also allows us to conclude that previous extrin-
sic evaluations of meta-embeddings have been
overestimated.

1 Introduction

Word embeddings successfully capture lexical se-
mantic information about words based on co-
occurrence patterns extracted from large corpora
(Mikolov et al., 2013a; Pennington et al., 2014;
Mikolov et al., 2018) or knowledge bases (Bor-
des et al., 2011), with excellent results on sev-
eral tasks, including word similarity (Collobert and
Weston, 2008; Turian et al., 2010; Socher et al.,
2011), Semantic Textual Similarity (Shao, 2017),
or more recently, unsupervised machine translation
(Artetxe et al., 2019), inferring representations for
rare words (Schick and Schütze, 2020), unsuper-
vised word alignment (Jalili Sabet et al., 2020) or
knowledge base probes (Dufter et al., 2021). In
these tasks, word embeddings perform similarly
or better than transformer-based language models
such as BERT (Devlin et al., 2019), while requir-
ing a comparatively tiny amount of resources for
training and inference.

Following the hypothesis that different knowl-
edge sources may contain complementary seman-
tic information (Goikoetxea et al., 2016), meta-
embeddings (Yin and Schütze, 2016) aim to ob-
tain an ensemble of distinct word embeddings each
trained using different methods and resources to
produce a word representation with an improved
overall quality.

The main challenge when generating meta-
embeddings is preserving the information encoded
in the source embeddings and many different meth-
ods have been proposed to deal with the task. Con-
catenation (Goikoetxea et al., 2016) and averaging
(Coates and Bollegala, 2018) are two very strong
baselines, but much complex methods based on lin-
ear transformations and supervised neural models
have also been proposed (Bollegala et al., 2018;
Bollegala and Bao, 2018; Yin and Schütze, 2016).

When it comes to evaluating meta-embeddings,
there is no consensus on either evaluation tasks or
methodology. Meta-embeddings are evaluated in a
wide range of tasks (Schnabel et al., 2015; Bakarov,
2018), ranging from intrinsic (i.e. word similar-
ity, word analogy) to extrinsic tasks such as short
text classification (Bollegala and Bao, 2018; Bol-
legala et al., 2018), common-sense stories (Speer
et al., 2017), Named Entity Recognition (O’Neill
and Bollegala, 2020) or Semantic Textual Simi-
larity (García-Ferrero et al., 2020). Furthermore,
different evaluation methodologies have been ap-
plied. For example, Yin and Schütze (2016) dis-
card the words in the datasets which are not repre-
sented in the meta-embedding model, while Speer
and Lowry-Duda (2017) use various strategies to
minimize the number of out-of-vocabulary (OOV)
words. To make things more complicated, previous
meta-embeddings approaches require some ad-hoc
pre-processing to tune multiple filtering criteria and
parameters according to the source embeddings
used (Bollegala et al., 2018; Bollegala and Bao,
2018; Yin and Schütze, 2016), which has a signifi-
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cant effect on the final evaluation results. Summa-
rizing, this lack of consistency in evaluation tasks,
methodologies and ad-hoc hyper-parameter tun-
ing makes it very hard to objectively compare the
proposed methods. Thus, to the best of our knowl-
edge, and despite the existence of multiple works
addressing this task, a unified and comprehensive
evaluation of meta-embeddings has not been yet
carried out. In fact, the lack of such unified and
comprehensive evaluation framework has arguably
caused erroneous assumptions and an overestima-
tion in the performance of meta-embeddings for
extrinsic tasks.

An additional issue is that most previous work
has focused on combining word embeddings gen-
erated from similar sources and algorithms. For
instance, combining Word2vec CBOW (Mikolov
et al., 2013a) with GloVe (Pennington et al., 2014)
embeddings. We empirically show that, since these
embeddings encode very similar knowledge, com-
bining them does not produce a significant gain.
Instead, the best meta-embeddings are obtained by
combining embeddings trained with different algo-
rithms and resources. For example, by leveraging
vectors induced from text corpora together with
other embeddings obtained from knowledge bases.

In this paper we present a new method to gen-
erate meta-embeddings that outperform previous
approaches on a large number of intrinsic bench-
marks. Other contributions include:

1. We empirically demonstrate that our method
generates better meta-embeddings thanks to
decreasing the information loss during the em-
bedding combination. Our approach does not
rely on hyper-parameter tuning.

2. We generate meta-embeddings using a wide
range of source embeddings trained with very
different algorithms and resources. Our exper-
iments show that the best meta-embeddings
are obtained when combining embeddings
that encode complementary knowledge.

3. A unified and comprehensive benchmarking
framework to facilitate a fair and objective
evaluation of embeddings in both intrinsic and
extrinsic settings.

