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Abstract
Recent advances in text autoencoders have sig-
nificantly improved the quality of the latent
space, which enables models to generate gram-
matical and consistent text from aggregated la-
tent vectors. As a successful application of this
property, unsupervised opinion summarization
models generate a summary by decoding the
aggregated latent vectors of inputs. More
specifically, they perform the aggregation via
simple average. However, little is known
about how the vector aggregation step affects
the generation quality. In this study, we revisit
the commonly used simple average approach
by examining the latent space and generated
summaries. We found that text autoencoders
tend to generate overly generic summaries
from simply averaged latent vectors due to an
unexpected L2-norm shrinkage in the aggre-
gated latent vectors, which we refer to as sum-
mary vector degeneration. To overcome this
issue, we develop a framework COOP, which
searches input combinations for the latent vec-
tor aggregation using input-output word over-
lap. Experimental results show that COOP suc-
cessfully alleviates the summary vector degen-
eration issue and establishes new state-of-the-
art performance on two opinion summariza-
tion benchmarks. Code is available at https:
//github.com/megagonlabs/coop.

1 Introduction

The unprecedented growth of online review plat-
forms and the recent success of neural summariza-
tion techniques (Cheng and Lapata, 2016; See et al.,
2017; Liu and Lapata, 2019), spurred significant in-
terest in research on multi-document opinion sum-
marization (Angelidis and Lapata, 2018; Chu and
Liu, 2019; Bražinskas et al., 2020; Suhara et al.,
2020; Amplayo and Lapata, 2020; Amplayo et al.,
2021). The goal of multi-document opinion sum-
marization is to generate a summary that represents
salient opinions in the input reviews.

∗Work done while at Megagon Labs.

Research on multi-document opinion summa-
rization is challenging because of the lack of gold-
standard summaries, which are difficult to collect
at scale. This is in contrast to single-document
summarization, where there exists an abundant an-
notated datasets (Sandhaus, 2008; Hermann et al.,
2015; Rush et al., 2015; Narayan et al., 2018). Con-
sequently, the primary approach is to employ text
autoencoders for unsupervised opinion summariza-
tion (Chu and Liu, 2019; Bražinskas et al., 2020).
Text autoencoders, especially variational autoen-
coders (VAEs), are known for the ability to gener-
ate grammatical and consistent text by aggregating
multiple latent vectors (Bowman et al., 2016). Un-
supervised opinion summarization models leverage
this property to generate a summary by first aggre-
gating the latent vectors of input reviews via simple
average, and then decoding the summary from the
aggregated vector.

However, it has not been verified if the simple
average is the best choice for summary generation.
Furthermore, little is known about the relationship
between the latent vector and the generation qual-
ity. In this paper, we report that text autoencoder
models with the simple average vector aggrega-
tion tend to generate overly generic summaries,
which we refer to as summary vector degeneration.
For example, as shown in Figure 1, with simply
averaged latent vectors, the generated summaries
of two distinct entities are almost identical. We
further discovered two factors that cause summary
vector degeneration: (1) simply averaged latent vec-
tors cause unexpected L2-norm shrinkage, and (2)
latent vectors with smaller L2-norm are decoded
into less informative summaries (e.g., contain only
general information.)

To address the summary vector degeneration is-
sue, we develop COOP, a latent vector aggrega-
tion framework. In essence, COOP considers con-
vex combinations of the latent vectors of input re-
views for better summary generation. More specifi-

https://github.com/megagonlabs/coop
https://github.com/megagonlabs/coop
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This is a great place to eat. The food is always fresh and the staff is very friendly. It’s a great place to go if 
you are in the area. The food is always good and the prices are very reasonable.

This place is great. The food is good and the service is great. The staff is very friendly and attentive. They 
have a nice selection of drinks and the food is always fresh. The prices are very reasonable.

First time here and it was really good. The service was great, the food was delicious, and the portions 
were very large. This is a great place to go for Chinese food.

This is a great place to eat. The food was delicious and the staff was very attentive. The catfish was 
tender and tasty. The hush puppies were amazing. The Mac and cheese was very good. They 
have a great beer selection as well.

Z

Latent space

zreview

zcoop

zavg

Xxcoop

Text space

xavg

Figure 1: Illustration of the latent space Z and text space X . The de facto standard approach in unsupervised
opinion summarization uses the simple average of input review vectors zreview (◦) to obtain the summary vector
zavg (▴). The simply averaged vector zavg tends to be close to the center (i.e., has a small L2-norm) in the latent
space, and a generated summary xavg (⬩) tends to become overly generic. Our proposed framework COOP finds a
better aggregated vector to generate a more specific summary xCOOP(▪) from the latent vector zCOOP (⋆).

cally, we focus on searching for a convex combina-
tion that maximizes the input-output word overlap
between input reviews and a generated summary.
This optimization strategy helps the model generate
summaries that are more consistent with input re-
views, thus improving the quality of summarization
for unsupervised opinion summarization models.

Our contributions are summarized as follows:

• We report that the commonly used simple av-
erage vector aggregation method causes sum-
mary vector degeneration, which makes the
decoder generate less informative and overly
generic summaries.

• We formalize latent vector aggregation as an
optimization problem, which considers the
convex combination of input review latent vec-
tors. We propose a solution, COOP, to approxi-
mate the optimal latent vector with linear time
complexity. To the best of our knowledge, this
is the first work that optimizes latent vector
aggregation for opinion summarization.

• We conduct comparative experiments against
existing methods (Chu and Liu, 2019;
Bražinskas et al., 2020), which implement
more sophisticated techniques. Our exper-
iments demonstrate that by coupling with
COOP, two opinion summarization models
(BIMEANVAE and Optimus) establish new
state-of-the-art performance on both Yelp and
Amazon datasets.

2 Preliminaries

Let us denote R = {xi}
∣R∣
i=1 as a dataset of customer

reviews of the same domain (e.g., restaurant or

product), where each review is a sequence of words
x = (x1, ..., x∥x∥) in the text space X . Given an
entity e and its reviews Re ⊆ R, the goal of the
multi-document opinion summarization task is to
generate an abstractive summary se such that the
salient opinions in Re are included.

