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Abstract

The ability of learning disentangled represen-
tations represents a major step for interpretable
NLP systems as it allows latent linguistic fea-
tures to be controlled. Most approaches to
disentanglement rely on continuous variables,
both for images and text. We argue that despite
being suitable for image datasets, continuous
variables may not be ideal to model features of
textual data, due to the fact that most genera-
tive factors in text are discrete. We propose a
Variational Autoencoder based method which
models language features as discrete variables
and encourages independence between vari-
ables for learning disentangled representations.
The proposed model outperforms continuous
and discrete baselines on several qualitative
and quantitative benchmarks for disentangle-
ment as well as on a text style transfer down-
stream application.

1 Introduction

A fundamental challenge in Natural Language Pro-
cessing (NLP) is being able to control generative
factors for text, such as tense, gender, negation,
which are characterised by an entangled represen-
tation in traditional neural networks, making it dif-
ficult to control them. Disentangled representation
learning aims to provide an interpretable represen-
tation of latent features, and a framework for con-
trolling the change of specific features, by separat-
ing distinct generative factors in the data (Bengio
et al., 2013).

Various disentanglement approaches for neural
networks have been proposed. Chen et al. (2016)
achieve disentanglement with a Generative Adver-
sarial Network (GAN), by maximizing the mutual
information between latent variables and generated
samples, while (Higgins et al., 2016; Burgess et al.,
2018; Kim and Mnih, 2018) fine-tune the param-
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FIGURE 1: Overview of the proposed Discrete Con-
trolled Total Correlation (DCTC) model: The KL de-
composition encourages independence between vari-
ables, which are encoded as discrete latents, to capture
the dimensions of linguistic features. The representa-
tion is probed with latent traversals and quantitative
metrics.

eter which controls the KL divergence in a Varia-
tional AutoEncoder (VAE) (Kingma and Welling,
2014). In the NLP domain, John et al. (2019) use
adversarial losses to separate the style and content
embeddings, while Cheng et al. (2020) disentangle
style and content embeddings by minimizing their
mutual information.

After a thorough review of the literature, we find
that there are currently two main issues in the area
of disentanglement in NLP. First, the mentioned
approaches operate using Gaussian distributions in
a continuous space. Although a continuous rep-
resentation may be suitable to encode images, for
text data one should rather specifically consider
discrete distributions of the feature set. In fact, gen-
erative features of a sentence mostly belong to a
discrete domain, for example, one would encode
the gender feature either as male or female, while
the tense can be modelled as having three values,
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such as present, past, future. Secondly, while in
the realm of Representation Learning, numerous
quantitative and qualitative evaluation methods for
disentanglement have been designed, there is still
a gap in the adaptation and adoption of these meth-
ods into the language domain. As a result, despite
being a critical step for enabling the interpretability
of NLP models, text disentanglement is still not
fully explored.
We address the highlighted problems as follows:
1) We design the first VAE-based architecture
(shown in Figure 1), where linguistic features are
encoded as discrete latent variables via the Gumbel-
Softmax trick (Jang et al., 2016) and disentan-
glement is jointly enforced in the objective func-
tion. We derive a decomposition of the VAE evi-
dence lower bound (ELBO), where independence
between variables is encouraged by fine-tuning the
Total Correlation term, with the goal of achieving
disentanglement. At the same time, an information
channel mechanism is introduced, and increased
incrementally during training, to avoid the issue of
the posterior collapse (Bowman et al., 2016).
2) We provide, to our knowledge, the first exten-
sive evaluation of the text representation, under
the lenses of contemporary disentanglement meth-
ods. We propose to probe the quality of the repre-
sentation by traversing and decoding each latent,
expecting a disentangled representation to show
only a single dimensional change (for example in
tense, as in Figure 1). In addition, we show that
the proposed model outperforms numerous base-
lines on three quantitative disentanglement metrics
from the Representation Learning literature. Fi-
nally, we show the beneficial effect of the proposed
representations in the task of text style transfer.

2 Background

Language VAEs. Language VAEs (Bowman
et al., 2016) are generative models widely used
in NLP tasks such as text style transfer (John et al.,
2019) and conditional text generation (Cheng et al.,
2020). The VAE architecture consists of a decoder
network pθ and encoder network qφ, acting over a
sequence of sentences x1, . . . , xn.

