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Abstract

We propose a rolling version of the Latent
Dirichlet Allocation, called RollingLDA. By
a sequential approach, it enables the construc-
tion of LDA-based time series of topics that
are consistent with previous states of LDA
models. After an initial modeling, updates can
be computed efficiently, allowing for real-time
monitoring and detection of events or struc-
tural breaks. For this purpose, we propose suit-
able similarity measures for topics and provide
simulation evidence of superiority over other
commonly used approaches. The adequacy of
the resulting method is illustrated by an ap-
plication to an example corpus. In particular,
we compute the similarity of sequentially ob-
tained topic and word distributions over con-
secutive time periods. For a representative
example corpus consisting of The New York
Times articles from 1980 to 2020, we analyze
the effect of several tuning parameter choices
and we run the RollingLDA method on the full
dataset of approximately 4 million articles to
demonstrate its feasibility.

1 Introduction

Text data is increasingly used in contexts where
structured data is either not available at all or only
available with much delay. Hence, text data is often
used for the timely detection of events or structural
breaks in the context of monitoring over time. This
requires first an appropriate modeling methodol-
ogy and second a suitable analysis methodology.
Our new sequential method is based on the well-
known and popular model Latent Dirichlet Alloca-
tion (LDA, Blei et al., 2003), while assuring that by
adding new data the allocations of previously mod-
eled documents do not change. Thus, time series
based on the new model are consistent with previ-
ous states. We propose the RollingLDA method
for modeling consistent and reliable time series on
textual data such as topic frequencies on news data.
The method uses for each update of new sequential

data a previously determined set of documents as
a memory. Thus, the method acts like a backward-
looking rolling window. In comparison to a lot
of existing methods, the presented method does
not require recalculation of the whole model when
adding new data, which makes it computationally
more efficient.

1.1 Related Work

For the selection of suitable tuning parameters, sim-
ilarity measures for topics are needed. In numerous
studies, no clear superiority of one specific mea-
sure could be found. Aletras and Stevenson (2014)
found out that in most cases the similarity measure
using Jensen-Shannon divergence (Lin, 1991) per-
forms as the best similarity measure based on word
distributions considering correlation with human
judgments. However, they found out that in some
cases a Jaccard coefficient (Jaccard, 1912) is able
to realize higher correlations to human judgments
than other common similarity measures. In accor-
dance, Kim and Oh (2011) showed that Jaccard
coefficients perform on par with Jensen-Shannon
similarity and outperform a number of other popu-
lar similarity measures like cosine similarity, which
is commonly used to measure topic similarities
(Maier et al., 2018). All of these studies primar-
ily consider similarities of different topics to each
other, rather than the similarity of one topic to itself
at different points in time.

In contrast, Keane et al. (2015) used cosine simi-
larity for identifying topics characterized by events
in daily LDA models. They mention the symmetric
Kullback-Leibler divergence (Kullback and Leibler,
1951), that is, the Jensen-Shannon divergence, as
a good alternative for computing similarities. The
latter is also used by Xu et al. (2019) for studying
the evolution of topics in news data. Their study
suggests that LDA is a good method for this type
of detecting structural breaks in topics. Wang and
Goutte (2018) also used LDA models and compare
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cosine similarity and Jensen-Shannon similarity
with different change point algorithms on a self-
annotated corpus. They found out that online LDA
(Zhai and Boyd-Graber, 2013) performs on par
with standard LDA for this task. Since no evidence
for the consistent superiority of any of the simi-
larity measures could be shown in the available
studies, we use and compare different similarity
measures for self-similarity of topics.

The calculation of topic similarities should be
based on a reliable topic model. For modeling
temporal text data, there is the Topics over Time
model by Wang and McCallum (2006) or the Dy-
namic Topic Models by Blei and Lafferty (2006),
which was also extended to Continuous Time Dy-
namic Topic Models by Wang et al. (2008). These
methods model the collection of all documents to-
gether, so that for new data a recalculation of the
whole model is necessary. Besides the computa-
tional demand, this may also change previous re-
sults depending on how much future text data is
added. Hoffman et al. (2010) extended the clas-
sical LDA to an online approach, but focused on
batches of documents with fixed size rather than
time-stamped documents. In addition, Temporal
LDA (Wang et al., 2012) is an approach for model-
ing text streams with LDA using transition matrices.
The model is mainly specialized for social media
posts, as it assumes streamed texts to be written by
the same set of authors. Amoualian et al. (2016)
proposed a method called Streaming-LDA. They
model dependencies between consecutive docu-
ments based on Dirichlet distributions or copula
based.