2.1 Unsupervised Opinion Summarization
Existing unsupervised opinion summarization

models (Chu and Liu, 2019; Bražinskas et al., 2020)
use the autoencoder, where an encoderE ∶ X −→ Z
mapping from the text space X to latent space Z ,
and a decoder G ∶ Z −→ X that generates texts
from latent vectors.
Encoder E: Given an entity e and its reviews Re,
the encoder E essentially maps every review xi ∈
Re into the latent space: zi = E(xi), where zi is
the latent vector of review xi.
Decoder G: The other core component is the
decoder G, which generate a new text x̂ =

(x̂1, ..., x̂∥x̂∥) from a given latent vector z: x̂ =

G(z).
Training: At the training phase, the autoencoder
model is trained to generate the review. While
various training methods have been proposed, the
simplest approach is aimed to reconstruct the input
review from the corresponding latent vector.
Generation: At the generation phase, given a set
of input review latent vectors Ze = {z1, ...,z∣Re∣},
existing opinion summarization models use sim-
ple average to create the latent vector of the sum-
mary (summary vector) zavgsummary =

1
∣Re∣ ∑

∣Re∣
i=1 zi,

which is then decoded into the summary. In this pa-
per, our focus is to analyze and improve the latent
vector aggregation for the summary.
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2.2 Variational Autoencoders
In this study, we use variational autoencoders
(VAEs) as the text autoencoder since it provides
a smooth latent space, which allows to produce
grammatical and consistent text from aggregated
latent vectors (Kingma and Welling, 2014; Bow-
man et al., 2016). More specifically, we tested
two VAE variations, namely BIMEANVAE and
Optimus (Li et al., 2020). BIMEANVAE uses
bidirectional LSTM as the encoder, LSTM as the
decoder, and applies a mean pooling layer to the
BiLSTM layer to obtain the latent vector. OPTI-
MUS (Li et al., 2020) is a Transformer-based VAE
model that uses BERT (Devlin et al., 2019) as the
encoder and GPT-2 (Radford et al., 2019) as the
decoder. Unlike existing opinion summarization
models, both BIMEANVAE and Optimus do not
use any additional objectives but the basic VAE
objective (i.e., the reconstruction loss with KL reg-
ularization):

L(θ, φ) = Lrec + βLKL
Lrec(θ, φ) = −Eqφ(z∣x)[log pθ(x∣z)]
LKL(φ) = DKL(qφ(z∣x)∥pθ(z)),

where φ and θ are the parameters of the encoder E
and decoderG. β is a hyper-parameter that controls
the strength of the KL regularization LKL(φ). We
choose the standard Gaussian distribution N (0, I)
as the prior distribution pθ(z).

3 Revisiting Simple Average Approach

In this section, we revisit the commonly used sim-
ple average approach (SimpleAvg) and examine
the relations between the aggregated latent vector
and the quality of generated summaries.

Taking a simple average is an intuitive way to
optimize the aggregated vector in the latent space
since it minimizes the total distance between input
latent vectors and the aggregated vector. Thus, it
appears to be a reasonable design choice and has
been adopted by multiple unsupervised opinion
summarization models as de-facto standard.

However, we find that only considering the to-
tal distance between the input and the aggregated
latent vectors does not always render high-quality
summaries. This is because SimpleAvg is com-
pletely ignorant of the decoder performance and
the resulting generation. In fact, we observe that
SimpleAvg tends to produce overly generic sum-
maries (as shown in Figure 1), which we refer to as
summary vector degeneration.
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Figure 2: Average L2-norm of simply averaged sum-
mary vectors for different number of input reviews.

To gain a better understanding of the summary
vector degeneration problem, we conducted further
analysis and discovered two factors that cause this
problem: (1) simply averaging input latent vectors
causes L2-norm shrinkage, and (2) latent vectors
with smaller L2-norm tend to be decoded into less
informative generations.

3.1 L2-norm Shrinkage in Latent Space

To understand how simply averaged latent vectors
distribute in the latent space, we compared the L2-
norm of the latent vectors of input reviews and
summary vectors created by SimpleAvg. We con-
ducted analysis using BIMEANVAE on two review
datasets, Yelp and Amazon.

As shown in Figure 2, the average L2-norm of
the summary vectors significantly shrinks from
9.97 to 4.10 on Yelp (10.15 to 4.17 on Amazon)
as the number of input reviews is increased from
1 (i.e., individual reviews) to 8. The results show
that simply averaging multiple latent vectors can
cause L2-norm shrinkage of the summary vector.
As we expect each dimension in the latent space to
represent a distinct semantics, L2-norm shrinkage
may cause some information loss in the summary
vector.

3.2 Summary Vector Degeneration

To investigate the effect of L2-norm shrinkage in
the latent space, we further analyzed the quality of
generated text for each latent vector and conducted
correlation analysis against the L2-norm. We used
two metrics to assess the quality of generated text:
(a) text length and (b) information amount. For
the information amount, we trained an autoregres-
sive model (RNN-LM) on each dataset and used
negative log probabilities of generated summaries
(i.e., a higher value means more amount of infor-
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(a) L2-norm vs. generated text length
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(b) L2-norm vs. information amount of generated text

Figure 3: Correlation analysis of the L2-norm of la-
tent vectors ∥z∥ and the generated text quality: (a) text
length and (b) information amount.

mation) (Brown et al., 1992; Mielke et al., 2019)1.
Figure 3 shows that the L2-norm of latent vec-

tors is highly correlated with (a) generated text
length and (b) information amount. The results
support that latent vectors with smaller (larger) L2-
norm are decoded into less (more) informative text.
Therefore, we confirm that the commonly used
SimpleAvg is a suboptimal solution for latent vec-
tor aggregation as it tends to cause summary vector
degeneration.

4 Convex Aggregation in Latent Space

As discussed above, there are two limitations with
the de-facto standard SimpleAvg. First, it causes
summary vector degeneration. Second, it is igno-
rant of the decoder generation (in the text space X )
for a summary vector (in the latent space Z .)

