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Abstract

This paper contributes to the thread of research
on the learnability of different dependency an-
notation schemes: one (‘semantic’) favouring
content words as heads of dependency rela-
tions and the other (‘syntactic’) favouring syn-
tactic heads. Several studies have lent support
to the idea that choosing syntactic criteria for
assigning heads in dependency trees improves
the performance of dependency parsers. This
may be explained by postulating that syntac-
tic approaches are generally more learnable.
In this study, we test this hypothesis by com-
paring the performance of five parsing sys-
tems (both transition- and graph-based) on a
selection of 21 treebanks, each in a ‘semantic’
variant, represented by standard UD (Univer-
sal Dependencies), and a ‘syntactic’ variant,
represented by SUD (Surface-syntactic Uni-
versal Dependencies): unlike previously re-
ported experiments, which considered learn-
ability of ‘semantic’ and ‘syntactic’ annota-
tions of particular constructions in vitro, the ex-
periments reported here consider whole anno-
tation schemes in vivo. Additionally, we com-
pare these annotation schemes using a range
of quantitative syntactic properties, which may
also reflect their learnability. The results of the
experiments show that SUD tends to be more
learnable than UD, but the advantage of one or
the other scheme depends on the parser and the
corpus in question.

1 Introduction and Background

This paper compares the learnability of two ap-
proaches to dependency annotation. One, rep-
resented by Universal Dependencies (UD; http:
//universaldependencies.org/; Nivre et al.,

2016), favours content words over function words
as dependency heads, as this increases cross-
linguistic uniformity of the resulting scheme; here
we will call this approach ‘semantic’.1 Another,
represented by Surface-Syntactic Universal Depen-
dencies (SUD; https://surfacesyntacticud.

github.io; Gerdes et al., 2018, 2019), uses
purely syntactic criteria for determining headed-
ness; hence the moniker ‘syntactic’. The SUD
scheme was designed as minimally different from
– ‘near-isomorphic to’ – UD, and many UD tree-
banks have been converted to SUD, so differences
in learnability between the two approaches should
be relatively easy to assess and interpret. As is
clear from Figure 1, which juxtaposes the UD ba-
sic tree (at the top) and the SUD tree (at the bottom),
SUD generally adopts the principle that function
words such as auxiliaries (e.g., do), subordinating
conjunctions (until), copula (’re), and prepositions
(with) are heads of relevant constructions. On the
other hand, SUD representation of coordination is
similar to that of UD, but where all non-initial con-
juncts are attached to the head of the first one in
UD, each conjunct is attached to the head of the
previous conjunct in SUD; when there are just two
conjuncts, annotations are the same.

Previous results suggest that the syntactic
scheme should be more learnable. For exam-
ple, Schwartz et al. (2012) compared six construc-
tions, four of which are coded differently in UD

1It needs to be emphasised that the epithet ‘semantic’ is
used here in this very technical sense, indicating preference
for content words as heads, and does not in any way imply
that UD is a semantic annotation scheme.

http://universaldependencies.org/
http://universaldependencies.org/
https://surfacesyntacticud.github.io
https://surfacesyntacticud.github.io
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Figure 1: UD (top) and SUD (bottom) analyses of a sentence from the English GUM corpus (Zeldes, 2017)

and SUD:2 preposition–noun (e.g., of Rome) –
a class which also includes complementiser–clause
constructions (e.g., after you go), to–infinitival
(e.g., to eat), modal–verb (e.g., can come), and
coordination. The experiments involved five dif-
ferent parsers (representing both transition-based
and graph-based methodologies) and two different
learnability measures (including one based on at-
tachment scores). The results of these experiments
favour SUD-like representations in all four cases.
In the case of constructions involving a preposition
or a complementiser, having them as heads – as
in SUD, but unlike in UD – results in extremely
strong (‘unanimous’) learnability improvements.
The effect is weaker in the case of verb groups
containing a modal and still weaker in the case
of infinitivals introduced by to, but in both cases
having the main lexical verb as the dependent – as
in SUD, but unlike in UD – gives generally better
results.

