
Findings of the Association for Computational Linguistics: EMNLP 2021, pages 1691–1704
November 7–11, 2021. ©2021 Association for Computational Linguistics

1691

Optimal Neural Program Synthesis from Multimodal Specifications

Xi Ye Qiaochu Chen Isil Dillig Greg Durrett
Department of Computer Science
The University of Texas at Austin

{xiye,qchen,isil,gdurrett}@cs.utexas.edu

Abstract

Multimodal program synthesis, which lever-
ages different types of user input to synthe-
size a desired program, is an attractive way
to scale program synthesis to challenging set-
tings; however, it requires integrating noisy
signals from the user, like natural language,
with hard constraints on the program’s behav-
ior. This paper proposes an optimal neural syn-
thesis approach where the goal is to find a pro-
gram that satisfies user-provided constraints
while also maximizing the program’s score
with respect to a neural model. Specifically,
we focus on multimodal synthesis tasks in
which the user intent is expressed using a com-
bination of natural language (NL) and input-
output examples. At the core of our method is
a top-down recurrent neural model that places
distributions over abstract syntax trees con-
ditioned on the NL input. This model not
only allows for efficient search over the space
of syntactically valid programs, but it allows
us to leverage automated program analysis
techniques for pruning the search space based
on infeasibility of partial programs with re-
spect to the user’s constraints. The experimen-
tal results on a multimodal synthesis dataset
(STRUCTUREDREGEX) show that our method
substantially outperforms prior state-of-the-art
techniques in terms of accuracy and efficiency,
and finds model-optimal programs more fre-
quently.1

1 Introduction

In recent years, there has been a revolution in
machine learning-based program synthesis tech-
niques for automatically generating programs from
high-level expressions of user intent, such as input-
output examples (Balog et al., 2017; Chen et al.,
2019a; Devlin et al., 2017; Ellis et al., 2019; Kalyan
et al., 2018; Shin et al., 2018) and natural lan-
guage (Yaghmazadeh et al., 2017; Dong and Lap-
ata, 2016; Rabinovich et al., 2017; Yin and Neu-

1Code available: https://github.com/xiye17/OpSynth

strings of letters and digits

Tree-Based Model Program Analyzer
score partial programs

based on NL description
prune partial programs
based on I/O examples

Natural Language I/O Examples

Optimal Program
cat(rep(<let>,1+),rep(<num>,1+))

A01+ ABC-

Top-Down Ordered Search

⨉

□1.0

cat(□,□).20and(□,□)

and(<let>,□)

....70

....70

Figure 1: The framework of our multi-modal optimal
synthesis approach. A tree-structured model scores par-
tial programs based on the NL description and a pro-
gram analyzer prunes the search space based on the I/O
examples. Our algorithm searches in a best-first fash-
ion following the scores, and hence ensures the opti-
mality of the output program with respect to the model.

big, 2017; Desai et al., 2016; Wang et al., 2018).
Many of these techniques use deep neural networks
to consume user input and then perform model-
guided search to find a program that satisfies the
user. However, because both natural language and
input examples can be inherently ambiguous (De-
vlin et al., 2017; Yin et al., 2018), a recent thread of
work on multimodal synthesis attempts to combine
different types of cues to allow program synthe-
sis to effectively scale to more complex problems.
Critically, this setting introduces a new challenge:
how do we efficiently synthesize programs with
a combination of hard and soft constraints from
distinct sources?

The core contribution of this paper is to formu-
late multimodal synthesis as an optimal synthesis
task and propose an optimal synthesis algorithm to
solve it. The goal of optimal synthesis is to gen-
erate a program that satisfies any hard constraints
provided by the user while also maximizing the
score under a learned neural network model that

https://github.com/xiye17/OpSynth

1692

captures noisy information, like that from natural
language. In practice, there are many programs that
satisfy the hard constraints, so this maximization
is crucial to finding the user’s intended program:
if our neural model is well-calibrated, a program
that maximizes the score under the neural model is
more likely to be what the user wants.

In our setting (Figure 1), we train a neural model
to take natural language input that can be used
to guide the search for a program consistent with
user-provided examples. Because our search proce-
dure enumerates programs according to their score
(values in blue in Figure 1), the first enumerated
program satisfying the examples is guaranteed to
be optimal according to the model. A central fea-
ture of our approach is the use of a tree-structured
neural model, namely the abstract syntax network
(ASN) (Rabinovich et al., 2017), for constructing
syntactically valid programs in a top-down manner.
The structure of the ASN model restricts search
to programs that are syntactically correct, thereby
avoiding the need to deal with program syntax er-
rors (Kulal et al., 2019), and it allows us to search
over programs in a flexible way, without constrain-
ing a left-to-right generation order like seq2seq
models do. More importantly, the use of top-down
search allows us to more effectively leverage au-
tomated program analysis techniques for proving
infeasibility of partial ASTs. As a result, our syn-
thesizer can prune the search space more aggres-
sively than prior work and significantly speed up
search. While our network structure and pruning
techique are adapted from prior work, we combine
them and generalize them to this optimal neural
synthesis setting in a new way, and we show that
our general approach leads to substantial improve-
ments over previous synthesis methods.