To address the issues, we consider an optimiza-
tion problem that searches for the best combination
of the latent vectors of input reviews that maxi-
mizes the alignment between input reviews and
generated summaries. We restrict the search space
to the convex combinations of input review repre-
sentations, so the contribution of each input review
is always zero or positive. This is based on the
assumption that each review in the input set should

1Training details are in Appendix.

Decoder
Encoder

Input reviews Generated summary
Coop

Input-output
word overlap

Latent space

Figure 4: COOP searches convex combinations of the
latent vectors of input reviews based on the input-
output word overlap between a generated summary and
input reviews. × denotes the simply averaged vector.

be either ignored or reflected. Hence, we refer to
the latent representation aggregation problem as
convex aggregation.

4.1 COOP: Convex Aggregation for Opinion
Summarization

We develop a latent vector aggregation framework
COOP to solve the convex aggregation problem
in Figure 4. COOP optimizes for the input-output
word overlap between a generated summary and
the input reviews:

maximize
z

Overlap(Re, G(z))

subject to z =

∣Re∣
∑
i=1

wizi

∣Re∣
∑
i=1

wi = 1,∀wi ∈ R+.

The input-output word overlap (Overlap) eval-
uates the consistency between input reviews and a
generated summary, and it can naturally penalize
hallucinated generations. Specifically, we use the
ROUGE-1 F1 score as the input-output word over-
lap metric (Lin, 2004)2. Note that the method does
not use gold-standard summaries or any informa-
tion in the test set but uses the input reviews for
calculating word overlap information.

4.2 Search Space
Following the intuition that some input reviews
are useful and others are not, we narrow down the
search space to the power set of an input review

2We also tested other ROUGE scores such as ROUGE-2/L
in the preliminary experiments and found that ROUGE-1 (i.e.,
word overlap) works most robustly, so we decided to use the
most straightforward metric.
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set Re. The summary vector is then calculated as
the average of the latent representations of the “se-

lected” reviews: zpowersummary =
1

∣R′
e∣
∑∣R′

e∣
i=1 zi, where

R′
e ∈ 2

Re \{∅} is non-empty subsets in the power
set 2Re . We also tested black-box optimization
techniques (Audet and Hare, 2017) to search the
entire continuous space, but we did not observe
improvements despite the extra optimization cost.

5 Evaluation

Dataset: For our experiments, we used two pub-
licly available datasets, Yelp (Chu and Liu, 2019)
and Amazon (Bražinskas et al., 2020). Besides
reviews used for training, these two datasets also
contain gold-standard summaries for 200 and 60
sampled entities, respectively. For both datasets,
the summaries are manually created from 8 input re-
views, and we used the same dev/test split, 100/100
for Yelp and 28/32 for Amazon, released by their
authors for our experiments.
Experimental settings: We used Adam opti-
mizer (Kingma and Ba, 2015) with a linear sched-
uler, whose initial learning rate is set to 10

−3 (10−5)
for BIMEANVAE (Optimus.) To mitigate the KL
vanishing issue, we also applied KL annealing dur-
ing the training (Kingma et al., 2016; Fu et al.,
2019; Li et al., 2019).

For generation, we used beam search with a size
of 4. In order to generate summary-like texts, we
introduce a technique, first-person pronoun block-
ing, that prohibits to generate first-person pronouns
(e.g., I, my, me) during summary generations. We
report the ROUGE-1/2/L F1 scores for the auto-
matic evaluation (Lin, 2004)3.
Comparative methods: We compared our mod-
els (i.e., BIMEANVAE and Optimus with COOP)
against state-of-the-art opinion summarization
models that use SimpleAvg for latent vector
aggregation, namely TextVAE (Bowman et al.,
2016), MeanSum (Chu and Liu, 2019), and Copy-
Cat (Bražinskas et al., 2020). We also coupled
BIMEANVAE and Optimus with SimpleAvg to
verify the effectiveness of COOP. In addition, we re-
port the performance of other extractive or weakly-
supervised opinion summarization models.

Besides the unsupervised summarization models,
we also report two types of oracle methods.
Oracle (single): This oracle method selects a sin-
gle input review that takes the highest ROUGE-1

3https://pypi.org/project/py-rouge/

F1 score on the gold-standard summary.
Oracle (comb.): This oracle method selects the
best set of input reviews from the power set 2Re \
{∅} of input review set Re so that it achieves the
highest ROUGE-1 F1 score on the gold-standard
summary when BIMEANVAE is used as the sum-
marization model. This can also be interpreted as
the upper-bound performance of BIMEANVAE.

More details about our evaluation can be found
in the Appendix.

5.1 Automatic Evaluation
As shown in Table 1, COOP is able to im-
prove both summarization models, BIMEANVAE
and Optimus, by a large margin. With COOP,
BIMEANVAE and Optimus obtain the new state-
of-the-art performance on both benchmark datasets.
Besides the summarization performance, we also
show the model sizes in Table 1. Note that
BIMEANVAE performs competitively well against
Optimus, which is trained on top of large pre-
trained language models and has approximately
20x more parameters than BIMEANVAE. We be-
lieve this is due to the simple yet important con-
figuration in the model architecture, which uses
a BiLSTM encoder (vs. unidirectional LSTM in
TextVAE) and a mean-pooling layer (vs. last hid-
den state).

Meanwhile, BIMEANVAE and Optimus with
COOP outperforms Oracle (single), which selects
the single review that takes the highest ROUGE
score. The results indicate that our aggregation
framework takes the quality of unsupervised multi-
document opinion summarization to the next stage.

It is worthwhile to note that both VAE vari-
ations with the conventional simple average ag-
gregation competitively perform well against the
state-of-the-art performance on opinion summa-
rization benchmarks as shown in Table 1. In con-
trast to previous study (Bražinskas et al., 2020),
which showed that text VAE performs poorly on
the opinion summarization, our modified configu-
ration makes BIMEANVAE a competitive baseline
for the task.

