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Abstract
In this work, we address the open-world
classification problem with a method
called ODIST(open world classification via
distributionally shifted instances). This novel
and straightforward method can create out-of-
domain instances from the in-domain training
examples with the help of a pre-trained lan-
guage model. Experimental results show that
ODIST performs better than state-of-the-art
decision boundary finding method.

1 Introduction

In the supervised learning setting, it is generally
assumed that test set data points will be organized
along the same classes observed during training.
This assumption, however, proves unreliable in
many applications, especially in dynamic and open
environments. For instance, Zhang et al. (2021)
show that an intent classifier performs rather poorly
in a dialogue system when the user expresses in-
tents unobserved in the training dialogues. In an
open environment, the ideal classifier should clas-
sify incoming data to the correct existing classes
that appeared in training and detect those examples
that do not belong to any existing classes. Such
classifier is thus described as open set recogni-
tion (Scheirer et al., 2013) or open world classifi-
cation (Fei and Liu, 2016).

The existing research to achieve this capability
in natural language processing (NLP) and computer
vision (CV) mainly focuses on decision boundary
finding. Schölkopf et al. (2001); Tax and Duin
(2004); Fei et al. (2016) use SVM to detect the
negative classified examples. Scheirer et al. (2013)
introduce the concept of open-space risk in CV.
Jain et al. (2014); Scheirer et al. (2014) propose
a series of Weibull-calibrated SVM to reduce the
open space risk further. Recent research shows
that it is also possible to use deep neural networks
to capture advanced features from the data (Lin
and Xu, 2019). In CV, Bendale and Boult (2016)

train a multi-class classifier and take the outputs
of the penultimate layer to fit Weibull distribution.
Hendrycks and Gimpel (2017) reject the low con-
fidence samples with the threshold based on the
probability of softmax distribution. Liang et al.
(2018) add a temperature scaling on the softmax
function to get a calibrated softmax score.In NLP,
Shu et al. (2017) adopt the sigmoid function to
learn the one-vs-all classifier and calculate the con-
fidence threshold by fitting training data to Gaus-
sian statistics. Zhang et al. (2021) propose to learn
the adaptive decision boundary (ADB). ADB per-
forms best among all the above methods on the
open text classification.

Besides adjusting the decision boundary on the
feature space learned from in-domain data, a good
feature space representing both in-domain and
novel out-of-domain (OOD) examples is also essen-
tial for novelty detection, namely: open representa-
tion learning. We can illustrate this approach with
the following NLP example: Let us assume that
we have only learned features for “it is red" (for
cherries) and “it is yellow" (for bananas) for a fruit
classification task. The problem we are trying to
overcome manifests when the model is exposed to
a blueberry during testing. Since it has not seen the
class during training, it does not possess a proper
method to extract features for “blue”. Ideally, we
want a representation learning approach that can
compute such a representation instead of using the
representation of “red” or “yellow”. The straight-
forward solution is to explore some examples with
“blue” during model training, although a blueberry
does not exist as a class for in-domain training.
However, in real-world applications, we do not
foresee the OOD examples that would come in the
future. Similarly, for CV, recent work (Tack et al.,
2020) augment distributionally shifted images by
rotating/flipping the original image and pretrain an
image representation space for novelty detection.
Inspired by the work, we propose a novel and sim-
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ple distributionally shifted data creation method for
NLP. And then, we train a classifier on in-domain
training examples and distributionally shifted ex-
amples. Such a classifier can work with existing
decision boundary finding methods for further open
space risk reduction.

Related Works: Besides the works(Shu et al.,
2018; Xu et al., 2019) in open-world learning, our
work is also related to data augmentation. In CV,
Chen et al. (2020) propose a simple image pretrain-
ing method based on data augmentation. In NLP,
Wu et al. (2020); Lewis et al. (2020a) pretrain lan-
guage model by contrastive learning on augmented
data. Wu et al. (2020) propose word/span dele-
tion, word reorder, word replacement and Lewis
et al. (2020a) use paraphrasing method to augment
examples. Differently from what we explore in
this paper, these works focus on similar instances
instead of OOD examples.

In this work, we take advantage of the re-
cent success of pretrained language models. We
use the sequence-to-sequence language model
BART (Lewis et al., 2020b) for distributionally
shifted example creation. BART can fill the masked
sentences by generation. Furthermore, we use the
finetuned BART 1 on MNLI (Williams et al., 2018)
for predicting the relationship between the original
text and augmented examples for filtering.