A similar range of constructions is inspected
in Silveira and Manning (2015). For each kind
of construction, 3 different variants of conversion
from semantic to syntactic headedness are consid-
ered, depending on how many of the dependents
of the semantic head are moved to the syntactic
head. The best variant gives significant improve-
ments in the learnability of the syntactic scheme
in the case of preposition–noun (but not comple-
mentiser–clause), auxiliary–verb (rather than the
more general modal–verb, considered in Schwartz
et al., 2012) and – and this is were the improvement
was most clear – in the case of copula–predicate
constructions. Other papers that report better learn-

2The other two constructions, which have the same rep-
resentation in the two schemes, are: noun–noun (e.g., John
Doe), determiner–noun (e.g., the apple).

ability of a more syntactic scheme converted auto-
matically from a more semantic scheme include:
Nilsson et al. (2006, 2007) (auxiliary–verb con-
structions in Arabic, Czech, Dutch and Slovene,
small improvement observed in the case of the tran-
sition based MaltParser, but not with the graph-
based MSTParser), Rosa (2015) (adposition–noun
constructions in 30 languages), Kohita et al. (2017)
(various constructions involving function and con-
tent words in 19 typologically varied languages),
and Rehbein et al. (2017) (15 languages, although
the extent of the improvements varied considerably,
and in the exceptional case of Turkish regress was
observed for all three parsers used in the experi-
ments).3

On the other hand, de Lhoneux and Nivre (2016)
report on an experiment involving 24 languages,
in which the original UD representation of verb
groups (modal–verb constructions) turns out to be
more learnable by MaltParser than the converted
representation with main verbs acting as depen-
dents of modal verbs. In a similar vein, Wisniewski
and Lacroix (2017) report that languages and par-
ticular constructions vary drastically in the extent
to which the syntactic or the semantic approach to
headedness is more or less learnable by their own
transition-based parser. However, out of the seven
constructions they consider (similar to those consid-
ered in Silveira and Manning, 2015), four differen-
tiate UD and SUD, and out of these four, two (cop-
ula–predicate and case–noun, but not mark–verb)
are more learnable in the syntactic encoding in
the majority of languages – copula–predicate con-

3See also Ivanova et al. (2013) and Kirilin and Versley
(2015), where a similar conclusion about better learnability
of syntactic schemes is reached on the basis of comparison of
different – rather than automatically converted – datasets.
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structions by a wide margin (75% of languages).
Unfortunately, the paper does not present the full
results of the experiments, so it is not clear whether
there is a correlation between, say, language fam-
ily and learnability of particular representations of
particular constructions.

The current paper is methodologically closest to
Rehbein et al. (2017) and Kohita et al. (2017): it
reports results of experiments performed on mul-
tiple corpora of typologically diverse languages,
and it compares the learnability of different annota-
tion schemes applied to the same underlying texts.
However, the novelty of the current paper lies in
comparing the learnability of two comprehensive
linguistically-informed annotation schemes rather
than a real scheme and an artificial scheme differ-
ing from it in the headedness of a single or a small
number of constructions. That is, unlike previous
experiments reported in the literature cited above,
the experiments reported here were performed in
vivo rather than in vitro. This matters, as any re-
alistic annotation schema which employs a more
‘syntactic’ approach to headedness than UD will
also differ from UD in the repertoire and distribu-
tion of dependency labels, and will also take into
account the intrinsic linguistic interaction between
various constructions. The co-existence of large
and high-quality treebanks in their UD and SUD
variants presents the unique opportunity to com-
pare the learnability of ‘semantic’ and ‘syntactic’
annotation schemes in a realistic setup.

2 Experimental Setup4

2.1 Data
Treebanks. Experiments were performed on
a subset of UD 2.6 treebanks and the corre-
sponding SUD 2.6 treebanks created by the SUD
team. 21 treebanks (in each annotation scheme)
representing 18 languages were selected on the
basis of three criteria. First of all, emphasis
was put on the quality of treebanks, so only
those – mainly Indo-European – that have the
quality score higher than 70 percent were used
(as evaluated by the official UD script: https:

//github.com/UniversalDependencies/

tools/blob/master/evaluate_treebank.pl

by Dan Zeman). Second, in order to obtain
robust results, only relatively large corpora, over

4The code necessary to perform all of the actions described
in this section can be found on our Github page: https:
//github.com/ryszardtuora/ud_vs_sud

70k tokens, were selected. Third, due to the
limited computational power, upper bounds on
the treebank size had to be set – 1000k tokens.
Three languages – Italian, Polish and Swedish –
are represented by two treebanks each, which may
give some insight into how stable certain trends
are within one language.

Preprocessing. The original UD and SUD tree-
banks had been preprocessed before the experi-
ments were carried out. In particular, the repre-
sentation of multitoken words was normalised to
the format where, say, the French form du is repre-
sented in the conllu scheme by two lines (one corre-
sponding to de with information ‘SpaceAfter=No’
and the other to le) rather than three (one for de,
another for le and another for their contraction
du). This was done to remove some inconsisten-
cies between training and testing subsets of some
corpora. Additionally, all tokens with PUNCT as
their UPOS tag were removed, unless they had
dependents.