1.2 Contribution

We present a model that is updated when new data
is received in a way that ensures consistent time
series without the need of recalculation. We com-
bine this update algorithm with classical LDA. To
reduce the dependence of LDA results from the ini-
tial randomization we use LDAPrototype (Rieger
et al., 2020). Another approach would be to aver-
age multiple Gibbs iterations (Nguyen et al., 2014).
However, as the concrete assignments are lost due
to averaging, their approach is not suitable for the
RollingLDA method. We do not select a reliable
model using likelihood-based measures, e.g., using
the package topicmodels (Grün and Hornik, 2011)
because Chang et al. (2009) were able to show
that these measures are negatively correlated with

human perception of good models. An alternative
to LDAPrototype for a reliable selection criterion
could also be defined based on topic’s semantic co-
herence (Mimno et al., 2011; Stevens et al., 2012).

Our model takes a slightly different approach
than the ones mentioned in Sect. 1.1. It consid-
ers the set of articles split into intervals or chunks
based on its time stamp rather than a real stream.
The method focuses on the possibility of evolving
topics and the simultaneous monitoring of these
changes in a real world scenario of updating an ex-
isting LDA model with newly releasing documents.
In addition to the proposal of our novel method
RollingLDA, we also compare six commonly used
similarity measures for topics with respect to their
suitability for event detection within topics. Fur-
thermore, these measures can be used as criteria
for an individual appropriate choice of the memory
parameter in the RollingLDA method.

2 Methodological Framework

The RollingLDA method we propose is based on
the classical LDA (Blei et al., 2003) estimated by
a collapsed Gibbs sampler (Griffiths and Steyvers,
2004) and we combine it with the method LDAPro-
totype (Rieger et al., 2020), which selects the most
reliable LDA from a set of models.

2.1 Latent Dirichlet Allocation
The classical LDA assumes distributions of la-
tent topics for each text. If K denotes the to-
tal number of modeled topics, the set of topics
is given by T = {T1, . . . , TK}. We define W (m)

n

as a single token at position n in text m. The
set of possible tokens is given by the vocabulary
W = {W1, . . . ,WV } with V = |W |, the vocabu-
lary size. Then, let

D(m) =
(
W

(m)
1 , . . . ,W

(m)

N(m)

)
,

be text (or document) m = 1, . . . ,M, of a corpus
consisting of M texts. Each text in turn consists of
N (m) word tokens W (m)

n ∈W , n = 1, . . . , N (m).
Topics are referred to as T (m)

n ∈ T for the topic
assignment of token W (m)

n . Then, analogously the
topic assignments of every text m are given by

T (m) =
(
T
(m)
1 , . . . , T

(m)

N(m)

)
.

When n
(mv)
k , k = 1, . . . ,K, v = 1, . . . , V de-

scribes the number of assignments of word v in
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text m to topic k, we can define the cumulative
count of word v in topic k over all documents by
n
(•v)
k and, analogously, the cumulative count of

topic k over all words in document m by n(m•)k ,
while n(••)k indicates the total count of assignments
to topic k.

Using these definitions, the underlying proba-
bility model (Griffiths and Steyvers, 2004) can be
written as

W (m)
n | T (m)

n ,φk ∼ Discrete(φk),

φk ∼ Dirichlet(η),

T (m)
n | θm ∼ Discrete(θm),

θm ∼ Dirichlet(α).

For a given parameter set {K,α, η}, LDA assigns
one of the K topics to each token. Here K denotes
the number of topics and α, η are parameters of a
Dirichlet distribution defining the type of mixture
of topics in every text and the type of mixture of
words in every topic.

Estimators for topic distributions per text θm =
(θm,1, . . . , θm,K)T ∈ (0, 1)K and word distribu-
tions per topic φk = (φk,1, . . . , φk,V )

T ∈ (0, 1)V

can be derived through the Collapsed Gibbs Sam-
pler procedure (Griffiths and Steyvers, 2004) by

θ̂m,k =
n
(m•)
k + α

N (m) +Kα
, φ̂k,v =

n
(•v)
k + η

n
(••)
k + V η

.