The VAE considers a multivariate Gaussian prior
distribution p(z) and generate a sentence x with
the decoder pθ(x|z). The joint distribution for the
decoder is defined as p(z)pθ(x|z), which, for a se-
quence of tokens x of length T result as pθ(x|z) =∏T
i=1 pθ(xi|x<i, z).

The framework’s objective is to maximize the ex-
pectation over the full dataset of the log-likelihood,
in other words, Ep(x) log pθ(x). However, this term
is intractable, and thus the variational distribution
qθ is introduced to approximate pθ(z|x). As a re-
sult, an evidence lower bound LVAE (ELBO) where
Ep(x)[log pθ(x)] ≥ LVAE, is derived as follows:

LVAE =Eqφ(z|x)
[
log pθ(x|z)

]
︸ ︷︷ ︸

i©

(1)

−KLqφ(z|x)||p(z)︸ ︷︷ ︸
ii©

In Eq. (1), i© represents the reconstruction error,
which encourages the model to encode the data x
into the latent variables z, while ii© represents the
KL divergence regularization term, which forces
the variational distribution qφ(z|x) to be similar to
the prior p(z).

Disentanglement in VAEs. The key intuition of
a disentangled representation is that it should sep-
arate the independent factors of variation in the
data. As a result, a change in a single underlying
factor is reflected into a change in a single factor
of the learned representation, while being invariant
to changes in other factors (Bengio et al., 2013).

Early approaches to disentanglement are GAN-
based (Chen et al., 2016), however, most con-
temporary methods focus on the VAE framework,
which improves the training stability. The βVAE
framework (Higgins et al., 2016) introduces a hy-
perparameter β for tuning the KL term ii© in the
ELBO (1) (i.e. LβVAE = i© − β ii©) and demon-
strates that on one hand, a β > 1 leads the model
to learn disentangled representations, however, the
disentanglement comes at the cost of a low recon-
struction fidelity.

Recent approaches (Kim and Mnih, 2018; Chen
et al., 2018) demonstrate that disentanglement can
be achieved without sacrificing the reconstruction
fidelity, by decomposing the KL term in the ELBO,
and tuning only the terms that encourages inde-
pendence between latents, while not penalizing the
mutual information between latents and data.

3 Proposed Approach

Model Overview. Differently from previous ap-
proaches to disentanglement (Higgins et al., 2016;
Kim and Mnih, 2018; Chen et al., 2018), we focus
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our efforts into leveraging the discrete generative
factors present in natural language, and design a
framework, which we name Discrete Controlled
Total Correlation (DCTC), where language factors
are encoded as discrete latent variables, while the
representation is enforced to be disentangled. We
first reformulate the continuous VAE for discrete
variables by providing a suitable discrete reparame-
terization process. We then decompose the ELBO,
and provide a modification of the Total Correlation
term for controlling disentanglement.

3.1 Linguistic Features as Discrete Variables
Discrete Variables. Discrete representations
present strategic advantages for modeling natural
language. Firstly, a discrete encoding can capture
the dimensions of a linguistic feature (e.g. tense is
a three values variable). In addition, since the di-
mensions of language features are known, it is pos-
sible to induce semantic factor biases from them,
and thus enhance disentanglement (Locatello et al.,
2019).

In order to model the discrete generative factors
of a sentence or passage, we first define a set of
discrete latent variables d, that are sampled from
a Gumbel-Softmax distribution (Jang et al., 2016)
and a posterior qφ(d|x). This is the first step to
encode the discrete factors of variation in natural
language, such as tense and gender. The continuous
VAE in (1) becomes:

L =Eqφ(d|x)
[
log pθ(x|d)

]
(2)

− KL(qφ(d|x) ‖ p(d))

Discrete Reparameterization. In order to back-
propagate with discrete variables, we need to ex-
tend the reparameterization-trick from (Kingma
and Welling, 2014). In fact, the vanilla VAE only
considers a continuous variable c, and qφ(c|x) is
parameterized by qφ(c|x) =