2 Methodology

Problem Definition: We define a training data
set as D = {(x1, y1), (x2, y2), . . . , (xn, yn)} com-
posed of n examples where the i-th document
xi is associated with one of the m seen classes
yi ∈ {l1, l2, . . . , lm}. In the canonical open-world
classification setting, a model learns from the train-
ing data and either classifies the test instance to one
of the m seen classes or reject it as unseen (denoted
by l0), i.e., it does not belong to any of the seen
classes. Therefore, it is a (m+ 1)-class classifier.

In our setting, we create distributionally shifted
instances DA = {(xA

1 , lm+1), . . . , (x
A
k , lm+1)} by

augmenting the training set D of seen classes into
a new augmented class lm+1. We learn a model
f(x) using both in-domain training examples in
D and the OOD examples in DA. During predic-
tion, a data point is classified to either: one of
the m seen classes from D; or l0 either because
it is classified as lm+1 (from DA) or because all

1https://github.com/pytorch/fairseq/
tree/master/examples/bart

m seen classes reject it. Therefore, our method
is a (m+ 2)-class classifier f(x) with the classes
C = {l1, l2, . . . , lm, l0, lm+1}.

This section introduces the creation process of
distributionally-shifted instances, model training,
and testing procedure.

2.1 Distributionally Shifted Data
Augmentation

As previously discussed, we do not have the OOD
data or unseen classes’ examples ready at the train-
ing time in most real-world scenarios. The goal of
distributionally shifted data augmentation is to cre-
ate OOD examples from the seen classes’ examples.
Thus, the model can learn discriminative features
for OOD detection and in-domain classification.
Distributionally shifted data augmentation inherits
from the span replacement (Wu et al., 2020). As
shown in Figure 1, there are four steps, namely:
1) chunk the example x in the in-domain training
data into pieces; 2) mask each piece iteratively to
create masked sentences; 3) replace the <mask>
tokens with predicted tokens from the pre-trained
generative language model BART to obtain the aug-
mented examples; 4) select the augmented exam-
ples by predicting with the the fine-tuned BART on
MNLI whether the original and augmented pair is
contradiction relation as qualified OOD examples.

The outcome of this approach is a list of qual-
ified OOD examples {xA

i , . . . } as the pink exam-
ples in Figure 1. Our motivation to choose span
replacement instead of the standard data augmen-
tation methods: deletion, reorder, paraphrase, and
word replacement is the OOD rate among the aug-
mented examples. The reorder and paraphrase con-
tributes in-domain examples. Word deletion and
replacement have lower OOD rates than span re-
placement. As the example shown in Figure 1, span
replacement has only 1/3 of the augmented exam-
ples seems out-of-domain. This suggests that most
tokens in the examples do not decide the semantic
or class label of the examples.

2.2 Open Representation Learning
After preparing the OOD examples DA =
{(xA

1 , lm+1), . . . , (x
A
k , lm+1)}, we use them to-

gether with the in-domain training examples D
for supervised (m + 1)-class classification. The
class label space is Y = {l1, . . . , lm, lm+1}. Let
fE denote the encoder network, Linear(·) is a lin-
ear mapping function that maps a representation r
to a (m+1)-dimension logits and Softmax(·). The

https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/pytorch/fairseq/tree/master/examples/bart
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Text:     can you make a reservation at the restaurant for tomorrow ? 

Label:     restaurant reservation

Chunk

Mask
can you … reservation <mask> for tomorrow ? can you … at the restaurant <mask>

Did you make … restaurant for tomorrow
Can you make … restaurant  for tomorrow
Do you want to make … at the restaurant

[can you] [make a reservation] [at the restaurant] [for tomorrow ?]

<mask> make a reservation … tomorrow ? can you <mask> at the ... for tomorrow ? 

Replace & Select the example which contradict the original text

can you tell us about your plans at the
can you tell us what you are eating at
can you please set up a table at the restaurant

can you make a reservation in advance for tomorrow
can you make a reservation at the hotel for tomorrow
can you make a reservation at the hotel for

can … restaurant?
can … restaurant that
can … restaurant?advertisement

Figure 1: The creation process of distributionally-shifted instances: chunk, mask, replace and filter. The examples
in pink color are the final distributionally-shifted instances. (Best view in color mode)

loss function L is the cross-entropy loss.
ri = fE(xi),

P (xi) = Softmax
(

Linear(ri)
)
,

L =

n+k∑
i=1

− logP (xi).

(1)

2.3 Rejection

Here we present the method for identifying unseen
examples during testing/inference.