2.2 LDAPrototype

The Gibbs sampler in the modeling procedure of
LDA is sensitive to the random initialization of
topic assignments. To overcome this issue, the se-
lection algorithm LDAPrototype can be used. The
method selects the LDA as prototype model of a set
of LDAs that maximizes its mean pairwise similar-
ity to all other models (Rieger et al., 2020). Thus,
the LDAPrototype method increases the reliability
of conclusions drawn from the resulting prototype
model. The approach is implemented in the R
package ldaPrototype (Rieger, 2020).

3 Methods

We propose the method RollingLDA that uses pre-
ceding LDA results as an initialization for subse-
quent time intervals. The method builds on an
existing implementation of LDA (Chang, 2015)
and aims to ensure consistent time series based on

textual data. The method provides a memory pa-
rameter to use a different number of time units of
the past as initialization to find a good trade-off of
consistency and flexibility of topics. Different val-
ues for the memory parameter can be investigated
quantifying topic-self-similarities over time. The
method is implemented and published as R pack-
age rollinglda (Rieger, 2021) and its source code
can be retrieved at https://github.com/
JonasRieger/rollinglda.

3.1 RollingLDA

A pseudocode of the general method RollingLDA
can be found in Algorithm 1. The method has
the usual parameters of an LDA: the corpus to
be modeled, the number of topics modeled K, the
Dirichlet parameters α, η and the number of itera-
tions iter. In addition, there are method specific
parameters chunks, memory, and limit. Ad-
ditionally, in line 4 it is recommended to choose a
reliable method for the initial LDA, e.g. LDAProto-
type described in Sect. 2.2. In line 9, and through-
out this paper, we distinguish between the two pos-
sibilities that the assignments to previous docu-
ments remain fixed or, alternatively, that they are
able to change. In the latter case, the assignments to
previous documents are changed only for this spe-
cific sequential fitting, but not for the final model.

The parameter chunks is used to cut the data
into intervals. It is a vector of dates that contains
in the first entry the date of the first day of the
sequential fitting, i.e. the last day of the initial fit-
ting plus one day. The next entries specify the first
days of the corresponding sequential chunks, and
the last entry specifies the day of the last observed
document plus one day. In the analysis, we choose
these dates on an equidistant monthly or quarterly
basis. The vector memory allows flexible choices
of the method’s memory in the context of sequen-
tial fitting. It determines how much knowledge
from modeled texts from the previous chunk(s) is
used to model the new chunk/subcorpus. The corre-
sponding vector specifies from which date previous
documents are (equally weighted) considered for
the current chunk. All We also choose this parame-
ter in this paper on an equidistant basis, considering
a fixed number of one to four quarters as memory.
The method’s implementation also allows to set
these date vectors explicitly.

The parameter limit consists of a combination
of rules for determining the sequential vocabulary.

https://github.com/JonasRieger/rollinglda
https://github.com/JonasRieger/rollinglda
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Algorithm 1: Fitting a RollingLDA model.
Input : corpus, K, α, η, iter, chunks, memory, limit
Output : RollingLDA model

1 begin
2 determine subcorpus: filter corpus to documents published before chunks[1];
3 determine vocab: words that occur more than limit times in subcorpus;
4 fit LDA on subcorpus with parameters K, α, η, iter, vocab;
5 for i=1 to length(chunks)-1 do
6 determine subcorpus: filter corpus to documents published on or after chunks[i]

and before chunks[i+1];
7 update vocab: add words that occur more than limit times in subcorpus;
8 determine init: tabulate assignments of words to topics for fitted documents published

on or after memory[i] and before chunks[i]; sample assignments of words to topics
for new documents in subcorpus;

9 fit LDA on subcorpus with parameters K, α, η, iter, vocab and init;
10 end
11 determine result: combine sequential fittings to one object;
12 return result
13 end

For the initial LDA as well as for each subcorpus of
documents the vocabulary exceeding a given com-
bination of thresholds is determined (see Sect. 5.2).
The vocabulary is monotonically increasing, i.e.
previously considered words remain included, such
that no information is lost, when time evolves.

In Sect. 5, the RollingLDA method is applied to
an example dataset.

3.2 Similarity Measures
Self-similarities of topics over time are useful as
indicators for the stability of topics. They can
also be used as criteria for the individual choice
of the memory parameter of the RollingLDA to
ensure flexible and reliable topics. Using the nota-
tion from Sect. 2.1 the word count vector for topic
k = 1, . . . ,K is given by

nk =
(
n
(•1)
k , . . . , n

(•V )
k

)T
∈ NV

0 .