5.2 Human Evaluation
We conducted human evaluation to assess the
quality of generated summaries. More specifi-
cally, we collected the generated summaries for
entities in the Yelp test set with four differ-
ent models, COOP (BIMEANVAE), SimpleAvg
(BIMEANVAE), CopyCat and PlanSum. Then,

https://pypi.org/project/py-rouge/
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Yelp Amazon
Method R1 R2 RL R1 R2 RL #Param

COOP
BIMEANVAE 35.37 7.35 19.94 36.57 7.23 21.24 13M
Optimus 33.68 7.00 18.95 35.32 6.22 19.84 239M

SimpleAvg
BIMEANVAE 32.87 6.93 19.89 33.60 6.64 20.87 13M
Optimus 31.23 6.48 18.27 33.54 6.18 19.34 239M
TextVAE† 25.42 3.11 15.04 22.87 2.75 14.46 13M
MeanSum† 28.46 3.66 15.57 29.20 4.70 18.15 28M
CopyCat† 29.47 5.26 18.09 31.97 5.81 20.16 21M

Abstractive
Opinosis† 24.88 2.78 14.09 28.42 4.57 15.50 –
DenoiseSum‡ 30.14 4.99 17.65 – – – –

Extractive
LexRank† 25.01 3.62 14.67 28.74 5.47 16.75 –
Spectral-BERT♭ 30.20 4.50 17.20 – – – –
QT♯ 28.40 3.97 15.27 34.04 7.03 18.08

Weakly Supervised
PlanSum‡ 34.79 7.01 19.74 32.87 6.12 19.05
OpinionDigest♮ 29.30 5.77 18.56 – – – –

Oracle
single 31.73 4.94 16.95 35.44 7.71 20.74 –
comb. 42.72 10.21 24.00 40.55 8.77 23.33 –

Table 1: ROUGE scores on the benchmarks. Bold-faced and underlined denote the best and second-best scores
respectively. COOP significantly improves the performance of two summarization models, BIMEANVAE and
Optimus, and achieves new state-of-the-art performance on both of the benchmark datasets. † means the results
are copied from Bražinskas et al. (2020), ‡ from Amplayo et al. (2021), ♭ from Wang et al. (2020), ♯ from
Angelidis et al. (2021), and ♮ from Suhara et al. (2020). Note that this study classifies OpinionDigest and PlanSum
as weakly-supervised summarizers since they use additional information other than review text.

Info Content Support
Fully Partially No

COOP 28.0 38.1% 35.7% 26.2%
SimpleAvg 18.0 35.4% 35.2% 29.4%
CopyCat -52.0 37.6% 34.2% 28.2%
PlanSum 6.0 30.7% 36.2% 33.1%

Table 2: Human evaluation on Yelp dataset. COOP out-
performs the other baseline models on both informa-
tiveness (Info) and content support.

we asked three human judges to evaluate the sum-
maries with two criteria: informativeness and con-
tent support.

We first asked human judges to evaluate the in-
formativeness of the generated summaries by the
Best-Worst Scaling (Louviere et al., 2015), which
scores each summarization method with values
ranging from -100 (unanimously worst) to +100
(unanimously best). We then asked human judges
to evaluate the content support of the generated
summaries. For each sentence in the generated
summary, the judges chose an option from (a) fully

supported, (b) partially supported, or (c) not.
We present the human evaluation results in Ta-

ble 2. As shown, summaries generated by COOP

are more informative than SimpleAvg4 and the
other baseline models. Meanwhile, COOP also
behaves well on content support as it generates
more sentences with full/partial content support
than the other methods. These results indicate that
COOP is able to generate more informative and less
hallucinated summaries. Combined with the auto-
matic evaluation results, we conclude that COOP

meaningfully improves the quality of summariza-
tion generation.

6 Analysis

In this section, we conduct a series of additional
analysis to verify the effectiveness and efficiency
of COOP. We also provide detailed descriptions of
the setups and additional analysis in the Appendix.

4BIMEANVAE shows robust performance even combined
with SimpleAvg. Note that CopyCat also uses SimpleAvg.
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Figure 5: L2-norm distributions of latent vectors of in-
put reviews and aggregated vectors.

6.1 Summary Vector Analysis

Does COOP avoid L2-norm shrinkage? To ver-
ify if COOP alleviates the summary vector degener-
ation issue, we compare the L2-norm distributions
of the summary vectors by SimpleAvg, COOP, Or-
acle (comb.), and the original reviews (None.) We
used BIMEANVAE for SimpleAvg and COOP as
the base models.

Figure 5 shows COOP does not show severe L2-
norm shrinkage compared to SimpleAvg. However,
the distributions of any aggregation methods, in-
cluding Oracle, show smaller means of L2-norm
compared to individual reviews. This is expected,
as customer reviews often contain irrelevant (and
specific) information that is not suitable for sum-
maries (e.g., personal experience.) Therefore, just
preserving the L2-norm of input latent vectors does
not necessarily lead to high-quality summary vec-
tors.

We confirm that COOP has a similar distribution
to that of Oracle (comb.), which achieves the upper
bound performance of COOP. The results indicate
that COOP successfully excludes input reviews that
contain too much irrelevant information, so it can
create high-quality summary vectors without ac-
cessing any gold-standard summaries.
How good is COOP’s summary vector? We ver-
ify how good COOP’s summary vector selections
are with respect to summary generation quality.
Specifically, we sorted all summary vector can-
didates in power set 2Re \ {∅} by the ROUGE-
1 score using the generated summary and gold-
standard summaries. By doing so, we can use
the position of COOP’s selection to evaluate the
summary vector quality using ranking metrics.
We iterated the process for each entity e and
used two metrics, namely Mean Reciprocal Rank
(MRR) and normalized discounted cumulative gain
(nDCG)(Schütze et al., 2008), for the evaluation.

Yelp Amazon
MRR nDCG MRR nDCG

Random 2.40 14.17 2.40 14.17
SimpleAvg 4.30 16.14 1.54 13.60

COOP 12.05 22.83 14.47 25.21

Table 3: Quality of summary vectors for different ag-
gregation methods. Values are in percentage.
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Figure 6: ROUGE-1 scores of COOP with approximate
search in different configurations.