4. We report the largest meta-embedding extrin-
sic evaluation performed so far showing that
meta-embedding performance in these tasks
has been overestimated by previous work.

The rest of the paper is organized as follows.
Section 2 presents the related work. Section 3 fo-
cuses on the evaluation frameworks used by pre-
vious works and presents our own proposal. In
Section 4 we describe our approach for creating
meta-embeddings, with Section 5 describing the
source word embeddings explored and reporting
our experimental results in Section 6. Finally, Sec-
tion 7 presents some concluding remarks and our
future work. Our code and meta-embeddings are
publicly available1.

2 Related work

Previous research has shown that word embed-
dings created using different methods and resources
present significant variations in quality. For in-
stance, Hill et al. (2014) show that word embed-
dings trained from monolingual or bilingual cor-
pora capture different nearest neighbours.

The term meta-embedding was coined by Yin
and Schütze (2016). They showed how to combine
five different pre-trained word embeddings using
a small neural network for improving the accu-
racy of cross-domain part-of-speech (POS) tagging.
Following this, Bollegala et al. (2018) propose an
unsupervised locally linear method for learning
meta-embeddings from a given set of pre-trained
source embeddings while Bollegala and Bao (2018)
apply three types of autoencoders for the purpose
of learning meta-embeddings.

Although word embeddings are mainly con-
structed by exploiting information from text cor-
pora only (Mikolov et al., 2013a; Pennington et al.,
2014; Mikolov et al., 2018), some approaches also
tried different methods to integrate the knowledge
encoded in lexical resources such as WordNet (Ha-
lawi et al., 2012; Bollegala et al., 2016; Goikoetxea
et al., 2016), PPDB (Faruqui et al., 2015) or Con-
ceptNet (Speer et al., 2017). Goikoetxea et al.
(2016) show that simply concatenating word em-
beddings derived from text and WordNet out-
perform alternative methods such as retrofitting
(Faruqui et al., 2015) at the cost of increasing the di-
mensionality of the meta-embeddings. Coates and
Bollegala (2018) prove that averaging is in some
cases better than concatenation, with the additional
benefit of a reduced dimensionality. The most pop-
ular approach to address the dimensionality prob-
lem is to apply dimensionality reduction algorithms

1https://github.com/ikergarcia1996/
MetaVec

https://github.com/ikergarcia1996/MetaVec
https://github.com/ikergarcia1996/MetaVec
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Paper Intrinsic Tasks Extrinsic Tasks
(Kiela et al., 2018) SST, SNLI, Image Caption (1)
(He et al., 2020) SST2, SNLI, NER (1), POS(1), Semcor
(Bollegala and Bao, 2018) Sim. (4), An. (3), Relation Classification (1) Short Text Classification (4), Psycholinguis-

tic Score Prediction (2)
(O’Neill and Bollegala, 2020) Sim. (6), An. (3) POS (1), NER (1), Sentiment Analysis(1)
(Jawanpuria et al., 2020) Sim. (6), An. (2)
(Doval et al., 2018) Sim. (4), Bilingual dictionary induction (4),

hypernym discovery (1)
(Bollegala et al., 2018) Sim. (6), An. (2), Relation Classification (1) Short-text classification (2)
(Coates and Bollegala, 2018) Sim. (5), An. (1)
(Yin and Schütze, 2016) Sim. (5), An. (1) POS (1)
(Li et al., 2020) MT (3), Text Classification (5)
(Chen et al., 2020) Sim. (5) SNLI (1)
(Goikoetxea et al., 2016) Sim. (4)
(Speer et al., 2017) Sim. (5). SAT An. (1) Common-Sense Stories (1)
(García-Ferrero et al., 2020) Sim. (14) STS (1), POS (1)
This work Sim. (7), An. (3), Categorization (4) CoLA, SST-2, MRPC, STS-B, QQP, MNLI,

QNLI, RTE , WNLI, AX

Table 1: Evaluation tasks used in previous works.

w OOV w/o OOV
Default 82.7 82.7
Clean dataset 69.8 74.3
Lowercase embedding 39.5 80.7
Trim vocabulary 40.4 84.1

Table 2: FastText embeddings accuracy in the Google
Analogy dataset using different pre-processing ap-
proaches.

such as SVD (Yin and Schütze, 2016), PCA (Ghan-
nay et al., 2016) or DRA (Raunak, 2017). In this
line of work, Numberbatch (Speer et al., 2017)
claims to be the best meta-embedding model so
far, by combining knowledge from a variety of
embeddings obtained from different corpora and
knowledge bases such as ConceptNet.