Extending the notation to account for different tem-
poral aggregations t leads to nk|t. We do not con-
sider the similarity of two different topics (different
k) in this paper, but always similarities of the same
topic (same k) at different times. Since k is con-
stant within our similarity calculations, we simplify
the notation for clarity to

nk|t = nt = (nt,1, . . . , nt,V )
T ,

pt = (nt,1, . . . , nt,V )
T /
∑
v

nt,v.

We consider two different types of similarity mea-
sures: one based on word count vectors ni,nj , one
based on word distribution vectors pi,pj . Then,
cosine similarity and a thresholded version of the
Jaccard coefficient, respectively, are defined as

cos =

∑
v ni,vnj,v√∑

v n
2
i,v

√∑
v n

2
j,v

, (1)

TJ =

∑
v 1{ni,v>ci ∧ nj,v>cj}∑
v 1{ni,v>ci ∨ nj,v>cj}

. (2)

The distributional similarity measures based on the
Manhattan, χ2 and Hellinger distance and Jensen
Shannon divergence, respectively, are given by

MH = 1− 1

2

∑
v

|pi,v − pj,v|, (3)

χ2 = 1− 1

2

∑
v

(pi,v − pj,v)2

pi,v + pj,v
, (4)

HL = 1−
√

1

2

∑
v

(√
pi,v −

√
pj,v
)2
, (5)

JS = 1−
∑
v

pi,v log
2pi,v

pi,v + pj,v

−
∑
v

pj,v log
2pj,v

pi,v + pj,v
. (6)

The thresholds ci, cj for TJ may be chosen as an
absolute, relative or as combination of both lower
bounds. In this paper, we use the default value
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crel = 0.002 as proposed by Rieger et al. (2020).
For numerical reasons a small value ε = 10−6 is
added to the word counts nt before calculating pt
to determine the similarity using χ2 and JS.

4 Stability and Sensitivity Analysis

For a brief demonstration of which of the presented
similarity measures is particularly well suited for
the present case of comparing topics at different
points in time, we use Zipf’s law (Piantadosi, 2014).
This states that for an ordered list of V entries, such
as words in this example, the relative frequency of
the element with rank r can be written as

1/rs∑V
v=1(1/v

s)
.

We consider how stable the similarity measures are
in the uncertainty scenario and how sensitive they
are to detect strong changes in the topics.

4.1 Simulation Setup
In the present case, we choose s = 1 for simplicity,
we assume the vocabulary size to be V = 10 000
and observe a total number of 7 500 word appear-
ances. Then, with respect to Zipf’s law, we set the
absolute frequencies of the ten most frequent words
as 766, 383, 255, 191, 153, 128, 109, 96, 85, 76.

Taking these frequencies as a snapshot of a
topic’s assignments at one time interval, we mod-
ify certain parts of these frequencies to simulate
different events or structural breaks in this topic:

a) A new topic like the Covid pandemic is at-
tached to an existing topic,

b) the frequency of a previously prominent
subtopic in a topic de-/increases,

c) the frequency of one previously prominent
word in a topic de-/increases.

In addition, we compare various idealistic and
rather technical modifications to the frequency vec-
tor, namely

d) resampling the frequency vector based on the
relative frequencies,

e) shuffling the whole frequency vector,
as well as shuffling only the frequencies of the

f) top 10 words,
g) top 50 words,
h) top 100 words,
i) words ranked at position 11 to 20,
j) words ranked at position 21 to 50.

In this setup, we expect scenario e) to result in the
lowest similarity for each similarity measure, be-
cause it corresponds to comparing two completely

different word frequency vectors, i.e. topics. In
contrast, scenarios d), i) and j) should lead to mini-
mal to modest differences (at less important ranks)
of the frequency vector and therefore should result
in the highest similarities, assuming a well suited
similarity measure.

4.2 Findings

In Figure 1, in the first row, we set the last (i.e.
least mentioned) 1 to 20 words to an increased
frequency (up to 750), and study the effect on the
self-similarity of the topic. This fits to scenario a).
In the second and third row, the frequencies of
the top-ranked words are changed. While in the
second row, the first x words are considered, in
the third row only the x-th single word’s frequency
changes. Note that these two rows are scaled on
a logarithmic axis: a value of −6 is equivalent to
setting the word’s frequency to zero, while a value
of 4 means multiplying it by exp(4) ≈ 54.6.