Pretrained embeddings. Where possible
(i.e., in the case of UDPipe, UUParser, and
COMBO), pretrained fasttext word embeddings
were utilised (https://fasttext.cc/docs/en/
crawl-vectors.html; Grave et al., 2018) as op-
posed to learning embeddings during the training
process. The fasttext architecture is based on em-
beddings of character n-grams, but only the result-
ing word-level vectors were used in the training
procedure, as all of the selected systems which of-
fer an option of including external embeddings can
work with word embeddings only. Each embedding
model was pruned to 300,000 most frequent forms,
to ease the computational load.

2.2 Parsers
Two transition-based and three graph-based parsers
were used in the experiments. Some of these tools
offer robust pipelines for NLP, including tokeni-
sation, lemmatisation and tagging, but in the cur-
rent experiments only the parser component of the
tool was trained; in particular, POS tags were ex-
tracted from the gold standard and used as fea-
tures. Below, training procedures of each parser are
described separately, including only information
about parsers’ hyperparameters that differ from the
default setting.5

UDPipe. Version 1.2.0 (http://ufal.mff.
5In total 1764 models were trained (882 with UDPipe, 294

with Mate, 210 with each graph-based and transition-based
UUParser, and 168 with COMBO).

https://github.com/UniversalDependencies/tools/blob/master/evaluate_treebank.pl
https://github.com/UniversalDependencies/tools/blob/master/evaluate_treebank.pl
https://github.com/UniversalDependencies/tools/blob/master/evaluate_treebank.pl
https://github.com/ryszardtuora/ud_vs_sud
https://github.com/ryszardtuora/ud_vs_sud
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
http://ufal.mff.cuni.cz/udpipe
http://ufal.mff.cuni.cz/udpipe
http://ufal.mff.cuni.cz/udpipe
http://ufal.mff.cuni.cz/udpipe


2990

cuni.cz/udpipe; Straka and Straková, 2017) of
this transition-based parser was used without the
default values of various hyperparameters, as these
were fitted on UD, and thus could skew the results
against SUD. Instead, 21 models were trained on
each treebank (for either annotation scheme). That
is, for each transition system available – projective,
swap, link2 – seven models were trained using ran-
dom hyperparameter search – a feature provided
by UDPipe that randomises some of the training
hyperparameters.

Mate. Version 3.62 (Bohnet, 2010) of
the graph-based parser was utilised; it was
adapted from the version 3.61 (available here:
http://code.google.com/p/mate-tools/) to
our study.6 Seven models were trained for each
treebank (and each annotation scheme), and
in every training run a different non-projective
approximation threshold was selected from the
following list: 0.75, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1.

UUParser. Version 2.4 (https://github.com/
UppsalaNLP/uuparser; de Lhoneux et al., 2017)
of both graph- and transition-based methodologies
were applied in the experiment. UUParser is an
adaptation of the BIST parser (Kiperwasser and
Goldberg, 2016). In UUParser, swap transition and
Eisner algorithms were implemented, among oth-
ers, in place of their projective counterparts – used
by BIST parser – in transition- and graph-based
versions respectively. Universal POS tags dimen-
sion was set to 20 and external word embedding
dimension was adapted to the size of the embed-
dings used. Five models with different random
seeds were trained, and the one which performed
best as measured by LAS on the dev set, was then
selected for testing.

COMBO. The graph-based dependency parsing
component from Version 1.0.1 https://gitlab.

clarin-pl.eu/syntactic-tools/combo of the
COMBO (Rybak and Wróblewska, 2018) pipeline
was utilized, with word embeddings, characters,
and gold UPOS tags as features. For each treebank
four models with different combinations of learn-
ing rate (0.001 or 0.002) and dropout probability
(0.4 or 0.25) have been trained, for 100 epochs
each.

6The implemented change forces the parser to produce
only one root in each sentence. We thank Bernd Bohnet for
adjusting the parser to our needs and for allowing to share the
new Mate 3.62 version on our Github page.

2.3 Evaluation
In each case, models produced by the parsers on
the basis of training sets were used to parse the test
parts of the respective treebanks. Hyperparameter
selection (based on LAS) and early-stopping was
performed on the development set.

The official conll18_ud_eval.py
script (http://universaldependencies.org/
conll18/evaluation.html) was used to calulate
UAS and LAS scores both during hyperparameter
selection and during final testing. Due to the
differences in the annotation of labels in UD and
SUD, modifications had to be implemented in
the script. In UD, syntactic relations are divided
with a colon into two parts. The first part refers to
the universal dependency taxonomy. The second
part, after the colon, is a relation subtype which
is specific to one language or a group of related
languages. For example, advmod is a general
UD relation that refers to adverbial dependents,
while advmod:arg is specific for Polish and referes
to obligatory adverbial arguments, advmod:df is
specific for Chinese and Cantonese and refers to
durative and frequentative noun phrases, etc. In
SUD, on the other hand, some general relation
names contain the colon; e.g., comp:pred is used for
copulae and comp:aux for auxiliary verbs.