Methods such as MUSE (Lample et al., 2018)
and VecMap (Artetxe et al., 2018) project em-
beddings of two different languages to a shared
common space by means of a bilingual dictionary
(Mikolov et al., 2013b). This requires minimal
bilingual supervision while still leveraging large
amounts of monolingual corpora with very com-
petitive results (Artetxe et al., 2016, 2018). These
techniques are used by Doval et al. (2018); García-
Ferrero et al. (2020); Jawanpuria et al. (2020); He
et al. (2020) to generate meta-embeddings. This
usually involves mapping all the source embed-
dings to a common vector space followed by aver-
aging. We extend this idea by proposing a multiple
step algorithm that: (i) normalizes the source em-
beddings; (ii) maps them to the same vector space;
(iii) handles the OOV words; and (iv), generates

the final meta-embedding. An ablation study con-
firms that these steps increase the performance of
the generated meta-embeddings in both intrinsic
and extrinsic tasks.

Another recent research line tries to dynamically
generate meta-embeddings for specific tasks (He
et al., 2020; Kiela et al., 2018; O’Neill and Bolle-
gala, 2020). These methods extend already existing
algorithms to generate meta-embeddings by learn-
ing task specific weights. Instead, the focus of our
research is to generate the best general purpose
meta-embedding that can be applied to any task.

3 Evaluation Framework

As it has been earlier mentioned, several methods
to generate meta-embeddings have been previously
proposed and evaluated on many different bench-
marks, as shown by Table 1. Moreover, add-hoc
decisions (not always explicitly mentioned) to eval-
uate the embeddings caused large variations in the
results. Let us consider, for example, the problem
of out-of-vocabulary (OOV) words.

Two popular techniques are used to address OOV
words. Table 2 shows the accuracy of FastText em-
beddings 2 in the Google Analogy dataset using the
two approaches. The first one uses the average of
all the embeddings as a representation for unknown
words (With OOV). The second approach simply
removes from the dataset the examples containing
unknown words (Without OOV). Additionally, the
dataset is usually pre-processed. A common ap-
proach lowercase all the words and removes non

2Trained in Common Crawl corpus with 600B tokens.
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English characters (Clean dataset) to reduce the
number of unknown words. The words in the em-
bedding can also be lowercased (Lowercase em-
beddings). Another popular practice to evaluate
analogy consist of trimming the vocabulary of the
embedding to the k most popular words. As an
example, trimming the vocabulary to the 100,000
most popular English words also speeds up the
computations (Trim vocabulary). These changes
in the pre-processing of the very same embeddings
cause the results to vary from 39.5% accuracy to
84.1%. Obviously, without a common evaluation
framework the comparison between the different
embeddings and meta-embeddings cannot be ob-
jectively done.

This lack of evaluation consistency led us to
propose a unified evaluation framework that en-
compasses a wide range of tasks and datasets to
evaluate meta-embeddings. In order to make the
evaluation as simple and unified as possible we
chose two already existing out of the box frame-
works:

Word embeddings benchmarks3 (Jastrzebski
et al., 2017) provides scripts for evaluating word
embeddings in three intrinsic evaluation tasks:
(i) Word similarity (WS353 (Finkelstein et al.,
2001), MTurk (Halawi et al., 2012), RG65 (Ruben-
stein and Goodenough, 1965), RW (Pilehvar et al.,
2018), SimLex999 (Hill et al., 2015), MEN (Bruni
et al., 2014)); (ii) Word analogy (Google Analogy
(Mikolov et al., 2013a), MSR Analogy (Mikolov
et al., 2013c), SemEval2012 (Jurgens et al., 2012))
and, (iii) Word categorization (AP (Almuhareb
and Poesio, 2005), BLESS (Baroni and Lenci,
2011), Battig (Battig and Montague, 1969), ESSLI
(McRae et al., 2005)). We use the provided script
for evaluating embeddings on all the tasks without
lowercasing them.

It should be taken into account that, for Word
analogy, smaller vocabularies usually obtain bet-
ter results. This particularly hurts the performance
of those meta-embeddings that were generated us-
ing many source embeddings resulting in a meta-
embedding with a vocabulary of more than 4 mil-
lion words. Thus, in order to ensure a fair evalua-
tion regardless of the number of words in the vocab-
ulary, we trim the vocabulary of all the embeddings
and meta-embeddings to the 200,000 most popular
English words according to the Google’s Trillion

3https://github.com/kudkudak/word-
embeddings-benchmarks

Word Corpus 4.
Jiant5 provides a framework for extrinsic evalu-

ation of word representations using GLUE (Wang
et al., 2019b) and SuperGLUE (Wang et al., 2019a).
We use the same bag-of-words configuration used
in the GLUE leaderboard for the Cbow baseline 6

and we evaluate the embeddings in all GLUE tasks
(CoLa (Warstadt et al., 2019) , SST-2 (Socher et al.,
2013), MRPC (Dolan and Brockett, 2005) , STS-B
(Cer et al., 2017), QQP 7, MNLI (Williams et al.,
2018), QNLI (Rajpurkar et al., 2016; Wang et al.,
2019b), RTE (Dagan et al., 2006; Bar Haim et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009), WNLI (Levesque et al., 2011), AX (Wang
et al., 2019b)).