We implement our method in a synthesizer
called OPSYNTH and evaluate it on the challeng-
ing STRUCTUREDREGEX dataset (Ye et al., 2020a)
for synthesizing regular expressions from linguis-
tically diverse natural language descriptions and
positive/negative examples. We compare our ap-
proach against a range of techniques from prior
work and ablations of our own method. OPSYNTH

achieves substantial gain over past work by solv-
ing 60.8% (resp. 48.8%) of the programs of Test
(resp. Test-E) set in STRUCTUREDREGEX. These
results represent a roughly 7-10% improvement
over prior work with a roughly 3× speedup due to
the improved pruning.

2 Problem Formulation

Context-free grammar. In this work, we as-
sume that the syntax of the target programming
language L is specified as a context-free gram-
mar G = (V,Σ, R, S0) where V is a set of non-
terminals, Σ is the set of terminal symbols, R is a
set of productions, and S0 is the start symbol. We
use the notation s to denote any symbol in V ∪ Σ.
The grammar in Figure 2 has two nonterminals (S0
and V1) and three terminals (cat, <0>, and <1>).
To simplify presentation in the rest of the paper,
we assume that each grammar production is of the
form v → f(s0, . . . , sn) where f is a language
construct (e.g., a constant like 0 or a built-in func-
tion/operator like cat, +, etc.).

We represent programs in terms of their abstract
syntax trees (AST). We assume that every node
n in the tree is labeled with a grammar symbol s
(denoted S(n)) and a production r (denotedR(n))
that indicates the CFG production that was used
to assign the terminal symbol for that node (if ap-
plicable). Figure 3 shows an AST representation
of the program cat(cat(<0>,<1>),<0>) gener-
ated using the simple grammar shown in Figure
2. Similar AST representations have been used in
recent work on grammar-based program generation
models (Yin and Neubig, 2017; Rabinovich et al.,
2017; Sun et al., 2020).

Partial programs. For the purposes of this paper,
a partial program is an AST in which some of the
nodes are labeled with non-terminal symbols in the
grammar (see Figure 4). For a complete program,
all node labels are terminal symbols. We use the
notation EXPAND(P, l, r) to denote replacing leaf l
with production r, which adds n nodes s1, . . . , sn
to the tree corresponding to the yield of r.

Consistency with examples. In this paper, we
focus on the multimodal synthesis problem where
the user provides a logical specification φ and a
natural language description. Specifically, we focus
on logical specifications in the form of positive and
negative examples of the program behavior. Each
example is a pair (x, y) such that, for a positive
example, we have P (x) = y for the target program
P , and for a negative example, we have P (x) 6= y.
Given a set of examples E = E+∪E− and program
P , we write P |= E , if we have P (x) = y for
every positive example in E+ and we have P (x) 6=
y for every negative example in E−. If P is a
partial program, P 6|= φ indicates that there is no

1693

S0 → V1
V1 → <0>

|<1>
|cat(V1, V1)

Figure 2: Example gram-
mar for a simple lan-
guage.

(,)cat V1 → cat(V1, V1) n1

(,)cat V1 → cat(V1, V1) n2 (,)<0> V1 → <0> n3

(,)<0> V1 → <0> n4 (,)<1> V1 → <1> n5

Figure 3: Example of an AST derivation
of cat(cat(<0>,<1>),<0>). Blue
boxes represent symbols and yellow
boxes represent productions.

(,)cat V1 → cat(V1, V1) n1

(,)<0> V1 → <0> n3

(,)V1 Ø n4

(,)cat V1 → cat(V1, V1) n2

(,)<1> V1 → <1> n5

Figure 4: Example of a partial program.
n4 is a leaf node with non-terminal sym-
bol V1.

completion of P that satisfies the specification φ.

Optimal multimodal synthesis problem. A
second input to our multimodal synthesis problem
is a natural language description of the task. We
define a model Mθ(P | N) that yields the probabil-
ity of a given program conditioned on the descrip-
tion (Section 3). Given a programming language
L specified by its context-free grammar, a logical
specification φ (e.g., a set of positive and negative
examples), natural language description N , and
a model Mθ, our goal is to find the most likely
program in the language satisfying the constraints:

arg max
P∈L ∧ P |=φ

Mθ(P | N) (1)

3 Optimal Neural Synthesis Algorithm

We consider a class of models Mθ that admit effi-
cient optimal synthesis. Any model with the prop-
erties described in this section can be plugged into
our synthesis algorithm (Section 3.2).