The conll18_ud_eval.py script ignores
the part after the colon during evaluation (if a parser
predicts advmod:df instead of just advmod, or vice
versa, that counts as a match). In the case of SUD,
leaving out the part after the colon would result in
incomplete labels. Hence, the evaluation script was
modified so that labels were processed differently
in the case of SUD: if the part of the relation af-
ter the colon is either aux, pred, obj, or obl, it will
not be split off, and a full match of the predicted
relation will be necessary.7 These label manipu-
lations are applied only at the stage of evaluation;
during the training phase, parsers are learning the
full spectrum of dependency labels.

3 Results

3.1 UAS and LAS scores
The results of the experiments are presented in Ta-
ble 1 (on the next page). Out of 210 comparisons,
58 gave statistically significant results using the

7We would like to thank Bruno Guillaume and the whole
SUD team for a discussion on an unbiased evaluation method.

http://ufal.mff.cuni.cz/udpipe
http://code.google.com/p/mate-tools/
https://github.com/UppsalaNLP/uuparser
https://github.com/UppsalaNLP/uuparser
https://gitlab.clarin-pl.eu/syntactic-tools/combo
https://gitlab.clarin-pl.eu/syntactic-tools/combo
http://universaldependencies.org/conll18/evaluation.html
http://universaldependencies.org/conll18/evaluation.html
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strict version of McNemar’s test, with α = 0.001.8

Out of these, 46 favour SUD, and 12 – UD; this
confirms the generally – but not unanimously –
higher learnability of the ‘syntactic’ scheme. (Tak-
ing into account all 210 comparisons, the result
is 146:64 in favour of SUD.) There is a clear dif-
ference between the transition- and graph-based
parsers in this respect. The former – UDPipe and
transition-based UUParser – have no clear prefer-
ences: their SUD:UD scores in statistically sig-
nificant differences are 4:4 and 6:4, respectively
(and in all differences: 23:19 and 23:19). The lat-
ter – Mate, COMBO, and graph-based UUParser
– strongly prefer SUD, with respective significant
scores 14:1, 8:2, and 14:1 (and all scores: 34:8,
32:10, and 34:8). Particular parsers show similar
preferences for SUD or UD in terms of UAS and
LAS, apart from Mate, whose preference for SUD
is 5:1 in terms of significant UAS differences and
9:0 in terms of LAS.

Moreover, the mean difference of UAS and LAS
results is similar for all parsers. In the case of UAS,
the mean differences between UD and SUD are
−0.03, −0.61, −0.36, −0.04, and −0.48 for UD-
Pipe, Mate, COMBO, transition-based and graph-
based UUParser respectively (i.e., SUD is preferred
on the average), and in the case of LAS, the differ-
ences are 0.01, −0.86, −0.42, −0.14, −0.60 (that
is, apart from UDPipe, parsers tend to prefer SUD).
The highest difference between these two metrics
concerns Mate’s results (δ = 0.20); however, the
difference is minimal in the case of, for instance,
UDPipe’s results (δ = 0.04).

As to particular corpora, when one scheme is
more learnable according to one parser, it tends to
be more learnable also according to other parsers.
Only in the case of the Polish PDB treebank
do different parsers have significantly different
preferences: the two transition-based parsers and
COMBO significantly prefer UD (both with respect
to the LAS score), while the graph-based UUParse
prefers SUD (with respect to UAS).

Interestingly, this relative stability in preferences
for SUD or UD concerns particular corpora (and, to
some extent, languages; especially the two Swedish
corpora behave similarly on most parsers) but not

8The strict version of McNemar’s test was employed here
in order to minimise the false discovery rate; as Table 1 reports
the results of 210 comparisons, the weaker test, withα = 0.05,
would likely produce some false significance claims, while
with the stricter version the probability that all statistically
significant claims are correct is over 0.94.
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language families. This is especially clear in the
case of Germanic languages. While English and,
to a smaller extent the two Swedish treebanks,
show strong preference for the ‘syntactic’ scheme
across all five parsing systems, the German tree-
bank favours ‘semantic’ scheme in nearly all cases.
The proportion of statistically significant differ-
ences (to all comparisons) is high in the group of
Germanic languages (14 out of 40).