4 Our Method

Our meta-embedding generation approach con-
sists of two main steps: (i) pre-processing of the
source embeddings and (ii) generation of the meta-
embedding by averaging. Our method can combine
any number of word embeddings as long as there
is some common vocabulary shared between them.
The resulting meta-embedding vocabulary will be
the union of the vocabularies of the source word
embeddings used.

4.1 Word embeddings pre-processing
Word embeddings generated with different sources
or techniques can result in very different vectors
spaces and vocabularies. Before aligning the vec-
tor spaces an harmonization pre-processing step is
needed. Thus, we translate, scale, rotate and match
the vocabularies of the source embeddings.

1) Mean Centering and scaling: Following
(Artetxe et al., 2018), we first normalize the length
of the source embeddings. We mean center each
dimension, and we normalize them again by length.
This translates all the source embeddings to the
origin and scales them to have the same length.

2) Aligning the vector spaces: We align the
vector spaces of the source embeddings using
VecMap (Artetxe et al., 2016). VecMap learns
word embedding mappings using an orthogonal

4https://books.google.com/ngrams/info
5https://github.com/nyu-mll/jiant-v1-

legacy
6https://github.com/nyu-mll/jiant-

v1-legacy/blob/master/jiant/config/
superglue_bow.conf

7https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-
Pairs

https://github.com/kudkudak/word-embeddings-benchmarks
https://github.com/kudkudak/word-embeddings-benchmarks
https://books.google.com/ngrams/info
https://github.com/nyu-mll/jiant-v1-legacy
https://github.com/nyu-mll/jiant-v1-legacy
https://github.com/nyu-mll/jiant-v1-legacy/blob/master/jiant/config/superglue_bow.conf
https://github.com/nyu-mll/jiant-v1-legacy/blob/master/jiant/config/superglue_bow.conf
https://github.com/nyu-mll/jiant-v1-legacy/blob/master/jiant/config/superglue_bow.conf
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
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transformation. Orthogonality allows monolingual
invariance during the mapping, preserving vector
dot products between word vectors. Monolingual
invariance ensures that no information is lost dur-
ing the mapping step, which is desirable for our
aim of generating meta-embeddings. In our ex-
periments we align the source embedding by pro-
jecting them to the vector space of one particular
source embeddings involved in the construction of
the meta-embeddings.

3) OOV generation: Different word embed-
dings have different vocabularies. When combin-
ing two word embeddings we can distinguish two
sets of words. Those for which we have a repre-
sentation in both embeddings and those for which
one of the embeddings has no representation. We
call the latter "OOV words". We unify the vocab-
ulary of the source embeddings by creating new
approximate representations for the OOV words.

The process is as follows. Given two source em-
beddings E1 and E2 where for a word W only E1
has a representation, we generate a new approxi-
mation for the OOV word in E2 by revising the
most similar words from the common vocabulary
of E1 and E2. First, using the cosine similarity as
distance metric, we select the k (ranging from 2 to
50) nearest neighbours of the word W in E1 that
also appear in the common vocabulary with E2.8

For each k, we calculate k candidate representa-
tions of the OOV word in E2 and E1 as a weighted
average of the selected k nearest neighbours in
their corresponding spaces. We use the cosine sim-
ilarity from the nearest neighbors in E1 to W as
weights. Finally, the selected representation of the
OOV word in E2 is the one corresponding to the
closest candidate to W in E1.

4.2 Meta-embedding generation

We combine the harmonized source embeddings
by averaging them. In our experiments we demon-
strate that, thanks to the pre-processing steps de-
scribed above, averaging source embeddings effec-
tively combines multiple source embeddings result-
ing in representations as good as the ones generated
by concatenation without increasing their dimen-
sionality.

8For computation efficiency we limit the maximum k to
50. In our experiments the optimal k is usually smaller than
20.

5 Word embeddings

This section describes the source word embeddings
used to generate our meta-embeddings. We choose
these pre-trained embeddings for two main rea-
sons. They have been trained using very diverse
algorithms and resources, and they obtain good per-
formance on our evaluation framework when tested
individually. That is, they may encode high quality
complementary knowledge.