We conducted the analysis using BIMEANVAE on
the test set. We also evaluated random selection and
simple average (i.e., selecting all input reviews.)

As shown in Table 3, COOP’s selection is sig-
nificantly better than that of the other methods
on both of the benchmarks. This confirms that
COOP can find good summary vectors that are
decoded into high-quality summaries. According
to the MRR values, COOP selects the 7-8th best-
ranked combination (out of 255 candidates) on aver-
age.The summary quality by the simple average is
marginally better (worse) than random selection on
Yelp (Amazon.) This is aligned with our findings
and discussions in §3, and it further clarifies the
negative effects of summary vector degeneration
caused by SimpleAvg.

6.2 Approximate Search

While we further narrowed down the search space
of COOP into power set in §4.2, the brute-force
search becomes intractable for a larger number of
input reviewsN . Therefore, we tested approximate
search algorithms for efficient and effective search.

The simplest solution is the greedy search, which
begins from a single review and progressively adds
a review that offers the highest gain in the objective
value. The greedy search can be easily generalized
to beam search, which stores k candidates for each
step. We also consider the “inverse” version of the
search algorithms, which begins from all input re-
views and removes a review that offers the highest
gain by excluding the input review step by step.
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ROUGE-1 ROUGE-2 ROUGE-L

Yelp .3758 .2560 .2266
Amazon .5199 .3903 .4816

Table 4: Spearman correlation values between the
input-output word overlap and ROUGE F1 scores on
the test set.

We refer to the original and the inverse versions as
forward and backward, respectively.

Figure 6 reports the ROUGE-1 performance
of BIMEANVAE with COOP using approximate
search on the Yelp and Amazon datasets5. The
greedy search (beam size = 1) still outperforms the
SimpleAvg baseline, and increasing the beam size
further improves the performance of both search
methods. Thus, we confirm that COOP framework
still can provide significant gains by using approx-
imate search when the input size is too large to
conduct the exact search for the entire space.

6.3 Input-output Word Overlap

To investigate the effectiveness of the input-output
word overlap as an intrinsic metric, we analyze
the Spearman’s rank correlation between the input-
output word overlap and the ROUGE scores on the
gold-standard summaries for each summary vector
in the search space 2

Re \ {∅}.
Interestingly, as shown in Table 4, the two

datasets show different trends. In contrast to
the Amazon dataset, where the input-output word
overlap shows high correlation values against the
ROUGE scores, the correlation values on the Yelp
dataset are much smaller. The results confirm that
the effect of the input-output word overlap is not
just because it is correlated with ROUGE scores be-
tween a generated summary and the gold-standard
summaries.

6.4 Qualitative analysis

Figure 7 shows an example of generated sum-
maries using BIMEANVAE with the SimpleAvg
and COOP for reviews about a restaurant in the
Yelp dataset. This example shows that the summary
generated from the SimpleAvg zavgsummary contains
general opinions (e.g., “the food is delicious.”).
In contrast, COOP effectively chose a subset of
reviews to generate a summary vector zcoopsummary,
which was decoded into a more specific summary.

5ROUGE-2/L are shown in Appendix.

7 Related Work

Opinion Summarization Multi-document opin-
ion summarization uses the unsupervised approach
as it is difficult to collect a sufficient amount of
gold-standard summaries for training. Previously,
the common approach was extractive summariza-
tion, which selects sentences based on the centrality
criteria (Erkan and Radev, 2004). Due to the recent
advances in neural network models, unsupervised
abstractive summarization techniques have become
the mainstream for opinion summarization.

Most abstractive unsupervised opinion summa-
rization techniques use a two-stage approach that
trains an encoder-decoder model based on the re-
construction objective and generates a summary
from the average latent vectors of input reviews us-
ing the trained model (Chu and Liu, 2019; Bražin-
skas et al., 2020). Amplayo and Lapata (2020)
and Amplayo et al. (2021) have expanded the ap-
proach by creating pseudo review-pairs to train a
summarization model.

Our study revisits this two-stage approach and
develop a latent vector aggregation framework,
which can be combined with a variety of opinion
summarization models.

Variational Auto-Encoder The VAE is a vari-
ant of auto-encoder that learns a regularized latent
space. The text VAE (Bowman et al., 2016), VAE
with autoregressive decoder, has been commonly
used for various NLP tasks including text genera-
tion (Ye et al., 2020), paraphrase generation (Bao
et al., 2019) and text style transfer (Hu et al., 2017;
John et al., 2019).

In contrast to the success of the text VAE in NLP
tasks, an earlier attempt for using the text VAE for
opinion summarization was not successful; Bražin-
skas et al. (2020) showed that the performance of
text VAE was significantly lower than the other
baselines. In this paper, we devise BIMEANVAE,
a simple variant of the text VAE, which performs
competitively well against the previous state-of-the-
art methods even when coupled with SimpleAvg.

Recently, a more expressive text VAE model Op-
timus (Li et al., 2020), which is built on top of pre-
trained BERT and GPT-2 models, has been devel-
oped. The model was originally developed for sen-
tence generation tasks, and we are the first to com-
bine it with a latent vector aggregation framework
for unsupervised opinion summarization tasks.



3893

Input Reviews:
Great service and clean restaurant. Tonkotsu was excellant. Nice thick broth and with a little chili oil really hit the spot.
Gyoza was excellent and not overfried like some other places. Will return! </s>
I recommend the hachi special ramen, the broth was delicious and the noodles cooked just right. We also tried the chashu
fried rice which we’ll definitely be ordering again. </s>
This place is great! Small place but so good! The chef taught us about ramen and what he learned from studying ramen
in japan! Really interesting! Definitely coming back!!! </s>
The best ramen in phoenix. They feature tonkotsu, miso and soyu flavored soups and delicious pork in ramen. The
owner has trained in japan before coming to arizona and the quality rarely sway dramatically compared to other ramen
restaurants when the owner is away. </s>
Best ramen i’ve had in phoenix for a very long time. Tradition tonkotsu ramen, shoyu, and a fantastic miso broth are on
the menu. The goyza is perfect. </s>
Hachi ramen is delicious! It is just like being at a small ramen shop in japan. They focus on their broths creating
complex and amazing flavors. I have tried two of the ramen flavors, their small plates and desserts and have been floored
each time. This is the best ramen in the state and i highly recommend it. </s>
The food here was just ok. The broth was amazing, but my noodles weren’t done right. Some were cooked perfectly but
others were chewy. Probably will not come back </s>
Tonkatsu ramen is the bomb! No msg and broth is so good! The pork is melt in your mouth and not too fatty. The egg
has a little infusion of soy, ginger marinade that is extra special! Owner talks to customers and takes great pride! I will
be back! I’d take a picture but I ate it too fast! </s>