∏
i qφ(ci|x) where

each distribution is Gaussian. Since in our loss (2)
we consider d, that is a discrete variable, qφ(d|x)
is non-differentiable, thus we resort to the Gumbel-
Softmax trick (Jang et al., 2016), which provides a
tool for sampling from a continuous approximation
of a discrete distribution. The Gumbel-Softmax
trick considers a discrete variable with class prob-
abilities π1, . . . , πk, and draws samples g1, . . . , gk
from a Gumbel distribution, as follows:

yi =
exp((log(πk) + gk)/τ)∑k
j=1 exp((logπj +gj)/τ)

(3)

By plugging in the samples gi and the class prob-
abilities π in Eq. (3), we generate a k-dimensional
vector y, that is the continuous approximation of
the one-hot-encoded representation of the discrete
variable d. In fact, as τ approaches 0, samples from
the Gumbel-Softmax distribution become one-hot,
making it discrete.

With this approximation mechanism in place, we
can define the prior p(d) in Eq. (2) as a product of
Gumbel-Softmax distributions, which makes the
decoder qφ(d|x) differentiable and enables us to
train the discrete VAE. For our purpose, each dis-
tribution represents a linguistic feature, and can be
set to a discrete dimension.

Model Architecture. The model architecture is
depicted in Figure 1. We consider a training sam-
ple such as a sentence x of length T composed
by x1, . . . , xT . Our model is built using a LSTM
encoder which receives a sentence x, and samples
n discrete latent variables; and a LSTM decoder
which receives n discrete variables and merges
them in a sentence. Each discrete latent variable πi
is sampled from the Gumbel-Softmax distribution,
then the Gumbel-Softmax trick (Jang et al., 2016)
is used for drawing a discrete sample di. Finally,
the samples di, . . . dn are fed to the decoder after
being concatenated. The proposed model also aims
to learn disentangled representations of sentences.
This is achieved with a modification of the ELBO,
where we encourage independence between latent
variables, as explained in the following section.

3.2 Controlled Total Correlation

ELBO Decomposition Design. For creating our
objective function, we consider the KL term in
Eq. (2) in expectation over the data, and decom-
pose it, guided by the following considerations. On
one hand, we aim to include a Total Correlation
(TC) term in our decomposition, because TC is
a measure of dependency between variables, and
thus, a penalty on it may force the model to find
independent factors in the data and strongly aid
disentanglement (Kim and Mnih, 2018; Chen et al.,
2018). On the other hand, a penalty on a TC term
may lead to a KL vanishing issue (Bowman et al.,
2016), because it may cause the decoder to ignore
the information stored in the latent encoding, lead-
ing to poor reconstruction fidelity. Thus, a mecha-
nism to avoid this issue should be integrated in the
decomposition.

As a result, we decompose the KL to obtain a
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Ep(x)
[
KLqφ(d|x)||p(d)

]
= KLq(d, x)||q(d)p(x)︸ ︷︷ ︸

1©

+
∑

jKLq(dj)||p(dj)︸ ︷︷ ︸
2©

+ γ
∣∣∣KLq(d)||

∏
jq(dj)− Cd

∣∣∣︸ ︷︷ ︸
3©

FIGURE 2: Discrete Controlled Total Correlation decomposition. The term 3© encourages disentanglement.

TC term, for aiding independence, and enhance it
by introducing two parameters. First, we add a
discrete information capacity Cd, which controls
the amount of information that is passed into the
TC term. The idea is that by increasing the infor-
mation channel gradually, starting from zero, we
tackle both the KL collapse issue and the high re-
construction loss of the βVAE. Furthermore, we
introduce a variable γ, to enforce the TC term to
match the discrete information capacity Cd. The
final decomposition is shown in Fig. 2, where dj is
the j-th dimension of the latent variable d.

Analysis of Components. The first term 1© in
Fig. 2 is known as the index-code Mutual Infor-
mation (Hoffman and Johnson, 2016), and it rep-
resents the mutual information between the data
and the latent variable. This term has been stud-
ied in various disentanglement models, for exam-
ple (Chen et al., 2016) claim that high mutual in-
formation is beneficial for disentanglement, and
similarly, Zhao et al. (2019) propose the dropping
of the penalty on this term to aid disentanglement.
However, this notion is not universally accepted,
as (Burgess et al., 2018) showed that a penalty on
1© can also encourage disentanglement.