Using Large text corpora, Word2Vec (W2V)
(Mikolov et al., 2013a) embeddings from Google
News (100 billion words). A GloVe (GV) (Pen-
nington et al., 2014) model the Common Crawl vec-
tors (640 billion words). As recommended by the
authors, we apply a l2 normalization to its variables.
And the FastText (FT) (Mikolov et al., 2018) em-
beddings from Common Crawl (600 billion words).

Using WordNet (Miller, 1992), RWSGwn
(UKB) (Goikoetxea et al., 2015) combines random
walks over WordNet with the skip-gram model. We
have used the vectors trained using WordNet3.0
plus gloss relations. JOINTChyb (J) (Goikoetxea
et al., 2018) combines Random Walks over multi-
lingual WordNets and bilingual corpora as input for
a modified skip-gram model that forces equivalent
terms in different languages to come closer during
training. We used the English-Spanish bilingual
embeddings publicly available.

Using the Paraphrase Database (PPDB) (Gan-
itkevitch et al., 2013), Attract Repel (AR) (Mrkšić
et al., 2017) improves word embeddings by inject-
ing synonymy and antonym constraints extracted
from monolingual and cross-lingual lexical re-
sources. We used the English vocabulary from
the four-lingual (English, German, Italian, Rus-
sian) vector space. Paragram (P) (Wieting et al.,
2015) are pre-trained word vectors learned using
word paraphrase pairs from PPDB using a modi-
fication of the skip-gram objective function. The
hyper parameters were tuned using the wordsim-
353 dataset. The word embeddings of the default
model are initialized with Glove word vectors.

Using ConceptNet; Numberbatch (N) (Speer
et al., 2017) combines knowledge encoded in Con-
ceptNet, Word2vec, GloVe and OpenSubtitles 2016
using concatenation, dimensionality reduction and
a variation of retrofitting. Numberbatch version
19.08 is used.

We also tested other embeddings such as ExtVec
(Komninos and Manandhar, 2016), LexSub (Arora
et al., 2020) or LexVec (Salle et al., 2016) but
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Embedding AVG C WS A
FT 67.8 71.4 73.6 58.5
GV 64.7 69.9 70.3 54.0

W2V 59.1 67.9 65.6 43.9
J 52.2 70.0 65.2 21.4

UKB 46.6 67.9 61.8 10.2
P 58.5 66.5 70.2 38.9

AR 48.5 59.7 63.6 22.2
N 68.1 73.6 75.2 55.4

Table 3: Source embedding intrinsic evaluation results.

Text WN PPDB CN
Text 67.9 66.3 68.5 69.1
WN 66.3 50.9 62.5 65.4

PPDB 68.5 62.5 60.2 67.8
CN 69.1 65.4 67.8 -

Table 4: Comparison of the average performance in the
intrinsic evaluation tasks for meta-embeddings gener-
ated using pairs of embeddings that encode knowledge
form the same or different sources. WN stands for
WordNet and CN for ConceptNet.

showed no significant improvements over the cho-
sen ones.

6 Experiments

We evaluate all the word embeddings in a wide
range of intrinsic and extrinsic evaluation tasks
which composed the evaluation framwework de-
scribed in Section 3.

6.1 Intrinsic evaluation results

First we evaluate the source embeddings that we
will later use for meta-embedding generation. Ta-
ble 3 shows the averaged results of the Categoriza-
tion (C), Word Similarity (WS) and Analogy (A)
datasets. We report the average cluster purity score
of the Categorization datasets, the average Spear-
man correlation in the WS datasets, and the average
score9 in the Word Analogy datasets. The results
shows that FastText achieve the best performance
on the Analogy datasets and Numberbatch on Cat-
egorization and Word Similarity. As expected, on
average Numberbatch obtains the best results on
the intrinsic evaluations tasks.

We start generating meta-embeddings with our
proposed method combining pairs of source em-
beddings. Table 4 shows the average score in the

9We calculate the Spearman Correlation for the Se-
mEval2012 dataset and accuracy for GoogleAnalogy and MSR

intrinsic evaluation benchmark of different pairs
of source embeddings. For each source class type
(Text Corpora, WordNet, PPDB and ConceptNet),
we combine the best embeddings of each class with
the best embeddings of the other classes. Within
the same class we combine the first and second best
embeddings.

The results show that, instead of using embed-
dings based on the same information type, combin-
ing embeddings of different classes obtains most
of the time better results. That is, two embeddings
generated using similar sources do not contain com-
plementary knowledge, and its combination does
not result in better performance. In our experi-
ments, the best results are achieved when combin-
ing source embeddings generated using very dif-
ferent resources, such as text and knowledge bases.
These combinations produce a meta-embedding
that encodes the complementary knowledge of the
source embeddings resulting in an improved per-
formance. Also note that the meta-embedding com-
bining text (FT) and PPDB (P), and also text (FT)
with ConceptNet (N) outperforms the results of
Numberbach (N) alone.