Given the class prediction ỹ for the example
x from the (m + 1)-class classifier described
in Section 2.2, the method applies the decision
boundary learning method upon the trained multi-
class classifier to further reduce the open space
risk. Here, we use the SOTA adjustable deci-
sion boundary (ADB) (Zhang et al., 2021) as
the boundary finding method. The ADB method
aims to learn euclidean distance decision bound-
aries for every seen class. After training a multi-
class classifier, ADB feeds the training exam-
ples xi back to the model and gets its represen-
tation ri. Based on the represention and class la-
bel {(r1, yi), . . . , (rn, yn))}, it calculates the cen-
troids for each seen class {c1, . . . , cm}, and then
learns the radius of the boundaries {b1, . . . , bm}
by tightening same-class’s representations to its
class-centroid.

Considering we use both in-domain training ex-
amples and distributionally shifted instances as in-
put for the model, we inject them to get (m+ 1)-
centroids {c1, . . . , cm, cm+1} and learn (m + 1)
boundaries b = {b1, . . . , bm, bm+1} for (m + 1)
classes including m seen classes and the augmented
class. The testing example is treated as a rejection
example if it is out of all decision boundaries or
belonging to the augmented class.

ŷ =


l0 if ỹ = lm+1,

l0 elif ∀j, 1 ≤ j ≤ m+ 1, ‖r− cj‖ ≥ bj ,

ỹ otherwise .

(2)

3 Experiments

We evaluate our method on three datasets: Bank-
ing (Casanueva et al., 2020) 2, OOS (Larson et al.,
2019) 3 and StackOverflow (SO) (Xu et al., 2015)
4. We follow ADB (Zhang et al., 2021) and split
the datasets into training, validation, and testing.
Furthermore, we create distributionally shifted ex-
amples on the training splits. The testing examples
cover all classes in the datasets. The unseen classes’
examples are treated as the rejection class l0. The
details of the datasets are in Table 4. Following
(Shu et al., 2017; Zhang et al., 2021), we experi-
ment with three portions of 25%, 50%, and 75%
from all the classes as seen classes. For distribu-
tionally shifted instance creation, we use NLTK 5

to chunk the sentence and set BART to predict
top-3 candidates with a beam size of 5. Regard-
ing the model architecture and training, we keep
ADB 6 setting that utilizes BERT (Devlin et al.,
2019) as the base for multi-class classification. We
use the NVIDIA Tesla V100 GPU. In representa-
tion learning, we use all qualified distributional-
shift instances associated with the seen classes and
maintain class balance in a batch. The training
batch is 128, and the learning rate is 2e-5. For
boundary learning, the learning rate is 0.05. We
report the averaged scores and standard deviation
on five random seeds.

ODIST is our proposed solution that includes
the distributionally shifted instances in Sec. 2.1,
open representation learning in Sec. 2.2 and de-
cision boundaries learning in Eq. 2. Its variant

2https://github.com/PolyAI-LDN/
task-specific-datasets

3https://github.com/clinc/oos-eval
4https://archive.org/details/

stackexchange
5https://www.nltk.org/
6https://github.com/thuiar/

Adaptive-Decision-Boundary

 https://github.com/PolyAI-LDN/task-specific-datasets
 https://github.com/PolyAI-LDN/task-specific-datasets
https://github.com/clinc/oos-eval
https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
https://www.nltk.org/
https://github.com/thuiar/Adaptive-Decision-Boundary
https://github.com/thuiar/Adaptive-Decision-Boundary
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25% 50% 75%
Dataset Method Unseen Seen Acc Unseen Seen Acc Unseen Seen Acc

Banking
ADB 84.56 70.94 78.85 78.44 80.96 78.86 66.47 86.92 81.08

ODIST 87.11±2.09 72.72±1.08 81.69±1.43 81.32±1.54 81.79±0.81 80.90±1.15 71.95±3.26 87.20±1.06 82.79±1.58

OOS
ADB 91.84 76.80 87.59 88.65 85.00 86.54 83.92 88.58 86.32

ODIST 93.42±1.39 79.69±2.53 89.79±1.99 90.62±0.71 86.52±0.87 88.61±0.82 85.86±0.96 89.33±0.53 87.70±0.74

SO
ADB 90.88 78.82 86.72 87.34 85.68 86.4 73.86 86.80 82.78

ODIST 94.41±1.36 83.18±2.54 91.53±1.96 89.57±1.04 87.13±1.41 88.52±1.26 75.21±1.23 87.66±0.87 83.75±0.94

Table 1: Results of ODIST (including standard deviation) and ADB. ADB’s scores are from the original pa-
per (Zhang et al., 2021).

25% 50% 75%
Dataset Method P R F1 P R F1 P R F1

Banking
ODIST 94.90 80.51 87.11 85.36 77.65 81.32 64.12 81.84 71.95

-DB 95.46 8.28 15.22 89.93 9.56 17.19 68.25 11.32 19.41

OOS
ODIST 97.15 90.00 93.42 92.63 88.70 90.62 85.59 86.14 85.86

-DB 99.52 37.53 53.93 98.10 33.76 49.94 96.91 21.02 34.45

SO
ODIST 93.95 94.87 94.41 83.05 97.20 89.57 61.63 96.47 75.21

-DB 95.64 19.00 31.70 90.44 17.97 29.98 73.42 10.87 18.93

Table 2: Ablation study: the precision(P), recall(R) and F1 score of unseen examples.