The second term 2© prevents latent dimensions
from deviating from their priors. However, this
term does not have theoretical properties that sug-
gest its utility in the enhancement of disentangle-
ment. For the above reasons we don’t fine-tune
the first two terms of the decomposition and focus
on the third, which we find to be the most influ-
ential for enforcing disentanglement in terms of
information theoretic properties.

We name the third term 3© the Controlled To-
tal Correlation (CTC). In its original form, the
Total Correlation (Watanabe, 1960), is given as
KL(q(z) ‖ q(z)), where q(z) =

∏
j q(zj), and

it represents a generalization of the mutual infor-
mation, which measures the dependence between
variables. Our variation of the TC allows us to
control the amount of information encoded in the
discrete channel, thus avoiding the collapse of the
term.

Training Procedure. To obtain the final loss
function of the proposed Discrete Controlled Total
Correlation model (DCTC), we consider the KL
decomposition described in Fig. 2 and replace it
in the original KL term in the discrete VAE ELBO
in Eq. (2). The final loss function for our DCTC
model is reported in Eq. (4):

L = Eqφ(d|x)
[
log pθ(x|d)

]
− 1©− 2©− 3© (4)

During training, we increase gradually the dis-
crete information capacity Cd while keeping γ
fixed. On one side, this linear increase tackles the
known issue of KL vanishing for text VAEs (Bow-
man et al., 2016), on the other side, it let the model
maximise disentanglement. More specifically, for
low values of Cd the TC term is collapsed to zero,
and the reconstructed sentences are not faithful.
However, as Cd is increased, the TC terms start to
become greater than zero, and the reconstruction
becomes more accurate. This improvement contin-
ues until the TC factors for each discrete latent are
non-zero, and the reconstruction is identical.

Parameter choice. The choice of the parameters
γ and Cd is derived from experimental results and
it is guided by some necessary constraints. First,
there should not be a tradeoff between a smaller
reconstruction error and the information capacity
constraint, thus the value of γ needs to be large
enough to maintain the capacity at the desired value.
Second, after constraining the capacity of the dis-
crete information channel, Cd can be chosen to
maximise the capacity of the channel, as a result,
the model is prompted to use all the latent variables
of the discrete distribution.

4 Related Work

Disentanglement in NLP. We identify two types
of approaches. 1) Multiple-losses: Hu et al. (2017);
John et al. (2019) encourage disentanglement with
adversarial losses for style transfer, while Sha and
Lukasiewicz (2021) propose to improve the train-
ing stability, using multiple non-adversarial losses.
2) Information-theoretic: Cheng et al. (2020) pro-
pose to disentangle style and content by minimiz-
ing the mutual information between the latent and
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the observed variable, while Colombo et al. (2021)
introduce an upper bound of mutual information,
showing its benefits in fair classification. Differ-
ently from all these approaches, we model linguis-
tic features as discrete variables, which allows us
to enforce control on the encodings’ dimensions.

Discrete Latent Variables. Various approaches
present discrete encodings for language genera-
tion. Shu et al. (2020) enhance control and diver-
sity in generation with latent spaces, while Guo
et al. (2020) leverage textual evidence to guide
the generation. Both methods are based on the
VQVAE (van den Oord et al., 2017), which we
consider in our experiments. Bao et al. (2020) en-
codes discrete latent variables into Transformer
blocks for dialogue generation. Differently from
these methods, we leverage discrete variables to
optimize disentanglement.

5 Experiments

In this section, we evaluate the disentanglement of
the proposed model with qualitative and quantita-
tive methods, against several baselines. Further-
more, the benefits of our model’s encodings are
demonstrated in the downstream task of text style
transfer.

5.1 Qualitative Evaluation

Latent Traversals. After training our model, we
can evaluate the disentanglement quality of the
representations by analysing the traversals of the
latent space. Traversal evaluation is a standard
procedure with image disentanglement (Higgins
et al., 2016; Kim and Mnih, 2018), but represents a
novelty for text datasets.

A visual explanation of how a traversal for tex-
tual data works is provided in Fig. 3. The traversal
of a latent factor is given by decoding the vectors
corresponding to the latent variables, where the
evaluated factor is changed within a fixed interval
(e.g. [-2, 2]), while all others are kept fixed. If the
representation is disentangled, when a latent fac-
tor is traversed, the decoded sentences should only
change with respect to that factor. This means that
after training the model we are able to probe the
representation for each latent variable.