We generate our best meta-embeddings combin-
ing the best source embeddings created using large
text corpora (FT), WordNet (J), PPDB (P) and Con-
ceptNet (Numberbatch) (hereinafter FJNP). This
combination maximizes the complementary knowl-
edge encoded in the meta-embedding. We com-
pare our method with 3 baselines using the same
source embeddings: (i) Concatenation: (CONC+)
Concatenation is a very strong baseline in meta-
embedding generation. It allows combining mul-
tiple embeddings without any information loss.
However, this comes at a high cost, as the meta-
embedding dimensionaly is increased dramatically.
We standardize the source embeddings using the
approach described in Section 4.1. (ii) AutoEn-
coders (Bollegala and Bao, 2018): Autoencoders
are an unsupervised learning method that first com-
press the input in a space of latent variables and
then reconstructs the input based on the informa-
tion encoded in these latent variables. It aims to
learn meta-embeddings by reconstructing multi-
ple source embeddings. This method comes in
three flavours, DAEME, CAEME and AAEME.
We used the last one because it obtains the best
results. We applied the default parameters and
enabled the option to generate OOV word represen-
tations. (iii) Locally Linear Meta-Embedding
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FJNP AVG C WS A
CONC+ 70.1 71.7 78.5 60.1

LLE 52.4 60.8 68.1 28.3
AAEME 67.6 71.2 75.0 56.6

Our Method 70.6 73.5 78.4 59.9

Table 5: Comparison of our meta-embedding method,
baselines and prior work in the intrinsic evaluation.

Learning (LLE) (Bollegala et al., 2018): This ap-
proach which consists of two steps. In the recon-
struction step the embeddings of each word are
represented by the linear weighted combination of
the embeddings of its nearest neighbours. In the
projection step the meta-embedding of each word
is computed such that the nearest neighbours in
the source embedding spaces are embedded closely
to each other in the meta-embedding space. We
tested this method with the same parameters used
in the original paper. Note that the code provided
by the authors generates meta-embeddings using
the intersection of the vocabulary of the source em-
beddings. This results in a small vocabulary that
severely hurts its performance in some tasks.

Table 5 reports the results for our method and
the baselines. The overall performance of our
method is slightly better than concatenation (im-
proved with our standardization method), mostly
due to the good results in Categorization. In any
case, the most important point here is to notice that
our method, unlike concatenation (CONC+), does
not increase the final dimensionality of the meta-
embeddings. Furthermore, our technique clearly
outperforms the meta-embeddings generated by
Autoencodding and LLE and all the embeddings
listed in Table 3 including Numberbatch, which is
a meta-embedding. To the best of our knowledge,
these are the best results published using these in-
trinsic benchmarks.

6.2 Extrinsic evaluation results

We compare our meta-embeddings with the same
source embeddings and baselines used in the in-
trinsic evaluation (subsection 6.1). We test the
same combination of embeddings that provides the
best results in the intrinsic evaluation (FJNP). For
brevity we report the GLUE Score calculated as
proposed by the authors (Wang et al., 2019b). We
are aware that, for the GLUE benchmark, (static)
word embeddings are outperformed by contextual
representations such as those obtained by BERT

(Devlin et al., 2019). Thus, word embeddings may
be better suited for other tasks such as unsuper-
vised machine translation (Artetxe et al., 2019),
inferring high-quality embeddings for rare words
(Schick and Schütze, 2020), unsupervised word
alignment (Jalili Sabet et al., 2020) or knowledge
base queries (Dufter et al., 2021). However, we can
use the GLUE benchmark as part of an objective
and unified framework to evaluate word embed-
dings. In this sense, future research can also use
exactly the same setting and methodology to evalu-
ate new word embeddings and meta-embeddings.

Table 6 presents the results of the extrinsic eval-
uation. Interestingly, FastText achieves the best re-
sults, outperforming every single meta-embedding
in every task. In fact, Numberbatch and AAEME
fail on the extrinsic evaluation achieving very low
results compared with the source word embed-
dings.