Definition 3.1. AST Path Given a node n in a par-
tial program P , we define the AST path π(P, n) =
((n1, i1), . . . , (nk, ik)) to be a sequence of pairs
(nj , ij) where (1) AST node nj+1 is the ij’th child
of AST node nj and (2) the ik’th child of nk is n.
For instance, for the partial program in Figure 4,
we have π(P, n4) = ((n1, 1), (n2, 1)).

Definition 3.2. Concrete/Inconcrete nodes
Given a partial program P , we define the concrete
nodes of P as C(P) to be the nodes which have
production rules assigned to them. The inconcrete
nodes I(P) are the non-terminal leaf nodes whose
production rules haven’t been determined and need
to be fill in in order to form a complete program.

Given a partial program P , we define the proba-
bility of generating P as the product of the proba-
bilities of applying the productions labeling each
node in the AST. There are a number of possible

ways we could factor and parameterize this distri-
bution, including PCFGs, where the distribution
depends only on the parent, or as sequence models
over a pre-order traversal of the tree (Dong and
Lapata, 2016; Yin and Neubig, 2017; Polosukhin
and Skidanov, 2018). We choose the following fac-
torization, similar to that used in Abstract Syntax
Networks (ASN) (Rabinovich et al., 2017), where
a production rule depends on the derivation path
leading to that nonterminal:

pθ(P | N) =
∏

n∈C(P)

pθ(R(n) | π(P, n), N) (2)

The chief advantage of this factorization is that
the score of a partial program is invariant to the
derivation order of that program, assuming they
were generated according to some topological or-
dering. Two derivations of the same tree P that
differ only in the order that child branches were
generated are still assigned the same probability,
allowing for flexibility in the search process. Sec-
ond, for a partial program P , the distribution over
rules of every unexpanded non-terminal leaf node
does not depend on the others’, which allows the
estimation of the upper bound (maximum possible
probability) of the complete programs that can be
derived from P . Specifically, we define the upper
bound of the complete programs that can possibly
be derived from a partial program P as:

uθ(P | N) = pθ(P | N)∏
n∈I(P)

max
r
pθ(r | π(P, n), N). (3)

This bound incorporates the known probabilities
of concrete nodes as well as the minimum cost of
filling inconcrete non-terminals, and thus more ac-
curately estimates the cost of the optimal complete
program given this partial program. A sequence

1694

cat(S , S)

2 digits then … letters

n1 n2

S → rep(S, D)
S → not(S)

and(startwith(<let>,S),S)

cat(S,S)

and(contain(S,S),S)

Infeasible

Feasible

cat(rep(S,D),S)

cat(not(S),S)

0.65

0.25

0.11

0.18

0.05

LSTM 0.7
0.2 …

FFNN + Attention

LSTM

LSTM

Expand the left child (blue)
of a partial program P

Synthesis (Section 4.3)Model (Section 4.2)

h1

Model

Analyzer

cat(rep(S , D), S)

cat(not(S), S)

Analyzer(r0,1)

(r0,2)

Compute state
updates given an
applied rule

W
orklist

LSTM

r0
<latexit sha1_base64="PH2s/oKbmOUnFYWFhtHfjEVs1Ik=">AAACG3icbVBNSwMxEM367fpV9eglWAotStmtgh6LXjxJFatCtyzZdGpDs9klmRVL6f/w4l/x4kERT4IH/41p7UGtDwZe3pshMy9KpTDoeZ/O1PTM7Nz8wqK7tLyyupZb37g0SaY51HkiE30dMQNSKKijQAnXqQYWRxKuou7x0L+6BW1Eoi6wl0IzZjdKtAVnaKUwVylAKNwCu9uJ3EIaBtgBZMXzogr9Eg1i0aJBKoq13eF797Tk6tALc3mv7I1AJ4k/JnkyRi3MvQethGcxKOSSGdPwvRSbfaZRcAkDN8gMpIx32Q00LFUsBtPsj24b0IJVWrSdaFsK6Uj9OdFnsTG9OLKdMcOO+esNxf+8Robtw2ZfqDRDUPz7o3YmKSZ0GBRtCQ0cZc8SxrWwu1LeYZpxtHG6NgT/78mT5LJS9vfKlbP9fPVoHMcC2SLbpEh8ckCq5ITUSJ1wck8eyTN5cR6cJ+fVeftunXLGM5vkF5yPL2g4nUc=</latexit>