For the addition of new words, the behavior of
all measures is comparable. The Jensen-Shannon
similarity shows a slightly lower sensitivity. Man-
hattan and χ2 similarities show higher similarities
for the addition of only one word than cosine and
Hellinger, which already show a stronger effect on
the similarity by adding a few words. The most
striking characteristic in scenario b) is shown by
the cosine similarity. In Figure 1, in the second row,
it can be seen that the cosine similarity strongly de-
pends on the top words frequencies. Specifically,
by setting the ten most frequent words to zero, the
cosine similarity decreases very strongly (to about
0.25), while increasing these top ten words frequen-
cies has almost no effect (similarity close to 1).

At the same time, for all other similarity mea-
sures, we observe that increasing the top word fre-
quencies leads to a stronger decrease in similarity
than eliminating these top words. In general, all
similarity measures show a similar trend for the
change of single top ranked words. However, the
top word has a particularly strong influence using
the cosine similarity. This is plausible, since cosine
similarity can be interpreted as the angle between
the compared frequency vectors and this angle also
strongly depends on the top word’s frequency under
consideration of Zipf’s law.

In Figure 2, the similarity measures for the other
introduced scenarios are shown comparatively. The
scenarios d), i), j), f), g), h) and e) are shown
from left to right for each similarity measure as
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Figure 1: Comparison of similarity measures regarding the effect on topic-self-similarity obtained by modifications
of the original word frequency vector with respect to scenario a), b) and c).

this should correspond to the natural decreasing
order of the values. Each scenario is based on 500
replications.

Since scenario e) generates strongly different
topics, the similarity among them should be as low
as possible. This requirement is met by all mea-
sures except Jensen-Shannon similarity, but this
could made to behave similar as χ2 or Manhat-
tan by re-scaling. Another desired property is that
the uncertainty in word frequencies does not result
in dissimilarity. Only cosine similarity satisfies
this. For all other measures, statistical uncertainty
largely results in greater dissimilarities than mod-
ifications from scenarios f), g), i) and j). In real
problems, this property can lead to events being
masked by variation or, conversely, variation being
interpreted as events.

4.3 Use Case and Conclusion

Figure 3 shows the self-similarities of a topic from
a RollingLDA model with selected parameters. The
topic is about health, so the similarity remains sta-
ble in the long term, but has a few shocks in the
self-similarity that result from sudden events, such
as the Covid outbreak at the beginning of 2020.
In Table 1, the five most informative words for
selected quarters that realize a quarterly cosine self-
similarity less than 0.9 are given. Based on the
evolving topwords within the different quarters,
events in the corresponding topic can be antici-
pated, which in particular map the corresponding
time series of quarterly cosine self-similarites. The
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Figure 2: Comparison of similarity measures concern-
ing the effect on self-similarity obtained by applying
scenarios d) to j) to the original word frequency vector.

values of the other similarity measures run mostly
in parallel, but do not show large differences at key
events. In contrast, the Jaccard coefficient seems
too sensitive and leads to similarity values that are
unstable over time.

In conjunction with the findings from Figures 1
and 2 we recommend to use cosine similarity for
the use case of monitoring topic stability or topic-
self-similarities, respectively. In addition, in Sect. 5
we mostly stick to quarterly self-similarities as the
most appropriate unit.

5 Analysis

In the following, the proposed method RollingLDA
is applied to an example dataset. The calculations
were performed using R (R Core Team, 2021).
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Overall 1982/Q4 2001/Q4 2002/Q1 2003/Q2 2003/Q3 2014/Q4 2020/Q1

1 dr dr anthrax anthrax sars sars ebola coronavirus
2 patients clark mail cloning disease fasting duncan virus
3 disease tylenol cipro aventis cases dr quarantine outbreak
4 health clarks spores ovarian respiratory anemia sierra quarantine
5 cancer capsules bioterrorism mammograms heymann brain west health

Table 1: Time varying topwords of the topic Health in the scenario of quarterly modeling with three quarters
memory and starting with the rolling approach in 1985 for selected quarters.