Previous research in meta-embedding genera-
tion has limited the extrinsic evaluation to very few
tasks that are formulated closely to the intrinsic
evaluation such as short text classification (Bol-
legala and Bao, 2018; Bollegala et al., 2018) or
common-sense stories (Speer et al., 2017). Other
approaches combine meta-embeddings with con-
textual representations with the aim of achieving
SOTA results for tasks such as STS or POS tagging
(García-Ferrero et al., 2020). While those previous
works assume that meta-embeddings might be help-
ful for such extrinsic evaluation tasks, our results
show that when evaluating on ten challenging tasks,
FastText is indeed a very strong baseline that is not
improved by any meta-embedding proposed up to
date. These results suggest that meta-embeddings
generated using complementary knowledge from
WordNet, ConceptNet or PPDB help to improve
performance for intrinsic tasks, but that this is not
the case for extrinsic evaluations using GLUE.

6.3 Ablation study

We perform an ablation study to determine which
steps of our method contribute the most. For the
ablation study we use the best meta-embedding in
the intrinsic and extrinsic evaluation tasks. We do
this by skipping a different step of the method each
time. For -OOV we do not apply the technique to
obtain representations for the OOV words, we just
average the available representations for a given
word. With -NORM we do not perform the nor-
malization steps to the source embeddings. For



3964

FT GV W2V J UKB P AR N
FJNP

CONC+ LLE AAEME Our Method
60.5 43.4 59.6 58.2 56.1 58.2 52.1 53.4 52.4 48.5 53.2 58.2

Table 6: Comparison of the source embeddings, our meta embedding method, baselines and previous work perfor-
mance on GLUE benchmarks. GLUE score is reported.

-Vecmap the source embeddings are not mapped
to a common vector space. The results reported in
Table 7 show that the normalization and the map-
ping steps provide most of the performance. If we
average embeddings that have not been normalized
the difference in scale and the centroid of the vector
space can cause some embeddings to take higher
importance in the meta-embeddings. Averaging
word embeddings that have not been mapped to the
same vector space can cause vectors to cancel each
other.

With respect OOV, the results are mixed. This
step increases the performance in the categoriza-
tion and word similarity tasks but it hurts the per-
formance on the analogy and extrinsic tasks. This
is caused by two factors. First, since all the em-
beddings have been normalized and mapped to the
same vectors space, the average of the available
representations is already a good approximation
for OOV words. If the source embeddings would
have a representation for the OOV words, it would
be close to the ones already available.

Additionally, a larger vocabulary is not benefi-
cial for every task. Consider the example in Table 2
where a much larger vocabulary obtains worse re-
sults in the Word Analogy task. We demonstrate
this by counting the number of nearest neighbors
to love with a cosine similarity greater than 0.85
in the meta-embeddings. Table 8 shows the most
similar words when using and not using the OOV
algorithm (27 and only 4 words respectively). Gen-
erating a meta-embedding containing the union of
the vocabularies of all the source embeddings may
be useful for some tasks, such as word similarity.
However, for tasks such as word analogy, reducing
the final vocabulary to the set of most common
words is the best approach.

7 Conclusions

We have presented a meta-embedding generation
method that improves over previous approaches.
Moreover, our method does not rely on hyper-
parameter tuning and generates general-purpose
meta-embeddings that can be used for any task. We

FJNP AVG C WS A GLUE
Our method 70.6 73.5 78.4 59.9 58.2
-OOV 70.6 72.5 78.1 61.2 59.5
-NORM 67.5 73.9 77.0 51.7 55.3
-Vecmap 66.7 72.7 75.0 52.3 58.0

Table 7: Ablation studies on our standardization steps.

with OOV : overlove, outlove, antilove, lovea-
holic, have_no_regrets, sometimes_good, won-
derful_feeling, strong_like, filial_love, lovedom,
propose_to_woman, lov?d, family_love, Love,
love_dearly, love_heart, Adore, buy_ring, LOVE,
deep_affection, being_in_love, sovietophile, love-
ful, Loving, mislove, lovemonger, arachnophile
without OOV : overlove, loveaholic, outlove,
antilove

Table 8: Nearest neighbors to the word love for the
FJNP meta-embedding with a cosine similarity > 0.85
applying or not the OOV generation algorithm.

also propose a comprehensive and unified evalua-
tion framework for evaluating meta-embeddings.
This framework allows to fairly and objectively
compare different meta-embedding generation ap-
proaches using the same settings and methodology.