r1
<latexit sha1_base64="ozLEMrNhcLlG/3F1z0BvypgPHMM=">AAACG3icbVBNSwMxEM367fpV9eglWAotStmtgh6LXjxJFatCtyzZdGpDs9klmRVL6f/w4l/x4kERT4IH/41p7UGtDwZe3pshMy9KpTDoeZ/O1PTM7Nz8wqK7tLyyupZb37g0SaY51HkiE30dMQNSKKijQAnXqQYWRxKuou7x0L+6BW1Eoi6wl0IzZjdKtAVnaKUwVylAKNwCu9uJ3EIaBtgBZMXzogr9Eg1i0aJBKoq13eF797Tk6tAPc3mv7I1AJ4k/JnkyRi3MvQethGcxKOSSGdPwvRSbfaZRcAkDN8gMpIx32Q00LFUsBtPsj24b0IJVWrSdaFsK6Uj9OdFnsTG9OLKdMcOO+esNxf+8Robtw2ZfqDRDUPz7o3YmKSZ0GBRtCQ0cZc8SxrWwu1LeYZpxtHG6NgT/78mT5LJS9vfKlbP9fPVoHMcC2SLbpEh8ckCq5ITUSJ1wck8eyTN5cR6cJ+fVeftunXLGM5vkF5yPL2m8nUg=</latexit>

Compute distribution over rules

…

p✓(R(n1) | ⇡(P, n1), N)
<latexit sha1_base64="LKlqnhHzc+Z5vlEZxRF+Y4EQgek=">AAACFXicbVDLSgMxFM34rPU16tJNqAgtljJTF7osunElVewDOmXIpGkbmskMyR2hDP0JEfwVNy4UcSu482/MtC7UeiBwcs693HtPEAuuwXE+rYXFpeWV1dxafn1jc2vb3tlt6ihRlDVoJCLVDohmgkvWAA6CtWPFSBgI1gpG55nfumVK80jewDhm3ZAMJO9zSsBIvl2OfQ+GDEjRCwkMKRHp9aQofbeEvZD3sBfzYr2c/cuXJd8+cCrOFHieuN/koFbwju4/a+O6b394vYgmIZNABdG64zoxdFOigFPBJnkv0SwmdEQGrGOoJCHT3XR61QQfGqWH+5EyTwKeqj87UhJqPQ4DU5mtrv96mfif10mgf9pNuYwTYJLOBvUTgSHCWUS4xxWjIMaGEKq42RXTIVGEggkyb0Jw/548T5rVintcqV6ZNM7QDDm0jwqoiFx0gmroAtVRA1F0hx7RM3qxHqwn69V6m5UuWN89e+gXrPcvn7ugIw==</latexit>

Figure 5: Left: our neural model. A vector hi associated with a nonterminal is used to predict a distribution over
grammar rules. Each rule instantiates new nonterminals which receive updated vectors based on LSTMs. Right:
partial programs are taken from the worklist, analyzed to determine feasibility, and expanded, then the new partial
programs are added to the worklist.

model traversing the tree with a fixed order cannot
estimate such an upper bound as the probabilities
of inconcrete nodes are not known.

3.1 Neural Model

We instantiate the neural model defined above us-
ing a simplified version of ASN (Rabinovich et al.,
2017), which respects the pθ(R(n) | π(P, n), N)
factorization for the production of each node in the
tree. Figure 5 shows how ASN recursively com-
putes the probability of labeling a node n asR(n).

Consider the partial program cat(S(n1), S(n2));
we need to define the probability distribution over
legal productions on the first node n1: pθ(R(n1) |
π(P, n), N) = pθ(R(n1) | {(cat,1)}, N).

We encode the AST path using an LSTM
(Hochreiter and Schmidhuber, 1997). Define
LSTM(h0,(rj , ij)) to be an LSTM with initial state
h0 and which, at each timestep, consumes a tuple
consisting of a node nj and a parent-child index ij
(i.e., an element in π(P, n)).2 We embed each tu-
ple (nj , ij) by WR(nj),ij , where W is specialized
to the rule and position. Then: hroot = LSTM(N)
and hn = LSTM(hroot, π(P, n)) where LSTM(N)
denotes an encoding of the natural language input.
The hidden state hn encodes both the user’s NL
specification as well as where we are in the parse
tree, allowing us to model which grammar symbol
should be likely at this position.

Given this hidden state hn, the probability for
each production rule at node n is computed using
a feedforward neural network (FFNN) module and
attention over the NL input:

2This abstraction allows our LSTM to implement the hid-
den state computation of the “constructor” module from Rabi-
novich et al. (2017). Our production rule model follows the
“primitive” and “composite type” modules.

Algorithm 1 Synthesis Algorithm
1: procedure OPSYNTH(G, φ,N,Mθ)

input: A CFG G = (V,Σ, R, S0), specification φ, natu-
ral language N and model Mθ

output: Complete program P with highest probability
under Mθ that satisfies φ, or ⊥ (no program exists)

2: Q := {(S0, 1)};
3: whileQ 6= ∅ do
4: (P, ρ) := Q.dequeue(); . upper bound ρ

associated with the partial program P
5: if Infeasible(P, φ) then continue;
6: if IsConcrete(P) then return P ;
7: l := SelectLeaf(P)
8: for r ∈ Supp(Mθ(π(P, l), N)) do
9: P ′ := Expand(P, l, r)

10: Q.add((P ′, uθ(P
′|N))

11: return ⊥;

pθ(· | π(P, n), N) =

softmax(FFNN(hn; Attn(hn,LSTM(N))))

During search, each Expand operation instanti-
ates a node n with each possible rule according to
the probabilities above, then computes the hidden
states for any new nonterminals using the LSTM.