Yearly Quarterly Monthly

1990 2000 2010 2020 1990 2000 2010 2020 1990 2000 2010 2020
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0.75

1.00

Similarity Measure

Chi−Squared

Cosine

Hellinger

Jaccard (0.002)

Jensen−Shannon

Manhattan

Figure 3: Unit-to-unit self-similarities of the topic Health in the scenario of quarterly modeling with three quarters
memory and starting with the rolling approach in 1985 for the six different similarity measures.

5.1 Data

The dataset consists of all published articles from
The New York Times from June 1, 1980 to Decem-
ber 31, 2020. It was retrieved through the Nexis ser-
vice (LexisNexis, 2021) and consists of 4 287 928
documents. After applying common natural lan-
guage processing (NLP) steps such as changing all
words to lowercase and stopword removal using
the R packages tosca (Koppers et al., 2020) and
tm (Feinerer et al., 2008), as well as duplicate re-
moval, 3 767 047 non-empty documents remain in
the relevant dataset.

Maier et al. (2020) showed that for datasets of
230 000 documents or more already using at least
10% of the articles results in sufficiently similar
topics to the complete dataset. Thus, for a faster
calculation, we use a partial dataset for the study.
To do this, we draw 15% of all articles stratified
by week. This results in a dataset of 566 050 doc-
uments with an average of 267 (min: 106, max:
584) documents per week. We also prove the com-
putability on the complete dataset with an exem-
plary parameter combination.

5.2 Scenarios

Different scenarios are compared to investigate the
effects on topic stability and sensitivity. For all
cases, we choose as parameters for LDA K = 80,
α = η = 1/K and iterate the Gibbs sampler for
200 iterations. For initial modeling, we use the
LDAPrototype method described in Sect. 2.2 with
default setting (Rieger, 2020), i.e., in particular,

start mem- non-changing changing
ory quarter year quarter year

1981 4 7.95 4.75 60.57 23.21
3 7.78 4.67 48.65 19.98
2 7.55 4.76 37.56 17.32
1 7.43 4.58 26.37 14.72

1985 4 7.66 4.43 54.66 21.37
3 7.37 4.40 44.86 20.87
2 7.20 4.39 34.64 18.08
1 7.01 4.30 24.53 15.47

2000 4 5.45 3.22 36.46 16.15
3 5.35 3.20 29.96 14.29
2 5.58 3.17 23.28 12.40
1 5.22 3.21 16.67 10.65

Table 2: Runtime of the RollingLDA models in hours.

the prototype is chosen from n = 100 models. In
addition, we consider three different time horizons
for the initial model: all documents from 1980,
1980–1984, or 1980–1999.

For the parameter chunks, we distinguish be-
tween quarterly or annual intervals, and for the
parameter memory between one to four quarters
as memory. We choose a combination of relative
and absolute threshold as (fixed) limit parame-
ter to minimize the disadvantages of both. Words
that occur more than five times and cover more than
10ppm of the total word count in a chunk are added,
as well as words that simply occur more than 100
times. In addition, we consider the two variants of
sequential LDA in line 9 of Algorithm 1, one with
fixed, and one with changing previous assignments.

In Table 2 the runtimes of the resulting 48 dif-
ferent models are given. The RollingLDA model
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Figure 4: Cosine self-similarities of the topic Health for all parameter combinations of the memory and the rolling
starting date in the quarterly modeling scenario (topic’s scaled share is multiplied by 7 and visualized in black).
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Figure 5: Cosine self-similarities and scaled share of the topic Health for non-changing and changing previous
assignments. The scenario of quarterly and yearly modeling with three quarters memory and starting with the
rolling approach in 1985 is considered.

on the complete dataset in the scenario of quarterly
modeling with unchanging previous assignments,
three quarters memory and starting in 1985 lasts
around 48 hours, which meets the assumption of a
linear runtime depending on the number of docu-
ments. In all analyses, unless explicitly mentioned,
the RollingLDA method with non-changing previ-
ous assignments is considered.

5.3 Findings

Figure 4 shows the cosine topic-self-similarities
for a selected topic Health depending on different
parameters. A strong topic-self-similarity is no-
ticeable until the start of the sequential modeling.
In common applications this is a desired property.
In the present case, however, one would like to
detect dissimilarities over time. The time series
suggest that our method is suitable for this purpose.
While the topic seems to remain basically similar,
it changes sufficiently from unit to unit and over
longer periods of time, which allows the detection
of events (cf. Table 1 and Figure 3). The choice of

the memory parameter seems to have an intuitive
effect, i.e., larger memory tends to lead to stronger
anchoring to the past.