SimpleAvg z
avg
summary:

This place is a great place to eat. The food is delicious and the staff is very friendly. They have a great selection of dishes
and the prices are very reasonable. The service is good and the food is always fresh. It’s a great place to go for lunch or
dinner.

COOP z
coop
summary:

Great service and delicious food. It’s a small restaurant but the staff is very friendly and attentive. The ramen was
delicious and the broth was really good. Will definitely be back.

Figure 7: Example of summaries generated by BIMEANVAE with SimpleAvg and COOP for reviews about a
product on the Yelp dataset. The colors denote the corresponding opinions, and struck-through reviews in gray
were not selected by COOP for summary generation (Note that SimpleAvg uses all the input reviews.) Terms that
are more specific to the entity are underlined.

8 Conclusions

In this paper, we revisit the unsupervised opin-
ion summarization architecture and show that the
commonly used simple average aggregation is sub-
optimal since it causes summary vector degener-
ation and does not consider the difference in the
quality of input reviews or decoder generations.

To address the issues, we develop a latent vec-
tor aggregation framework COOP, which searches
convex combinations of the latent vectors of in-
put reviews based on the word overlap between
input reviews and a generated summary. The strat-
egy helps the model generate summaries that are
more consistent with input reviews. To the best of
our knowledge, COOP is the first framework that
tackles the latent vector aggregation problem for
opinion summarization.

Our experiments have shown that with COOP,
two summarization models, BIMEANVAE and Op-
timus, establish new state-of-the-art performance
on two opinion summarization benchmarks. The
results demonstrate that our aggregation framework

takes the quality of unsupervised opinion summa-
rization to the next stage.
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A Dataset Preparation

Source Dataset: For the Yelp dataset, we used
reviews provided in the Yelp Open Dataset6. For
Amazon dataset, we used reviews provided in the
Amazon product review dataset (He and McAuley,
2016), and we select 4 categories: Electronics;
Clothing, Shoes and Jewelry, Home and Kitchen;
Health and Personal Care.
Preprocessing: We restricted the character set to
be ASCII printable for the experiments. We prepro-
cessed the datasets by excluding non-ASCII char-
acters from the reviews and by removing accents
from accented characters.
Tokenizer: For BIMEANVAE, we used
sentencepiece (Kudo and Richardson,
2018)7 to train a BPE tokenizer with a vocabulary
size of 32k, a character coverage of 100%, and a
max sentence length of 8,192.

For Optimus, we used the pre-trained tokenizers
provided by transformers (Wolf et al., 2020)8.
Since Optimus uses different models for the en-
coder and decoder, we used different tokenizers
for the encoder (bert-base-cased) and the
decoder (gpt2), respectively.
Training data: We used pre-defined training sets
of Yelp and Amazon with additional filtering. We
filtered out reviews that consist of more than 128
tokens after tokenization by the BPE tokenizer
trained for BIMEANVAE. As a result, the training
sets contain 3.8 million and 13.3 million reviews
in Yelp and Amazon respectively. We further ex-
cluded entities that have less than 10 reviews. The
basic statistics of the training data after those filter-
ing steps are shown in Table 5.

Yelp Amazon

# of entity 75,988 244,652
# of reviews 4,658,968 13,053,202

Table 5: Statistics of the filtered training data.

B Revisiting Simple Average Approach

B.1 RNN-LM model for information amount

We trained single-layer RNN-LMs on Yelp and
Amazon datasets respectively, in 100k steps with

6https://www.yelp.com/dataset
7https://github.com/google/

sentencepiece
8https://github.com/huggingface/

transformers

a batch size of 256. The embedding size and the
hidden size are set to 512 and the output vocabulary
layer is tied with the input embedding layer (Press
and Wolf, 2017; Inan et al., 2017).

B.2 Additional analysis on latent vector and
input text quality

In §3, we investigated the relationship between
L2-norm of latent vectors and the generated text
qualities, and found strong positive correlations. In
addition to the generated reviews x̂, we conduct the
same analysis using input reviews x.

As shown in Figure 8, we confirm the same
trends that L2-norm of latent vectors is highly cor-
related with both metrics. Thus, we confirm that
less (more) informative text tends to be embedded
closer to (more distant from) the origin in the latent
space.
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Figure 8: Illustrations of the relationships between L2-
norm of latent vectors ∥z∥ and the input review quality:
(a) text length and (b) the information content.

C Evaluation

C.1 Training settings

Major hyper-parameters for training models are
reported in Table 8 and 9 following the “Show-
Your-Work” style suggested by Dodge et al. (2019).
Optimization: We used Adam optimizer (Kingma
and Ba, 2015) with a linear scheduler that has
warm-up steps. The initial learning rate was set

https://www.yelp.com/dataset
https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Yelp Amazon
Method R1 R2 RL R1 R2 RL #Param

COOP

BIMEANVAE 36.16 7.25 20.09 36.30 6.81 21.11 13M
Optimus 35.51 7.84 19.27 35.98 7.17 20.16 239M

SimpleAvg
BIMEANVAE 33.38 7.25 20.32 31.80 6.04 20.00 13M
Optimus 33.87 7.67 18.98 33.66 6.51 19.60 239M

Oracle
comb. 44.40 11.78 24.02 39.66 8.73 22.75 –

Table 6: ROUGE scores on the development set of benchmarks. Bold-faced and underlined denote the best and
second-best scores respectively.

to be 10
−3 for BIMEANVAE and 10

−5 for Opti-
mus.
KL annealing: For the VAE training, we adopt
the KL annealing to avoid the KL vanishing is-
sue (Bowman et al., 2016). To be specific, we
tested two KL annealing strategies to control the β
value, i.e., cyclical KL annealing (Fu et al., 2019)
and pretrain-then-anneal with KL thresholding (aka
FreeBits) (Kingma et al., 2016; Li et al., 2019).
The cyclic KL annealing repeats the monotonic
annealing process of the β parameter from 0 to
1 multiple times (Fu et al., 2019). The pretrain-
then-annealing approach has two steps (Li et al.,
2019). The first step pre-trains an autoencoder
model with the β parameter fixed to 0. The second
step re-initializes the decoder parameter and trains
the model with the β parameter monotonically in-
creased from 0 to 1.