Experimental Setup. We evaluate the latent
traversals on the dSentences dataset (M’Charrak,
2018), which is composed by 37,000 sentences,
and provides the annotations for 9 generative fac-
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FIGURE 3: Traversals of generative factors. Top: tense.
Bottom: negation.

Factor Dimensions Values
Verb/object 1100 [Verb/obj variations]
Gender 2 [Male, Female]
Negation 2 [Affirmative, Negative]
Tense 3 [Present, Future, Past]
Subject number 2 [Singular, plural]
Object number 2 [Singular, plural]
Sentence Type 2 [Interrogative, Declarative]
Person number 3 [1st, 2nd, 3rd person]
Verb style 2 [Gerund, Infinitive]

TABLE 1: Generative factors in dSentences data.

tors. Since we know in advance the number and
dimensions of the dataset’s generative factors, as
reported in Table 1, we set our DCTC model to
consider that specific setting, namely 9 discrete
generative factors with their true dimensions. The
parameter γ from Fig. 2 is fixed at 50 while the
discrete channel Czd is increased from 0 to 30 in
25k steps. Similarly, we set the continuous models
to learn 9 Gaussian latent variables, however, dif-
ferently from the discrete case, it is not possible to
map the continuous latent to a dimension.

Baselines. We compare our model against sev-
eral types of state-of-the-art VAEs. 1) Continu-
ous disentanglement models, such as βVAE (Hig-
gins et al., 2016), CCI-VAE (Burgess et al., 2018),
FactorVAE (Kim and Mnih, 2018) and βTC-
VAE (Chen et al., 2018). 2) Discrete VAEs, such
as JointVAE (Dupont, 2018) and VQVAE (van den
Oord et al., 2017). The JointVAE is a disentan-
glement method that jointly factorizes discrete and
continuous variables, while VQVAE encodes dis-
crete variables but does not encourage disentangle-
ment. 3) Disentanglement models for text, such
as Controlled Generation of Text (CGT) (Hu et al.,
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Continuous Discrete
1 2 3 4 5 6 7 8 9

Verb tense x X x X x x x x X
Subj-num x X X X X X X X X
Obj-num x X X X X X X X X
Gender X X X X x x x X X
Sent-type X x X X x x x x X
Person-num x x X x x x x x X
Verb-style x x x x x x x x x
Negation X X x X X X x X X
Verb/obj X X X X x x x x X

TABLE 2: Summary of traversal for all la-
tents. Models are abbreviated (1=βVAE, 2=CCI-
VAE, 3=βTCVAE, 4=FactorVAE, 5=CGT, 6=STVAE,
7=VQVAE, 8=JointVAE, 9=DCTC).

2017), which disentangles the sentence style, and
Style Transfer VAE (ST-VAE) (John et al., 2019),
that disentangles style from content.

Traversal Analysis. We consider a traversal for
a factor to be disentangled only if the decoded sen-
tences assume different values for the traversed
factor, keeping all other factors unchanged, as ex-
plained in the previous section. The results for all
generative factors are reported in Table 2, where
the checkmark and cross symbolise respectively
disentangled and entangled factors.

We see that DCTC achieves the most consistent
semantics, by correctly disentangling 8 out of 9
generative factors. βTC-VAE and FactorVAE are
able to disentangle respectively 6 and 7 out of 9
factors, while the NLP model (i.e. CGT and ST-
VAE) are outperformed and only disentangle 3 out
of 9 factors. We attribute the success of DCTC to
the fact that it is modeling factors knowing their
dimensions, and encourages disentanglement on
the latents, after having encoded them as discrete
variables. On the other hand, encoding discrete
variables does not guarantee disentanglement by
itself, as shown by the poor performance of VQ-
VAE, while only accounting for style and content
embeddings also leads to entangled representations,
as shown by CGT and ST-VAE.

Samples of decoded sentences from the traver-
sals for tense and subject-number are displayed in
Table 3. DCTC correctly disentangles the tense
into present, future and past, while the other factors
are fixed, and similarly it disentangles the subject-
number factor. On the other hand, β-VAE and Joint-
VAE show an entangled representation for tense
and subject-number.