3.2 Synthesis
In this section, we describe a search algorithm to
solve the optimal neural synthesis problem defined
in Equation 1.

The key idea is to maintain a priority list Q of
partial programs, ranked according to the upper
bound (uθ(P)) probability of the complete pro-
grams that can be derived from this partial program.
Then, in each iteration of the search procedure, we
pick the highest upper bound partial program P in
Q, check its feasibility using program analysis, and

1695

Root(P) = n S(n) ∈ V
P ↪→ (y = >, y = ⊥)

(a)

Root(P) = n ni ∈ Children(P) Subtree(P, ni) ↪→ (ψ+
i (y,x), ψ−i (y,x))

P ↪→ (∃z.(Φ+(S(n))) ∧∧
i ψ

+
i [zi/y]),∃z.(Φ−(S(n))) ∧∧

i ψ
−
i [zi/y])

(b)

P ↪→ (ψ+(y,x), ψ−(y,x)) UNSAT(
∧

(i,o)∈E+ ψ
+[o/y, i/x] ∧∧

(i,o)∈E− ¬ψ−[o/y, i/x])

P 6|= (E+, E−)
(c)

Figure 6: Inference rules describing procedure INFEASIBLE(P, φ) for specification φ consisting of positive exam-
ples E+ and negative examples E−. Rules (a)-(b) of the form P ↪→ (φ+, φ−) generate a pair of logical formulas
over- and under- approximating the semantics of partial program P. The notation ψ[z/y] denotes substituting
variable y with z in formula ψ.

if it is feasible, expand one of the non-terminals
in P using the applicable CFG productions. Since
complete programs are dequeued from Q in de-
creasing order of their probability according to Mθ,
the first complete program that satisfies φ is guar-
anteed to be optimal under Mθ (proof in the in
appendix); thus, our algorithm is guaranteed to
return an optimal program if a solution exists.

Infeasibility pruning Our top-down search al-
lows us to exploit program analysis techniques to
prune the search space, by determining whether
P is infeasible with respect to the user’s hard con-
straints. A common way of doing this is to use well-
known abstract interpretation techniques from the
programming languages literature to approximate
program semantics (Cousot and Cousot, 1977; Niel-
son et al., 2015). In particular, given a partial pro-
gram P , the idea behind the feasibility checking
procedure is to generate a pair of logical formu-
las (ψ+, ψ−) over- and under-approximating P ’s
semantics respectively. If there is any positive ex-
ample e+ ∈ E+ that is inconsistent with ψ+, then
the partial program is infeasible. Similarly, if there
is any negative example e− ∈ E− that satisfies ψ−,
we can again conclude that P must be infeasible.

Figure 6 describes our feasibility checking pro-
cedure in terms of inference rules, where rules
(a) and (b) generate a pair of over- and under-
approximations of the program, and rule (c) checks
feasibility of these approximations with respect
to the provided examples. Here, free variables x
in the formula represent program inputs, and free
variables y represent the program output. The ex-
istentially quantified variables z corresponds to
values of sub-expressions. The first rule states

that “holes" (i.e., non-terminals) in the partial pro-
gram are over-approximated using y = > meaning
the sub-program can return anything, and they are
under-approximated using y = ⊥, meaning that
the sub-program returns nothing. The second rule
is used to (recursively) construct an approxima-
tion of a sub-AST rooted at node n. This rule uti-
lizes a pair of mappings Φ+,Φ− where Φ+ (resp.
Φ−) gives an over-approximating (resp. under-
approximating) semantics for each language con-
struct. In rule (b), each child formula ψ+

i , ψ
−
i must

be satisfied as well as the parent formula, and these
are unified by a shared set of new existentially-
quantified variables.

The final rule uses the generated over- and under-
approximations of the partial program to check fea-
sibility. In particular, we conclude that the partial
program is infeasible if there is any positive exam-
ple e+ ∈ E+ that is inconsistent with ψ+or any
negative example e− ∈ E− that satisfies ψ−.

Instantiation of the INFEASIBLE procedure
for the regex domain Recall that INFEASIBLE

prunes a given partial program P by checking con-
sistency between the approximate program seman-
tics and the given examples. In the regex domain,
we encode the semantics of a regex in terms of the
set of strings it can match. To enable checking con-
sistency between a given example and the regex,
given a string s, we use a program InLang(s, P)
(denoted as P ′) to represent whether s is in the set
of strings that can be matched by P .