Slavic languages, out of which nine treebanks
were included in the study, appear to be following
a similar pattern, altough to a smaller extent. Czech
shows a preference in favour of the UD scheme
(three statistically significant differences in favour
of UD and zero in favour of SUD), learnability of
Polish PDB appears to be dependent on the parser
used (as discussed earlier), Polish LFG and Slove-
nian do not show any significant preferences, while
Croatian, Russian (strongly), Slovak and Serbian
present higher learnability in the SUD scheme –
all observed statistically significant differences are
in favour of SUD. On the other hand, Romance
languages do not show strong preferences for ei-
ther of the schemes. In total, five statistically sig-
nificant preferences were found in this language
group, out of which three are in favour of UD and
two in favour of SUD. In the case of Baltic (Lat-
vian and Lithuanian) and Finno-Ugric (Estonian),
all of the statistically significant differences prefer
SUD scheme (14 in total). However, since only two
Baltic treebanks and only one Finno-Ugric treebank
were included in the study, we refrain from draw-
ing any conclusions about these language groups;
a more comprehensive study is needed.

To what extent do these results reflect headed-
ness decisions of the two schemes, i.e., preference
for content heads in UD and for functional heads
in SUD? It is important to note that, unlike in the
previous experiments, differences between the two
annotation schemes do not only concern headed-
ness, but also the repertoire and meanings of de-
pendency labels. The number of basic dependency
labels (as defined in §2.3) is consistently smaller in
the case of SUD than in the case of UD, which may
favourably bias parsers towards SUD. For instance,
the English GUM treebank has 48 and 43 different
labels in UD and SUD respectively, and applying
the label processing described in §2.3 results in
further reduction to 36 and 25 different labels, re-
spectively, making the task of parsers easier in the
case of SUD than in the case of UD. (These pre-

dictions are confirmed by the results concerning
Label Entropy, reported in §3.2 below.) Hence, the
results reported in this section cannot at this stage
be interpreted as showing – but are compatible with
the claim – that ‘functional headedness’ tends to be
more learnable than ‘content headedness’; further
experiments are needed to confirm or deny such
a claim.

3.2 Quantitative syntactic properties
In an attempt to find which quantifiable syntactic
properties of treebanks may impact the differences
in parsing performance, five different metrics were
calculated (see Table 2 on the next page). Some
of these properties differ substantially between UD
and SUD. Two notable examples are Average De-
pendency Length (ADL) and Average Token Depth
(ATD) – properties which are inversely related to
each other. ADL is calculated so that the length of a
dependency between neighbouring tokens is equal
to one, and each intervening token increases it by
one. ATD is calculated by only taking non-root to-
kens into consideration; immediate children of root
have depth equal to one, and each intervening token
in the path from a node to root adds one to the depth
of the token. SUD is characterised by deeper trees
(with higher ATD), and UD – by flatter trees and
longer dependency arcs (i.e., higher ADL). SUD
treebanks have, without exception, higher ATD,
and lower ADL than their UD counterparts.

These differences may be important, as there is
growing evidence that natural languages tend to
minimise dependency lengths (see, e.g., Temperley
and Gildea, 2018 and references therein). Never-
theless, as shown in Table 3, differences between
UD and SUD in ADL and ATD are not significantly
correlated with differences between UD and SUD
in terms of UAS or LAS.

In addition, two entropy-based measures were
calculated: Arc Direction Entropy (ADE), and La-
bel Entropy (LE). ADE is used to quantify the
rigidity of word order in a given corpus, i.e., given
two tokens connected by a dependency arc, the la-
bel of the relation, and the UPOS tags of the tokens,
how much certainty can we have about the linear or-
dering of these tokens (head-initial vs. head-final).
Arguably, the more consistent word order is, the
easier the task of parsing becomes. As expected,
English treebanks have the lowest ADE, whereas
free-order languages such as Polish show higher
entropy.
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ADL ATD ADE LE NPROJ
UD SUD ∆ UD SUD ∆ UD SUD ∆ UD SUD ∆ UD SUD ∆