In addition to the annealing schedule, we also
searched a threshold hyper-parameter for the KL
value to control the strength of the KL regulariza-
tion (Kingma et al., 2016).

C.2 Baseline Models

We considered multiple abstractive and extractive
summarization models.
TextVAE (Bowman et al., 2016): A vanilla text
VAE model that has a unidirectional LSTM layer
and uses the last hidden state to calculate the param-
eters of the posterior distribution. The model was
tested in Bražinskas et al. (2020) but performed
poorly.
MeanSum (Chu and Liu, 2019): An unsupervised
multi-document abstractive summarization method
that minimizes a combination of the reconstruction
and similarity loss.

CopyCat (Bražinskas et al., 2020): An unsuper-
vised opinion summarization model. CopyCat in-
corporates an additional latent vector c to model an
entire review set Re in addition to latent vectors for
individual reviews. This hierarchical modeling en-
ables CopyCat to consider both global (entity-level)
and local (review-level) information to calculate a
latent representation.

C.3 Performance on Development Set

We report the performance on the development set
in Table 6. COOP consistently improve the perfor-
mance on ROUGE scores (except for ROUGE-L
on Yelp) on the development set.

C.4 Baselines for summary vector
degeneration

In this paper, we develop a latent vector aggregation
framework based on the input-output word-overlap
to address the summary vector degeneration prob-
lem. As alternative and reasonable solutions, we
tested the following methods and confirm that none
of them consistently outperforms SimpleAvg, as
shown in Table 7.

Extractive This method uses an extractive sum-
marization technique to select k input reviews that
best represent the input review set. In the analysis,
we used LexRank and set k = 4, which was chosen
based on the Oracle (comb.) performance on the
dev set. We used the simple average for the latent
representation aggregation.

Inverse-Variance Weighting Weighted average
based on importance scores of input reviews is an
alternative way for latent representation aggrega-
tion. Specifically, we consider the variance parame-
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Yelp Amazon
Aggregation R1 R2 RL R1 R2 RL

Extractive 30.51↓ 5.34↓ 18.42↓ 32.43↓ 6.13↓ 20.11↓
Inverse-Variance Weighting 32.15↓ 6.63↓ 20.11↑ 33.18↓ 6.33↓ 20.72↓
Policy Gradient 32.21↓ 6.77↓ 19.46↓ 33.33↓ 6.12↓ 20.58↓
Rescale α = 1 31.63↓ 6.38↓ 20.56↑ 30.11↓ 4.74↓ 19.45↓

α = 5 32.77↓ 6.87↓ 19.57↓ 34.01↑ 6.68↑ 21.34↑
α = 10 30.38↓ 5.85↓ 18.10↓ 34.11↑ 6.55↓ 20.33↓

SimpleAvg 32.87 6.93 19.89 33.60 6.64 20.87

Table 7: ROUGE scores of BIMEANVAE, coupled with different input aggregation methods.

ter of posterior diagσ2 as the importance score of
each input review. We found that generic reviews
(i.e., reviews that do not describe entity-specific in-
formation) tend to have large variance parameters.
To reduce the influence by such kind of generic
input reviews, we use the inverse-variance weight-
ing (Cochran, 1954) to assign larger weights to
input reviews that contain more entity-specific in-
formation:

z
ivw
summary = (∑Ne

i=1 σ
−1
i )

−1∑Ne
i=1 σ

−1
i zi.

Policy Gradient We also used reinforcement
learning to optimize the convex aggregation prob-
lem. In particular, we used the self-critical policy
gradient (PG; Rennie et al., 2017; Paulus et al.,
2018) to search the weights of input reviews:

LPG = (r(ys) − r(ŷ))∑∣ys∣
t=1 log p(yst ∣ys<t,Re)),

where the reward function r is the input-output
word overlap described in Section 4. For each
entity, we froze the encoder-decoder parameters
and trained the input review weights with LPG for
10 epochs with an initial learning rate 10

−2.

Re-scaling The last baseline approach is to re-
scale the aggregated latent vector. Specifically, we
first normalize the averaged latent vector zavgsummary

(Section 2) and then re-scale the normalized vector
with a constant value α ∈ {1, 5, 10}:

z
rescale
summary = α ⋅

z
avg
summary

∥zavgsummary∥

D Analysis

D.1 Ranking Metrics

We describe the details of the ranking metrics used
in §6.1.
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Figure 9: Approximated search performance of
ROUGE-2/L scores with different batch sizes.

Mean Reciprocal Rank (MRR):

MRR =
1

∣Z test
agg∣

∑
z∈Z test

agg

1

rank(z) ,

Normalized Discounted Cumulative Gain
(nDCG):

nDCG =
1

∣Z test
agg∣

∑
z∈Z test

agg

1

log2(rank(z) + 1) ,

where Z test
agg is the set of summery vectors for each

aggregation method on test set, and rank(z) de-
notes the rank of the summary vector z selected
by the respective aggregation method in the search
space 2

Re \ {∅}.
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Figure 10: The inference runtime of BIMEANVAE and
Optimus with different batch sizes.