Tense Subject-number
input you will not attend the party we will not attend the party

βVAE you will not attend the party we will not attend the party
you will not sign the paper he will not attend the party
you will not attend the party

JointVAE you will not attend the party we will not attend the party
you did not join the wedding you will not attend the party
you do not attend the party

DCTC you will not attend the party we will not attend the party
you did not attend the party i will not attend the party
you do not attend the party

TABLE 3: Traversal examples for tense and subject-
number. Disentangled factors in blue, entangled in red.

5.2 Quantitative Evaluation

Measuring Text Disentanglement. Quantifying
disentanglement is a necessary step in our evalu-
ation, in order to make the qualitative assessment
more granular. Current disentanglement metrics in
Representation Learning (Higgins et al., 2016; Kim
and Mnih, 2018), rely on image-based datasets that
provide the true generative factors, however, most
datasets do not present such annotations. Fortu-
nately, text data has the advantage, over images, of
being discrete and regular by nature, and thus, gen-
erative factors can be defined at a sentence-level,
by leveraging linguistically robust syntactic and
semantic categories. Following this intuition, a
simple solution for being able to measure disen-
tanglement in a text representation, is to have a
pre-processing step, where generative factors are
extracted, before utilizing this information to com-
pute the quantitative metrics.

Data Preparation. In our experiment, we focus
on the Yelp reviews dataset (Shen et al., 2017),
which is composed by 600,000 review sentences,
and we define and extract 5 generative factors,
namely: gender, tense, negation, subject number,
and object number. Using the part-of-speech (POS)
engine provided by the Stanza python package (Qi
et al., 2020), we extract: 1) the gender factor from
the pronouns and 2) the number factor from sub-
jects and objects. Similarly, the tense is obtained
from the verb using Stanza’s lemmatizer, while
negation is determined from the presence of nega-
tion attributes in the parsed metadata.

Experimental Setup. We follow the setup of the
previous qualitative experiment in terms of base-
lines and parameters. We investigate the models
on two datasets, namely, Yelp, where 5 generative
factors are extracted with the described data prepa-
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ration process, and dSentences, where 9 factors are
provided. As a result, we set the DCTC model with
respectively 5 and 9 latent variables, and in both
cases we use the dimensions for linguistic features
defined in Table 1.

Evaluation Metrics. We note that current disen-
tanglement approaches in NLP (John et al., 2019)
measure factors such as style transfer strength, con-
tent preservation, and quality of generation. In con-
trast, we are interested in evaluating the representa-
tions by computing the amount of disentanglement
in the latents. To this end, we leverage the genera-
tive factors extracted from raw text, and compute
three disentanglement metrics from the Represen-
tation Learning literature, namely Z-diff (Higgins
et al., 2016), Z-min-var (Kim and Mnih, 2018),
and Mutual Information Gap (MIG) (Chen et al.,
2018). The main difference between Z-diff, Z-min-
var and MIG is that the first two are reporting the
accuracy of a classifier trained to recognize disen-
tangled factors, while the last one is centered on
measuring mutual information between latents and
observed variables. More details about the metrics
are reported in the appendix.

Metrics Analysis. The quantitative results in Ta-
ble 4 show that DCTC outperforms the other base-
lines in 2 out of 3 metrics, for both datasets. Specif-
ically, DCTC achieves the best performance in
terms of MIG and Z-min-var, while obtaining the
second best scores for the Z-diff metric after Joint-
VAE and FactorVAE, respectively on the Yelp and
dSentences datasets. These measurements are over-
all confirming the hypothesis of the qualitative ex-
periment, namely, that the proposed DCTC model
is able to achieve a disentangled representation of
language, by jointly optimizing independence of
latents and accounting for the discrete nature of the
data.

Another similarity with the qualitative experi-
ment is that both VQVAE and the continuous NLP
baselines (CGT and ST-VAE) are on average out-
performed by other models. The outcome of VQ-
VAE indicates that despite the fact that discrete vari-
ables can encode the dimensions of linguistic fea-
tures, a model should also encourage independence
of the variables, in order to achieve competitive
scores in disentanglement metrics. Similarly, we
hypothesize that both CGT and ST-VAE do not nec-
essarily consider all the generative factors that the
experiment is evaluating, in fact, CGT only aims

dSentences Yelp
Z-min Z-diff MIG Z-min Z-diff MIG

C
on

t.