bg-btb 2.07 1.74 0.33 1.75 1.93 −0.18 0.19 0.20 −0.00 2.84 2.26 0.58 0.03 0.09 −0.05
cs-fictree 2.10 1.88 0.22 1.64 1.79 −0.15 0.32 0.32 −0.00 2.91 2.32 0.60 0.11 0.22 −0.11
de-gsd 2.76 2.43 0.34 1.79 1.99 −0.20 0.24 0.26 −0.02 2.80 2.32 0.48 0.10 0.20 −0.10
en-gum 2.32 1.95 0.38 1.83 2.06 −0.23 0.13 0.13 −0.00 2.95 2.34 0.61 0.05 0.09 −0.03
es-ancora 2.46 2.10 0.36 2.14 2.41 −0.27 0.17 0.17 −0.00 2.82 2.17 0.65 0.05 0.22 −0.17
et-edt 2.16 1.96 0.19 1.67 1.80 −0.13 0.35 0.36 −0.00 2.90 2.21 0.70 0.03 0.12 −0.09
hr-set 2.39 2.07 0.32 1.95 2.19 −0.24 0.21 0.24 −0.03 2.97 2.29 0.68 0.08 0.35 −0.27
it-isdt 2.18 1.86 0.32 1.91 2.14 −0.23 0.18 0.18 −0.00 2.73 2.20 0.53 0.01 0.08 −0.07
it-vit 2.36 2.00 0.36 2.04 2.30 −0.26 0.18 0.18 0.00 2.72 2.19 0.54 0.03 0.12 −0.09
la-llct 2.73 2.62 0.11 2.01 2.12 −0.11 0.31 0.31 −0.00 2.85 2.30 0.55 0.29 0.32 −0.03
lt-alksnis 2.29 2.10 0.18 1.93 2.05 −0.11 0.30 0.28 0.02 2.73 1.99 0.74 0.12 0.14 −0.03
lv-lvtb 2.15 1.93 0.22 1.77 1.90 −0.12 0.29 0.29 −0.00 2.95 2.27 0.69 0.07 0.11 −0.05
pl-lfg 1.67 1.55 0.12 1.42 1.49 −0.07 0.36 0.37 −0.00 2.73 2.16 0.58 0.01 0.07 −0.06
pl-pdb 2.05 1.83 0.21 1.82 1.97 −0.15 0.30 0.30 −0.00 2.93 2.24 0.69 0.06 0.16 −0.10
ro-nonstandard 2.41 2.08 0.33 1.83 2.08 −0.25 0.29 0.28 0.01 2.98 2.35 0.63 0.06 0.33 −0.28
ru-gsd 2.09 1.91 0.18 1.92 2.05 −0.13 0.20 0.21 −0.01 2.74 2.13 0.61 0.06 0.08 −0.02
sk-snk 1.83 1.67 0.16 1.55 1.66 −0.11 0.31 0.31 −0.00 2.82 2.21 0.61 0.03 0.12 −0.09
sl-ssj 2.34 1.99 0.34 1.80 2.03 −0.23 0.24 0.26 −0.01 2.89 2.15 0.74 0.12 0.28 −0.16
sr-set 2.35 2.02 0.33 1.96 2.22 −0.26 0.18 0.21 −0.03 2.93 2.26 0.67 0.03 0.27 −0.24
sv-lines 2.26 1.90 0.36 1.76 1.97 −0.21 0.22 0.21 0.01 2.93 2.28 0.66 0.05 0.11 −0.05
sv-talbanken 2.27 1.92 0.34 1.76 1.95 −0.20 0.22 0.21 0.01 2.93 2.24 0.68 0.03 0.08 −0.05

Table 2: Quantitative syntactic properties of the treebanks used in the experiment: average dependency length ADL,
average token depth ATD, arc direction entropy ADE, label entropy LE, percentage of non-projective trees NPROJ
Columns marked with ∆ represent differences between UD and SUD; in green if a given figure is higher for UD,
and red otherwise

On the other hand, Label Entropy is the entropy
of the frequency distribution of dependency labels
across the treebank. It is calculated by iterating
over all tokens in the treebank and counting their
dependency labels. This frequency distribution is
treated as a probability distribution and used for
calculating entropy. LE was introduced because
the SUD scheme has substantially smaller sets of
labels for dependency relations, and LE offers a
more informed way of assessing the baseline diffi-
culty of a label scheme than the mere cardinality of
the labelset. SUD versions of the same treebanks
are in all cases characterized by lower LE. Both
measures were calculated using the dependency la-
bel transformations defined in §2.3, i.e., with the
exception of some SUD labels, all labels were split
after a colon.

We were not able to confirm the correlation be-
tween differences in learnability and differences in
ADE reported in Gulordava and Merlo (2016) (on
the basis of artificially created data) and in Rehbein
et al. (2017). Most probably, this is because of
the very small differences in ADE between SUD
and UD, much lower than in the experiments cited
in these two papers. In fact, the differences are
so insignificant that we would prefer to be cau-
tious in interpreting the one statistically significant,
positive correlation that concerns COMBO parser.

Following the results from the papers cited above,
one would expect to obtain a negative correlation
between ADE and learnability (i.e. higher ADE
leads to lower learnability). The opposite is the
case here. This result is puzzling; it is possible that
the correlation is in fact spurious.