As an example, consider the partial program P :
cat(or(<0>, V1), <1>). We encode the semantics
of the program P ′: InLang(x, P) and ultimately
end up with over- and under-approximations

1696

(ψ+, ψ−) as follows:

(ψ+, ψ−) =(y ∧ (x ∈ cat(or(<0>,>),<1>)),

y ∧ (x ∈ cat(or(<0>,⊥),<1>)))

Intuitively, we’ve simply replaced the nonterminal
V1 by either > or ⊥, indicating that all strings or
no strings are matched by the eventual program at
V1. In this case, the approximation is simple, but
in general it cannot just be written down intuitively.
We produce it recursively using the procedure in
Figure 6, which yields the following intermediate
over- and under-approximated formulas:

(ψ+, ψ−) =((∃z.y ∧ (x ∈ z0 ∧ ψ+
0 [z0/y])),

∃z.y ∧ (x ∈ z0 ∧ ψ−0 [z0/y])))

(ψ+
0 , ψ

−
0) =(∃z.y = cat(z1, z2) ∧ ψ+

1 [z1/y] ∧ ψ+
2 [z2/y],

∃z.y = cat(z1, z2) ∧ ψ−1 [z1/y] ∧ ψ−2 [z2/y])

(ψ+
1 , ψ

−
1) =(∃z.y = or(z3, z4) ∧ ψ+

3 [z3, y] ∧ ψ+
4 [z4/y],

∃z.y = or(z3, z4) ∧ ψ−3 [z3, y] ∧ ψ−4 [z4/y])

(ψ+
2 , ψ

−
2) =(y = <1>, y = <1>)

(ψ+
3 , ψ

−
3) =(y = <0>, y = <0>)

(ψ+
4 , ψ

−
4) =(y = >, y = ⊥)

To confirm the utility of this representation, sup-
pose we have a positive example i = "a1", o =
True and a negative example i = "01", o =
True. According rule (c) of Figure 6, we check if
the following formula is unsat:

True ∧ ("a1" ∈ cat(or(<0>,>),<1>))∧
¬(True ∧ ("01" ∈ cat(or(<0>,⊥),<1>)))

Since the under-approximated semantics of P
contains the string "01", this formula is indeed
unsat and we are able to prune this partial program.

4 Experimental Setup

We evaluate our synthesizer on the English STRUC-
TUREDREGEX dataset for multimodal synthesis
of regular expressions. This dataset contains 3520
labeled examples, including an NL description, pos-
itive/negative examples, and the target regex. We
choose this dataset for our evaluation because (1)
it is only the dataset containing both examples and
NL where the NL description is written by humans,
and (2) this dataset is quite challenging, with exist-
ing techniques achieving under 50% accuracy.

Implementation Details As stated in Sec-
tion 3.1, our model is an Abstract Syntax Net-
work tailored to fit the regex DSL used in STRUC-
TUREDREGEX. We train our neural model to
maximize the log likelihood of generating ground
truth regexes given the NL using the Adam opti-
mizer (Kingma and Ba, 2015), stopping when the
performance on dev set converges. More details
are in the appendix.

We implement the infeasibility checking proce-
dure for our regex DSL by encoding the semantics
of each operator in the theory of strings (Liang
et al., 2014). Since all existentially quantified vari-
ables in the resulting formula can be eliminated
through substitution, the resulting constraints are
of the form s ∈ R (or s 6∈ R) where s is a string
constant and R is a regular expression. Thus, we
can check the satisfiability of these formulas using
the Bricks library (Møller, 2017). The appendix
describes both the semantics of the DSL constructs
as well as the rules used to generate the encoding a
partial program,

Because of our infeasibility check, the order of
expanding non-terminals can impact the efficiency
of our search, as we want to prune any infeasible
partial programs when they are less concrete. We
experimented with several methods of selecting a
leaf node to expand, including pre-order traver-
sal, choosing high-level nodes first, and choos-
ing lowest-entropy nodes first. Pre-order traversal
seemed to work best; details about the expansion
order can be found in the supplementary.

Baselines We compare our method against three
programming-by-example (PBE-only) baselines,
ALPHAREGEX (Lee et al., 2016), DEEPCODER

(Balog et al., 2017), and ROBUSTFILL (Devlin
et al., 2017). ALPHAREGEX is an enumerative
regex synthesizer that uses breadth-first search to
find regexes that are consistent with the exam-
ples. Both DEEPCODER and ROBUSTFILL are neu-
ral program synthesis approaches. DEEPCODER

places a distribution over constructs and terminals
based on examples, and uses this distribution to
carry out DFS search, whereas ROBUSTFILL uses
beam search to autoregressively build programs.