CCI-VAE 0.79 0.71 0.23 0.83 0.84 0.25
βVAE 0.88 0.87 0.32 0.91 0.75 0.30
βTC-VAE 0.92 0.90 0.27 0.91 0.92 0.29
FactorVAE 0.91 0.92 0.18 0.92 0.92 0.27
CGT 0.78 0.63 0.13 0.77 0.66 0.18
ST-VAE 0.82 0.67 0.24 0.84 0.72 0.26

D
is

c. VQVAE 0.77 0.74 0.27 0.75 0.76 0.17
JointVAE 0.89 0.81 0.35 0.90 0.95 0.33
DCTC 0.94 0.91 0.43 0.94 0.92 0.49

TABLE 4: Disentanglement metrics results.

to disentangle the style embedding of sentences,
while ST-VAE focuses on disentangling style from
content.

5.3 Text Style Transfer
Arithmetics for Latent Factors. In this exper-
iment, we take inspiration from previous work
from Mikolov et al. (2013), which showed that
word embeddings can capture semantic relations
via vector arithmetics, (for example, king - man +
woman = queen). More specifically, we consider
text generative factors (e.g. negation), and investi-
gate sentence-level embeddings arithmetic in the
task of text style transfer (extrinsic evaluation of
the models).

The style transfer protocol of our experiment is
performed as follows. We first select a factor (e.g.
negation) and extract two lists of sentences contain-
ing two specific values (e.g. negative, and affirma-
tive), that we name respectively sn and sa. The
extraction is performed based on the generative fac-
tors that we obtained with the pre-processing from
our previous experiment. We then compute the vec-
tor of the arithmetic difference between the latents
of the two vectors, namely v = sa−sn. Intuitively,
this operation removes the negative components
from the positive vector. Finally, we consider a
third vector of negative sentences, encode them to
obtain the embedding, and sum the previously com-
puted vector v. After decoding we expect the sen-
tences to be characterised by an affirmative style.

Experimental Setup. We follow our quantitative
experiment for the model setup, and datasets. We
compare our model with 3 state-of-the-art style
transfer models, including: iVAE (Fang et al.,
2019), DAAE (Shen et al., 2020), ST-VAE, along
with top performing models from the previous ex-
periments, namely FactorVAE, βTC-VAE, Joint-
VAE. In terms of evaluation metrics, we report the
style transfer accuracy for each factor. The accu-
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Gender Negation Tense Subj Obj
dSentences

C
on

t.

FactorVAE 0.85 0.78 0.71 0.81 0.76
βTC-VAE 0.70 0.76 0.45 0.75 0.81
ST-VAE 0.79 0.81 0.56 0.79 0.92
iVAE 0.82 0.85 0.56 0.90 0.88
DAAE 0.89 0.93 0.56 0.89 0.85

D
is

c. JointVAE 0.72 0.83 0.67 0.87 0.87
DCTC 0.90 0.94 0.73 0.86 0.95

Yelp

C
on

t.

FactorVAE 0.83 0.89 0.23 0.72 0.80
βTC-VAE 0.67 0.72 0.47 0.81 0.78
ST-VAE 0.71 0.93 0.43 0.83 0.89
iVAE 0.85 0.82 0.61 0.79 0.90
DAAE 0.83 0.92 0.52 0.89 0.92

D
is

c. JointVAE 0.81 0.80 0.59 0.80 0.80
DCTC 0.89 0.96 0.65 0.87 0.87

TABLE 5: Style Transfer Accuracy.

racy is computed by extracting the factors using
the same procedure used for their selection.

Style Transfer Analysis. The style transfer ac-
curacy results reported in Table 5 shows that our
DCTC model outperforms other baselines for the
majority of the factors, for both Yelp and dSen-
tences. DCTC achieves achieves the second best
result for subject-number after iVAE and DAAE,
respectively on dSentences and Yelp.