Another aspect of tree structure which is sig-
nificant in this context, is the proportion of non-
projective arcs (and consequently non-projective
trees) in the treebanks. As shown in the last col-
umn of Table 2, marked with NPROJ, SUD is char-
acterised by a consistently larger degree of non-
projective trees. On average, conversion into SUD
increases the percentage ratio of non-projective
trees in a treebank 3.52 times (up to 10.32 times
in the case of Polish LFG). This is consistent with
previous experiments in the domain; e.g., Kohita
et al. (2017) report that, after applying syntactic-
like transformations, the ratio of non-projective
arcs in the training sets increased by 10 percent-
age points on average. Non-projective dependency
structures are notoriously hard to parse for humans,
and so one might expect a similar effect in compu-
tational settings. However, modern parsers are able
to handle non-projective trees; they offer particular
transition systems (e.g., UDPipe) or hyperparame-
ters (e.g., Mate) that can be manipulated in order
to better fit treebanks with a certain degree of non-
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ADL ATD ADE LE NPROJ
parser measure cor p cor p cor p cor p cor p

UDPipe UAS 0.05 0.819 −0.27 0.238 −0.06 0.797 −0.46 0.035 −0.50 0.022
LAS −0.35 0.121 0.27 0.240 0.13 0.577 −0.28 0.222 −0.29 0.196

Mate UAS −0.09 0.699 −0.20 0.377 −0.13 0.581 −0.53 0.015 −0.31 0.176
LAS −0.29 0.202 0.18 0.445 0.10 0.653 −0.28 0.220 −0.12 0.597

COMBO UAS 0.19 0.408 −0.26 0.254 0.04 0.850 −0.60 0.005 −0.21 0.364
LAS −0.18 0.425 0.29 0.196 0.51 0.021 −0.24 0.301 0.11 0.637

UUParser UAS 0.12 0.613 −0.41 0.067 −0.18 0.422 −0.38 0.090 −0.43 0.051
(transition) LAS −0.12 0.613 −0.08 0.745 0.09 0.682 −0.15 0.502 −0.32 0.153
UUparser UAS 0.36 0.107 −0.36 0.105 0.10 0.661 −0.62 0.003 −0.27 0.242
(graph) LAS −0.07 0.750 0.17 0.459 0.32 0.153 −0.36 0.106 −0.07 0.758

Table 3: Correlations (cor) between 1) learnability difference between UD and SUD and 2) differences in values of
various corpus measures: average dependency length ADL, average token depth ATD, arc direction entropy ADE,
label entropy LE, percentage of non-projective trees NPROJ. Statistically significant (p < 0.05) values are in bold

projectivity. Correlations between the difference
in the percentage of non-projective trees between
UD and SUD treebanks and learnability scores are
presented in the last column of Table 3. Only one
statistically significant, correlation: −0.50 can be
observed in the case of UDPipe, with respect to
UAS score.

4 Conclusions

While some initial work suggested clear relation
between learnability of dependency parsing and
the ‘semantic’ or ‘syntactic’ approach to headed-
ness, with ‘syntactic’ annotations usually reported
as more learnable, the experiments often had a very
limited scope: they concerned one language, or
just one or a very small number of constructions,
or just one or two parsers. More extensive experi-
ments, performed on a number of languages, taking
into account a handful of constructions and a few
parsers, such as those reported in Rehbein et al.
(2017), showed that this relation between learnabil-
ity and different approaches to headedness, even
though imperfect, in general favours syntactic-like
approaches, but also suggested a more stable corre-
lation between learnability and other corpus charac-
teristics (such as ADE). All these experiments were
performed in vitro, on the basis of dependency cor-
pora with one or just a few constructions reanalysed
for the purpose of the experiments.

In contrast, the current paper presents the results
of comparing two full-fledged annotation schemes
in vivo: the ‘semantic’ UD and the ‘syntactic’ SUD.
The experiments confirm that it cannot be claimed

that more ‘syntactic’ approaches to annotation uni-
formly lead to better learnability: this depends on
particular languages (rather than on language fami-
lies) and on particular parsers. However, corpora
annotated according to the SUD scheme tend to
be more learnable, especially, by the graph-based
parsers utilised in the experiments.