D.2 Approximate Search
In addition to the ROUGE-1 scores shown in the
main paper, we show the approximated search per-
formance for ROUGE-2/L scores in Figure 9. We
observe that the ROUGE-2 score shows that back-
ward search is better for the Yelp dataset and for-
ward search is better for the Amazon dataset, simi-
lar to the ROUGE-1 score. In contrast to ROUGE-
1/2, the ROUGE-L score shows that backward
search is always better.

D.3 Runtime Analysis
We report the inference runtime of BIMEANVAE
and Optimus in Figure 10. For the Yelp/Amazon
data, BIMEANVAE can generate 220.17/173.59 re-
views/sec on average, while Optimus can generate
only 0.68/1.16 reviews/sec on average. Optimus is
a huge model that uses BERT as the encoder and
GPT-2 as the decoder, which makes it more com-
putationally expensive than BIMEANVAE. Nev-
ertheless, the inference time is still acceptable for
running summarizers in batch processing.

However, due to the GPU memory size limita-
tion, it becomes infeasible for Optimus to take a
batch size of more than 8, while BIMEANVAE can
process much larger batches within a reasonable
time.
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Input Reviews:
I usually wear size 37, but found a 38 feels better in this sandal. I absolutely love this sandal. So supportive and
comfortable, although at first I did get a blister on my big toe. Do not let this be the deciding factor. It stretched out and is
now fabulous. I love it so much that I bought it in three colors. </s>
This is a really cute shoe that feels very comfortable on my high arches. The strap on the instep fits my feet very well,
but I have very slim feet. I can see how it would be uncomfortably tight on anyone with more padding on their feet. </s>
I love these sandals. The fit is perfect for my foot, with perfect arch support. I don’t think the leather is cheap, and the
sandals are very comfortable to walk in. They are very pretty, and pair very well with pants and dresses. </s>
My wife is a nurse and wears dansko shoes. We were excited to try the new crimson sandal and normally order 39 sandal
and 40 closed toe. Some other reviews were right about a narrow width and tight toe box. We gave them a try and
passed a great pair of shoes to our daughter with her long narrow feet, and she loves them... </s>
Finally, a Dansko sandal that’s fashion forward! It was love at first sight! This is my 4th Dansko purchase. Their sizing,
quality and comfort is very consistent. I love the stying of this sandal and I’m pleased they are offering bolder colors.
Another feature I love is the Dri-Lex topsole - it’s soft and keeps feet dry. </s>
I really love these sandals. my only issue is after wearing them for a while my feet started to swell as I have a high instep
and they were a little tight across the top. I’m sure they will stretch a bit after a few wears </s>
I have several pairs of Dansko clogs that are all size 39 and fit perfectly. So I felt confident when I ordered the Tasha
Sandal in size 39. I don’t know if a 40 would be too large but the 39 seems a little small. Otherwise, I love them. They
are very cushiony and comfortable! </s>
I own many Dansko shoes and these are among my favorites. They have ALL the support that Dansko offers in its shoes
plus they are very attractive. I love the the heel height and instant comfort. They look great with slacks and dresses,
dressed up or not... </s>

SimpleAvg z
avg
summary:

This is a great shoe. It is very comfortable, and the fit is perfect. The only issue is that it’s a little big on the toe area,
but it’s not a problem. It is very comfortable to wear and it’s very comfortable.

COOP z
coop
summary:

This is a very nice sandal that is comfortable and supportive. The only problem is that the straps are a little tight in the
toe area, but it’s not a problem. They are very comfortable and look great with a pair of shoes and dress shoes. Love them!

Figure 11: Example of summaries generated by BIMEANVAE with SimpleAvg and COOP for reviews about a
product on the Amazon dataset. The colors denote the corresponding opinions, and struck-through reviews in gray
were not selected by COOP for summary generation (Note that SimpleAvg uses all the input reviews.) Terms that
are more specific to the entity are underlined. Red and struck-through text denotes hallucinated content that has
the opposite meaning compared to the input.
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Computing infrastructure TITAN V

Training duration Yelp: 15 hours, Amazon: 12 hours

Search strategy Manual tuning

Model implementation https://github.com/megagonlabs/coop

Hyperparameter Search space Best assignment

number of training steps 100,000 100,000

batch size 256 256

tokenizer sentencepiece sentencepiece

vocabulary size 32000 32000

embedding size 512 512

encoder BiLSTM BiLSTM

hidden size of encoder 256 256

pooling choice[last, max, mean, self-attn] mean

number of layers choice[1, 2] 1

prior distribution N (0, I) N (0, I)
size of latent code 512 512

decoder LSTM LSTM

hidden size of decoder 512 512

free bits choice[0.0, 0.1, 0.25, 0.5, 1.0, 2.0] 0.25

KL annealing strategy choice[Cyclic, Pretrain+Anneal] Pretrain+Anneal

learning rate scheduler linear schedule with warmup linear schedule with warmup

learning rate optimizer Adam Adam

Adam β1 0.5 0.5

Adam β2 0.999 0.999

learning rate choice[1e-5, 1e-4, 1e-3] 1e-3

gradient clip 5.0 5.0

Table 8: BIMEANVAE search space and the best assignments on Yelp and Amazon datasets.

https://github.com/megagonlabs/coop
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Computing infrastructure TITAN V

Training duration Yelp: 25 hours, Amazon: 20 hours

Search strategy Manual tuning

Model implementation https://github.com/megagonlabs/coop

Hyperparameter Search space Best assignment

number of training steps 500,000 500,000

batch size 4 4

encoder bert-base-cased bert-base-cased

decoder gpt2 gpt2

prior distribution N (0, I) N (0, I)
size of latent code 512 512

free bits choice[0.0, 0.1, 0.25, 0.5, 1.0, 2.0] 2.0

KL annealing strategy choice[Cyclic, Pretrain+Anneal] Cyclic

learning rate scheduler linear schedule with warmup linear schedule with warmup

learning rate optimizer Adam Adam

Adam β1 0.5 0.5

Adam β2 0.999 0.999

learning rate choice[1e-5, 1e-4, 1e-3] 1e-5

gradient norm 1.0 1.0

Table 9: Optimus search space and the best assignments on Yelp and Amazon datasets.

https://github.com/megagonlabs/coop