We further compare our method against
prior multimodal program synthesis techniques,
SKETCH (Ye et al., 2020b) and TREESEARCH

(Polosukhin and Skidanov, 2018) with appropri-
ate tuning of the hyperparameters and the SKETCH

synthesizer for this setting. We do not compare

1697

Approach Test Test-E
%Sol %Cons #St Time %Sol %Cons #St Time

AlphaRegex 3.6 51.8 1.4106 51.0 3.5 49.6 1.4106 53.8
DeepCoder 1.1 6.2 7.4104 84.7 1.3 6.0 6.8104 86.2
RobustFill 3.5 39.4 1.9103 21.1 3.5 38.4 2.0103 22.1

SKETCH 45.2 75.4 3.1103 18.4 29.8 62.8 3.5103 21.5
TREESEARCH 48.7 69.8 − 13.2 31.1 56.1 − 19.1

Seq2Seq+P 48.2 78.2 1.3104 66.5 36.0 64.3 1.5104 76.8
TranX+P 53.1 87.8 5.6103 31.4 38.1 77.4 6.4103 36.1

ASN+P 58.0 87.8 1.3103 13.6 45.8 78.2 1.4103 15.1
OPSYNTH 60.8 88.4 8.8102 9.5 48.8 80.9 1.3103 14.2
OPSYNTH-P 56.6 78.5 − 13.8 44.7 67.0 − 20.3
OPSYNTH+R 59.9 88.2 8.8102 9.9 45.0 80.7 1.3103 14.9

Table 1: STRUCTUREDREGEX results: fraction of solved benchmarks (%Sol), fraction of benchmarks where we
find an I/O-consistent program (%Cons), average number of states explored (#St), and average time in seconds.

against SKETCHADAPT (Nye et al., 2019) because
it relies on the assumption that every program con-
sistent with examples is the gold program, which
does not hold in our setting.

We also consider two NL-to-code models,
Seq2Seq and TranX (Yin and Neubig, 2017), which
we modify to filter out partial programs that are
inconsistent with the examples. Specifically, we
adapt these baselines in a similar way as proposed
in Ye et al. (2020a) by filtering the beam at every
timestep during search. Implementation details of
all our baselines are in the appendix.

We refer to our Optimal Synthesis approach
as OPSYNTH. We also show ablations: ASN+P

(ASN with our pruning during beam search), and
OPSYNTH-P to further demonstrate the benefits
of our approach over models like (Polosukhin and
Skidanov, 2018) that do not use such pruning. Fi-
nally, we also consider an extension denoted as
OPSYNTH+R, which extends OPSYNTH with the
ATTENTION A MODEL from ROBUSTFILL (De-
vlin et al., 2017), which encodes the examples φ
using another set of LSTM layers. To combine
these signals, we define the probability of applying
rule r on n as:

pθ(r|n, P,N) = softmax(FFNN(hn;

Attn(hn, context(N); Attn(hn, context(φ)))).

5 Results and Analysis

In the following experiments, we evaluate our ap-
proach based on two criteria: (1) accuracy, mea-
sured by the fraction of solved synthesis tasks, and
(2) efficiency, measured by the number of partial
programs searched and the run time.

Main Results Our main results are shown in Ta-
ble 1. We report results on two test sets from
STRUCTUREDREGEX; Test-E is annotated by a
distinct set of annotators from the training set.

As shown in the top part of Table 1, pure PBE ap-
proaches do poorly on this dataset due to not utiliz-
ing NL. These approaches either fail to find a regex
consistent with the examples within a time limit of
90 seconds or the synthesized regex is semantically
different from the target one. These results from
PBE-only approaches demonstrate the importance
of using a model that places distributions over pro-
grams conditioned on the NL description.

The second and third parts of Table 1 show re-
sults from prior multimodal neural synthesis ap-
proaches and NL-to-code models augmented with
example-based pruning (Ye et al., 2020a). SKETCH

slightly outperforms TREESEARCH, solving 45%
and 30% of the Test and Test-E set respectively.
Seq2Seq+P and TranX+P , which perform beam
search guided by these models but also check fea-
sibility of partial programs before adding them
to the beam, outperform these other techniques:
TranX+P outperforms Seq2Seq+P and solves 53%
of the benchmarks on Test and 38% for Test-E.

The last part of Table 1 provides results about
OPSYNTH and its ablations. OPSYNTH achieves
a substantial improvement over TranX+P and is
able to solve approximately 61% of benchmarks
in Test and 49% in Test-E. In addition to solving
more benchmarks, OPSYNTH also explores only a
fraction of the states explored by TranX+P , leading
to a speedup of more than 2.5×.

We now compare OPSYNTH against three of its
ablations. OPSYNTH-P does not use program anal-

1698

%Opt Gap %Sol %Cons #St Time

Beam 5 50.4 1.11 39.0 65.1 290 3.3
Beam 10 59.4 1.08 42.8 72.2 660 6.8
Beam 15 63.2 0.84 44.1 76.8 1040 11.0
Beam 20 66.2 0.69 45.8 78.2 1430 15.1

OpSynth 80.9 0.0 48.9 80.9 1320 14.2

Table 2: Comparison between OPSYNTH and a beam
search-based alternative with the same model.