As to correlations between corpus characteris-
tics and learnability, the experiments show a clear
correlation between Label Entropy and parsers’ per-
formance (especially, in terms of UAS), which sug-
gests that SUD may take advantage of its smaller
set of labels or lower order variability of labels,
or both. Also, correlation was found between the
difference in the percentage of non-projective trees
between both schemes and learnability in the case
of UDPipe (again, in terms of UAS). This may
suggest the inability of this parser to effectively
deal with higher degrees of non-projectivity, even
though some hyperparameter tuning was imple-
mented to deal with this issue. On the other hand,
the results do not confirm the recent hypothesis
that learnability of the two kinds of annotations is
negatively correlated with arc direction entropy. In
the same vein, we have not found statistically sig-
nificant correlations between parser performance,
and average dependency length.

Future work should seek to dissociate the effect
of more learnable dependency labels from that of
different approaches to headedness; to this end ex-
periments should be performed on corpora with
trees typologically just like those in UD and SUD,
but with label schemes modified so that Label En-
tropy is not correlated with learnability. Also, it
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would be interesting to relate learnability of partic-
ular schemes by particular parsers to their inherent
dependency displacement bias (cf. Anderson and
Gómez-Rodríguez 2020). Clearly, many more ex-
periments of this sort are needed to establish ex-
act factors influencing learnability of dependency
parsers.
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ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation, LREC 2016, pages 1659–1666, Por-
torož, Slovenia. European Language Resources As-
sociation (ELRA), European Language Resources
Association (ELRA).

Ines Rehbein, Julius Steen, Bich-Ngoc Do, and Anette
Frank. 2017. Universal Dependencies are hard to
parse – or are they? In Proceedings of the Fourth In-
ternational Conference on Dependency Linguistics
(DepLing 2017), pages 218–228, Pisa, Italy.

Rudolf Rosa. 2015. Multi-source cross-lingual delex-
icalized parser transfer: Prague or Stanford? In
Proceedings of the Third International Conference
on Dependency Linguistics (DepLing 2015), pages
281–290, Uppsala.

Piotr Rybak and Alina Wróblewska. 2018. Semi-
supervised neural system for tagging, parsing and

https://doi.org/10.18653/v1/W16-1202
https://doi.org/10.18653/v1/W16-1202
https://doi.org/10.18653/v1/W16-1202
https://doi.org/10.18653/v1/W16-1202
https://aclanthology.coli.uni-saarland.de/papers/W18-6000/ w18-6000
https://aclanthology.coli.uni-saarland.de/papers/W18-6000/ w18-6000
https://aclanthology.coli.uni-saarland.de/papers/W18-6000/ w18-6000
https://hal.inria.fr/hal-02266003
https://hal.inria.fr/hal-02266003
https://hal.inria.fr/hal-02266003
https://doi.org/10.1162/tacl_a_00103
https://doi.org/10.1162/tacl_a_00103
https://doi.org/10.1162/tacl_a_00103
https://doi.org/10.1162/tacl_a_00103
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
https://transacl.org/ojs/index.php/tacl/article/view/885
https://www.aclweb.org/anthology/E17-2001
https://www.aclweb.org/anthology/E17-2001
https://www.aclweb.org/anthology/E17-2001
http://www.lrec-conf.org/proceedings/lrec2016/index.html
http://www.lrec-conf.org/proceedings/lrec2016/index.html
http://www.aclweb.org/anthology/K18-2004
http://www.aclweb.org/anthology/K18-2004


2996

lemmatization. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 45–54, Brussels,
Belgium. Association for Computational Linguis-
tics.

Roy Schwartz, Omri Abend, and Ari Rappoport. 2012.
Learnability-based syntactic annotation design. In
Proceedings of the 24th International Conference on
Computational Linguistics (COLING 2012), pages
2405–2421, Mumbai, India.

Natalia Silveira and Christopher Manning. 2015. Does
Universal Dependencies need a parsing representa-
tion? An investigation of English. In Proceedings of
the Third International Conference on Dependency
Linguistics (DepLing 2015), pages 310–319, Upp-
sala.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS tagging, lemmatizing and parsing UD 2.0 with
UDPipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88–99, Vancouver, Canada.
Association for Computational Linguistics.

David Temperley and Daniel Gildea. 2018. Min-
imizing syntactic dependency lengths: Typologi-
cal/cognitive universal? Annual Review of Linguis-
tics, 4:67–80.

Guillaume Wisniewski and Ophélie Lacroix. 2017. A
systematic comparison of syntactic representations
of dependency parsing. In Proceedings of the
NoDaLiDa 2017 Workshop on Universal Dependen-
cies (UDW 2017), pages 146–152, Gothenburg, Swe-
den. Association for Computational Linguistics.

Amir Zeldes. 2017. The GUM corpus: Creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

http://www.aclweb.org/anthology/K18-2004
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x
https://doi.org/http://dx.doi.org/10.1007/s10579-016-9343-x