As a complement, both the quarterly and annual
modeling intervals with non-changing and chang-
ing previous assignments are shown in Figure 5
for the special case of three quarters of memory
and sequential start in 1985. Here it can also be
seen that simultaneous modeling of larger intervals
leads to more similar topics over time. In addition,
we could not find a substantial difference between
changing and non-changing previous assignments
(also when looking at other models and topics).

Finally, Figure 6 shows different plausible pat-
terns of topic-self-similarity in the data. There are
topics that are very stable overall, but show events
(for example Health), topics that are very stable
overall, show no clear events, but undergo gradual
steady change (for example Technology), and topics
that are taken over by other topics, such as in this
case a stopword topic that almost completely dis-
appears. The latter may happen, e.g. when topics
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Figure 6: Different patterns of topic’s cosine self-similarity for the topics Health, Technology and a Stopword topic
in the scenario of quarterly modeling with three quarters memory and starting with the rolling approach in 1985.
In addition, the quarterly share of the respective topic is shown in the upper row.

that are sufficiently similar gain in similarity by
restricting texts to short(er) intervals, because mi-
nor differences (e.g., choice of stopwords in sports
articles, choice of stopwords in politics articles)
in individual intervals may become so marginal
that merging the topics becomes useful in terms of
optimizing likelihood in the fitting procedure.

In addition to the mentioned results, we were
also able to identify some other patterns in the
data, such as seasonal sports topics, which can be
found - along with additional analyses - in the as-
sociated GitHub repository https://github.
com/JonasRieger/emnlp2021.

6 Discussion

We presented a method RollingLDA to model con-
sistent time series from textual data, which is also
suitable for monitoring applications due to its effi-
ciency. In particular, it is possible to choose very
frequent update intervals and thus to keep the run-
time of each update very short.

Apparently, the specific parameterization is not
that important, the model seems relatively robust.
It is less sensitive with respect to its parameter
choice, so that even for more inappropriate param-
eter choices, the model produces plausible results.
Our study has shown, for example, that there is no
strong difference between changing previous as-
signments and fixing previous assignments. How-
ever, the latter has a considerable runtime advan-
tage, because the Gibbs sampler does not have to
iterate over the previous assignments (the memory)
in each time step. For runtime reasons, we there-
fore recommend the version with non-changing
previous assignments.

We also recommend to choose the memory pa-
rameter reasonably. It is an important and intuitive
parameter, which specifies how much (modeled)

past the model takes into account for modeling the
next chunk. For example, three quarters of mem-
ory in a quarterly modeling scenario means the
consideration of one year for each modeling step.
When choosing this parameter, one should consider
seasonalities, because a topic that only appears in
summer, for example, could disappear repeatedly
due to a memory that only lasts for one quarter. In
case of reappearance it is then not ensured that it
receives the same index. Instead, it joins the most
similar topic, so that the coherent interpretation of
the topic can not be guaranteed.

In addition, the initial LDA should cover a time
horizon as short as reasonable, so that a large part
of the time series is covered by the rolling approach
and can be interpreted accordingly. We also tested
sequential prototypes instead of sequential LDAs
(cf. line 9 in Algorithm 1). However, it turned out
that the set of possible LDAs is very similar such
that we observed no further practical gain using the
LDAPrototype for each sequential LDA step.

Further research could include weighting the pre-
vious documents for the memory or looking at a
random sample of those. For the latter case, the con-
sideration of reliable methods for the determination
of the update states then again could be interesting.
In the long term, one goal is to extend the method
to varying numbers of topics per time interval.
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Ethical Considerations

In Sect. 5.1, we explain how we draw a representa-
tive sample of the full data for the method compar-
ison. We do this without losing the validity of the
results and in order to consider resource efficiency
in the context of climate change (Strubell et al.,
2019). We also show the efficient feasibility of the
method on the full data set as an example.

Reproducibility

All described methods and analyses are provided
in the associated GitHub repository https://
github.com/JonasRieger/emnlp2021
together with further graphics for all models.
As far as legally possible, the data sets used are
also available in this repository. The proposed
method is implemented and published as R
package, the source code can be retrieved at
https://github.com/JonasRieger/
rollinglda.
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