We hypothesize that DCTC achieves the
strongest performance due to the fact that it is ex-
plicitly set to learn variables with a known dimen-
sion, which can not be achieved with continuous
models. Furthermore, by disentangling the latent
variables, DCTC is able to provide a representation
that results suitable for the task of flipping single
factors. Finally, the strength of disentanglement
is also highlighted by the fact that βTC-VAE and
FactorVAE are performing comparably with the
style transfer models, even if they are not created
originally for this task.

Some examples for style transferred sentences
from Yelp are reported in Table 6. We can observe
that some baselines are able to invert the considered
factors (tense and negation), however, DCTC is the
only one that correctly inverts both factors without
the need of changing other words from the input
sentence. This can be justified by the ability of
disentangled representation to encode invariance of
certain factors. This extrinsic evaluation confirms
the hypothesis that the joining disentangled rep-
resentation with discrete encoding can positively
impact the downstream task and represents a fun-
damental tool to design more expressive language
encodings.

input the pizza served was missing a portion
DAAE the pizza is served a little bland
iVAE the pizza served is for a ridiculous price
βVAE the pizza was mistaken
βTC-VAE the pizza is completely wrong!
ST-VAE the pizza served is pretty decent
JointVAE our pizza was great
DCTC the pizza served is missing a portion

input he told me he could not exchange them
DAAE he told me he could exchange them
iVAE he told me he could be more attentive
βVAE he told me that he does not exchange them
βTC-VAE he told me he wanted a second opinion
ST-VAE he told me to try the plantains
JointVAE he told us he could not be happier
DCTC he told me he could exchange them

TABLE 6: Style transfer on Yelp. Top: tense, past to
present. Bottom: negation, negative to affirmative. Cor-
rect changes in blue, wrong ones in red.

6 Conclusion

In this work, we propose the first approach where
a discrete encoding of the linguistic features in
sentences is integrated with an objective function
that encourages disentanglement. We provide a
VAE-based architecture where latent variables are
back-propagated with a discrete reparameterization
mechanism. We then design a decomposition of
the ELBO, where 1) the independence between
latent variables is encouraged, to aid disentangle-
ment, and 2) the amount of encoded information
is controlled, to avoid the posterior collapse. We
provide a novel evaluation procedure where rep-
resentations learned from text data are probed in
terms of their disentanglement, using metrics from
Representation Learning. With this evaluation tool,
we demonstrate that the presented model consis-
tently outperforms continuous and discrete base-
lines for disentanglement, on qualitative evaluation,
quantitative metrics, and text style transfer.

We conclude that the modeling of discrete vari-
ables, which is currently under-explored in disen-
tanglement research, may represent a fundamental
encoding tool for enhancing interpretability and
control in NLP models.
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A Disentanglement Metrics

Z-diff Z-diff (Higgins et al., 2016) considers
pairs of instances to create batches where a genera-
tive factor k is chosen randomly. We then consider
the pairs v1 v2 that have the same value for the fac-
tor k. The absolute difference of the encoding of
the pair is then determined, namely |z1 − z2|. The
intuition of the metric is that a smaller difference
for a fixed factor entails more similar samples. A
reference dataset is constructed with this procedure,
then a linear classifier is trained to predict which
factor is fixed, and the accuracy is considered as
the disentanglement metric.

Z-min-var The Z-min-var (Kim and Mnih, 2018)
is similar to the Z-diff metric, as it creates a refer-
ence dataset and train a classifier to find the fixed
factor. Specifically, Z-min-var builds the dataset us-
ing the argmin of the variance vector of all encod-
ings, which have been normalized by the standard
deviation.

Z-diff and Z-min-var both rely on the intuition
that a smaller difference for a fixed factor entails
more similar samples. They create a dataset for a
classifier to predict the fixed factor, the accuracy
of which is a measure for disentanglement. Z-diff
creates the dataset with the absolute differences of
encoding pairs where a factor is fixed, while Z-min-
var builds a similar dataset, but using the argmin
of the variance vector of all encodings, which have
been normalized by the standard deviation.

Mutual Information Gap MIG (Chen et al.,
2018) does not rely on a classifier, and thus it pro-
vides more robustness against hyperparameter bi-
ases. MIG first computes the mutual information
between each latent and the true factor, and then it
identifies and subtracts the two values for latents
with maximum mutual information. The obtained
quantity is considered the amount of disentangle-
ment.