Using this framework we demonstrate that
combining embeddings that encode the most
complementary knowledge produces better meta-
embeddings. In fact, the meta-embeddings that
encode in the same vector space the knowledge
from large text corpora, WordNet, PPDB and Con-
ceptNet achieve the best published results in the
intrinsic evaluation benchmarks. Interestingly, and
contrary to what previous research suggested, we
empirically demonstrate that when evaluating in a
large set of extrinsic tasks, meta-embeddings are
not helpful for improving the results of the source
embeddings. We plan to investigate the perfor-
mance of our approach in a cross-lingual setting
for under-resourced languages. We suspect that the
performance of under-resource language embed-
dings can be improved by combining them with
embeddings from a rich-resource language.
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A Meta-embedding Generation
Algorithm Illustrated

In this section we illustrate our meta-embedding
generation algorithm using two sample embeddings
with 3 dimension vectors and 1000 word vocabu-
lary sizes (Figure 1). The vocabularies of the two
embeddings have 791 common words, and each
embedding has 209 unique words for which the
other embeddings does not have a representation
(OOV words). The resulting meta-embedding vo-
cabulary will be the union of the vocabularies, 1197
words. Our approach to generate meta-embeddings
consists of two main steps (i) pre-processing of
the source embeddings and (ii) generation of the
meta-embedding by averaging.

Figure 1: Step 0 Source embeddings at the start of the
embedding generation process

A.1 Word embeddings pre-processing

Word embedding generated with different sources
or techniques can result in very different vectors
spaces and vocabularies. Before aligning the vec-
tor spaces an harmonization pre-processing step is
needed. Thus, we translate, scale, rotate and match
the vocabularies of the source embeddings.

1) Mean Centering and scaling: Following
(Artetxe et al., 2018) we first length normalize the
source embeddings (Figure 2). We mean center
each dimension (Figure 3), and we length normal-
ize them again (Figure 4). This translates all the
source embeddings to the origin and scales them to
have the same length.

2) Aligning the vector spaces: We align the

Figure 2: Step 1 Length normalization of the source
embeddings

Figure 3: Step 2 Mean centering of the source embed-
dings

vector spaces of the source embeddings using
VecMap (Artetxe et al., 2016) (Figure 5). VecMap
learns word embedding mapping using an orthog-
onal transformation. Orthogonality allows mono-
lingual invariance during the mapping, preserving
vector dot products between word vectors. Mono-
lingual invariance ensures no information loss dur-
ing the mapping step, which is desirable for our
aim of generating meta-embeddings. In our ex-
periments we align the source embedding by pro-
jecting them to the vector space of one particular
source embeddings involved in the construction of
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Figure 4: Step 3 Second length normalization of the
source embeddings

the meta-embeddings.

Figure 5: Step 4 Alignment of the source embeddings
using VecMap

3) OOV generation: Different word embed-
dings have different vocabularies. When combin-
ing two word embeddings we can distinguish two
sets of words. Those for which we have a represen-
tation in both embeddings and those for which one
of the embeddings has no representation. We call
the latter "OOV words". We unify the vocabulary
of the source embeddings by creating new approxi-
mate representations for the OOV words (Figure 6).
The process is as follows. Given two source embed-
dings E1 and E2 where for a word W only E1 has

a representation, we generate a new approximation
for the OOV word in E2 by revising the most simi-
lar words from the common vocabulary of E1 and
E2. First, using the cosine similarity as distance
metric, we select the k (ranging from 2 to 50) near-
est neighbours of the word W in E1 that also appear
in the common vocabulary with E2. For each k, we
calculate k candidate representations of the OOV
word in E2 and E1 as a weighted average of the
selected k nearest neighbours in their correspond-
ing spaces. We use the cosine similarity from the
nearest neighbors in E1 to W as weights. Finally,
the selected representation of the OOV word in E2
is the one corresponding to the closest candidate to
W in E1.

Figure 6: Step 5 OOV generation algorithm

A.2 Meta-embedding generation
We combine the harmonized source embeddings by
averaging them (Figure 7). We empirically demon-
strate that thanks to the pre-processing steps, av-
eraging source embeddings effectively combines
multiple source embeddings resulting in representa-
tions as good as the ones generated by embedding
concatenation without increasing its dimensional-
ity.

B Computing infrastructure

We run all the experiments in a Linux system with
an Intel Xeon CPU E5-2620 V4 CPU, 1024GB of
RAM and an Nvidia Titan V GPU. To reproduce
the generation of the FJNP meta-embedding with
a reasonable run-time (less than 24 hours) we rec-
ommend using at least a quad-core CPU, 32GB of
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Figure 7: Step 6 Meta-embedding generation by aver-
aging

RAM and a 2GB GPU with CUDA support (GPU
is optional but highly recommended). The intrin-
sic evaluation framework can be run in less than
one hour in a system with enough primary memory
to load a full embedding/meta-embedding (8GB).
The extrinsic evaluation framework will run in less
than 24 hours in a system with a reasonably mod-
ern CPU and enough primary memory to load the
full embedding/meta-embedding and the bag-of-
words model (8GB). The extrinsic evaluation can
be speed-up with an 8GB GPU with CUDA and
FP16 support.