P R F1

ODIST-DB 99.52 37.53 53.93
ODIST-DB-Select 98.43 33.95 50.48
Word Delete 50% 98.51 7.26 13.52

Word Reorder 50% 96.61 5.0 9.5

Table 3: Ablation study: different data augmentation
methods’ the precision(P), recall(R) and F1 score of un-
seen examples on OOS 25% setting.

Banking OOS SO

Class 77 150 20
Train 9003 15000 12000
Valid 1000 3000 2000
Test 3080 5700 6000

Shift 127092 186219 143831

Table 4: Details of the datasets and distributionally
shifted instances (Shift).

ODIST-DB does not use any decision boundaries
and treats the samples predicted to the augment
class as rejected, as shown in Eq. 3.

ỹ = argmax
(

Linear(r)
)
,

ŷ =

{
l0 if ỹ = lm+1,

ỹ otherwise .

(3)

We compare our method to ADB that trains a
(m)-class classifier on the in-domain training ex-
amples and learns decision boundaries for m seen
classes. It is the SOTA method in open text clas-
sification. We report the F1 score for the unseen
class l0, averaged F1 score for seen classes, and
accuracy of all test data. The unseen class’s pre-
cision, recall, and F1-score are reported regarding

the ablation study between ODIST and ODIST-DB.
We also compare augmentation methods without
decision boundary but using Eq. 3 that directly treat
the examples predicted into the class lm+1 as re-
jected. The precision, recall, and F1-score of the
unseen class on the OOS 25% setting are reported.
The compared methods are: Word Delete 50%
that randomly deletes 50% words in the original
sentence, Word Reorder 50% that reorders 50%
words in the original sentence; ODIST-DB-Select,
which is the span-replacement proposed in Section
2.1 without the last selection step; and ODIST-DB
that is our proposed data augmentation method.

Result Analysis: As shown in Table 1, we no-
tice that ODIST performs better than the ADB in
all scenarios. This supports that distributionally
shifted instances can help open-world classifica-
tion. It is promising to see the performance im-
provement on both unseen’s and seen’s examples.
This suggests that distributionally shifted instances
help model learning features for both in-domain
classification and novelty detection. We notice that
the performance improvement decrease with the
increase of seen ratio. It is because there are more
training examples for feature learning when the
seen ratio is high. Distributionally shifted instances
are more helpful in low seen-ratio scenarios.

In Table 2, ODIST is compared to ODIST-DB.
The recall scores of ODIST-DB are low. This sug-
gests that the diversity of distributionally shifted
instances is limited, and they cannot cover all OOD
test samples. It is because of the mask portion and
Bart. On the other hand, the precision scores are
high. This shows the OOD quality of the distribu-
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tionally shifted instances. ODIST can achieve a
high recall with a slight performance drop on the
precision with the decision boundaries. There is
a decreasing trend of precision with the increase
of seen ratio. This is because our current filter
mechanism compares the augmented example to
the original one. With more seen classes, the aug-
mented examples are likely similar to other classes.

We compare ODIST-DB to another three data
augmentation methods: ODIST-DB-Select, Word
Delete 50%, and Word Reorder 50%. In Table
3, ODIST-DB and ODIST-DB-Select have much
higher recall scores of the unseen class than Word
Delete 50% and Word Reorder 50%. This suggests
that Word Delete 50% and Word Reorder 50% can-
not produce distributional-shift points and enrich
discriminative features. Span-replacement-based
methods (ODIST-DB and ODIST-DB-Select) in-
ject new text spans that help open representation
learning. All methods have good performances on
the precision of unseen class though some methods
mix in-distribution and OOD in their augmented
examples. It is because we ensure class balance
in a batch during open representation learning and
bad augmented examples have lower weight in the
loss than gold data (in-distribution training data).
However, we still can observe that ODIST-DB has
the highest precision. This suggests that the ’se-
lect’ step in distributional-shift data augmentation
is helpful. One venue for future work is to effi-
ciently and effectively create diverse augmented
data.

4 Conclusion

In this paper, we study the open-world classifica-
tion problem. Differently from existing research,
we propose to learn an open representation. To
achieve that goal, we propose a novel and simple
method to create distributionally shifted instances
from the training examples. The experimental re-
sults show that the method is effective and im-
proves over SOTA results on three classification
datasets.
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