Figure 7: Fraction of programs equivalent to target
regex based on score gap with the model-optimal pro-
gram.

ysis to prune infeasible partial programs (hence, we
do not report explored states as a measure of run-
time), and ASN+P is similar to OPSYNTH except
that it uses beam search (with beam size 20) com-
bined with the same pruning technique. Both the
program analysis component and optimal search
are important: without these, we observe a deteri-
oration in both accuracy and efficiency. The last
row in Table 1 shows an extension of OPSYNTH

described in Section 4 where we incorporate the
ROBUSTFILL model. We find that ROBUSTFILL is
ineffective on its own, and incorporating it into our
base synthesizer actually decreases performance.
While such neural-guided PBE approaches (DEEP-
CODER (Balog et al., 2017) and ROBUSTFILL (De-
vlin et al., 2017)) have been successful in prior
work, they do not appear to be effective on this chal-
lenging task, or not necessary in the presence of
strong natural language hints. Additionally, these
models both rely on millions of synthetic examples
in the originally reported settings.

Optimality and efficiency. We now explore the
benefits of optimality in more detail. Specifically,
Table 2 compares OPSYNTH with an alternative
that performs beam search with varying beam sizes
for Test-E. For the purposes of this experiment, we
terminate OPSYNTH’s search after it has explored
a maximum of 5000 states. For beam search, we
terminate search when the beam is filled up with
complete programs or the size of partial programs

Figure 8: Fraction of solved instances versus the num-
ber of explored states.

in the beam exceeds a threshold.
In Table 2, the column labeled “% Opt” shows

the percentage of optimal programs found by the
search algorithm. We also show the gap (differ-
ence of log probability) between the best-scored
programs found by each approach and the optimal
programs; this is reported in the column labeled
“Gap”. Finally, the last three columns show the
fraction of solved instances (accuracy), the fraction
of programs consistent with the examples, and the
number of explored states respectively.

As seen in Table 2, our optimal synthesizer finds
the optimal program in 80.9% of cases and solves
46.9% of instances after exploring 810 states on
average. Beam search with a beam size of 20 only
finds 66.2% optimal programs and solves fewer
instances (45.8%) despite exploring more states.

We further evaluate the benefit of finding model-
optimal programs in Figure 7. Here, we focus only
on those programs that are consistent with the input-
output examples. The x-axis shows the score gap
from the optimal program, and the y-axis shows the
percent of programs that are functionally equivalent
to the desired regex. As shown in Figure 7, 62% of
optimal programs are equivalent to the target regex,
whereas only around 30% of the nearly-optimal
programs functionally match the ground truth.

Finally, Figure 8 plots the fraction of solved in-
stances with respect to the number of states ex-
plored. OPSYNTH consistently solves more in-
stances than the other methods given the same bud-
get without requiring a pre-specified beam size.

6 Related Work

Natural Language to Logical Forms Semantic
parsing (translating NL to executable logical forms)
has been a long-standing research problem in the
NLP community (Zelle and Mooney, 1996; Price,
1990). Traditional grammar-based semantic parsers

1699

can construct database queries (Zelle and Mooney,
1996; Price, 1990), lambda calculus expressions
(Zettlemoyer and Collins, 2005) and programs in
other DSLs (Kushman and Barzilay, 2013; Wang
et al., 2015). Recent advances in deep learning have
explored seq2seq (Jia and Liang, 2016) or seq2tree
models (Dong and Lapata, 2016) that directly trans-
late the NL into a logical form, and syntax-based
models (Yin and Neubig, 2017) can also inject syn-
tactic constraints. Our approach relies on similar
neural modeling to predict the distribution of target
programs from NL. However, search is much more
complex in our example-guided synthesis setting,
whereas prior neural semantic parsers approximate
the best solution using beam search (Dong and La-
pata, 2016; Yin and Neubig, 2017).

Optimal Synthesis with Examples Prior work
on PBE considers various notions of optimality
using cost functions (Bornholt et al., 2016; Feser
et al., 2015; Schkufza et al., 2013) and machine
learning (Menon et al., 2013). The first line of
work allows users to specify the desired properties
of the synthesized program; for instance, smaller
program size, lower execution time, or more effi-
cient memory usage. Menon et al. (2013) define
optimality as the most likely constructs given a
set of examples under a probabilistic context free
grammar. In this work, we focus on a new setting
where we guarantee the optimality with respect to
a neural modal, which can encode specifications
such as natural language that are hard to formulate
as simple cost functions.

Multimodal Program Synthesis There has
been recent interest in synthesizing programs us-
ing a combination of natural language and exam-
ples (Polosukhin and Skidanov, 2018; Chen et al.,
2019b; Nye et al., 2019; Andreas et al., 2018; Raza
et al., 2015). Specifically, Chen et al. (2020) and
Ye et al. (2020b) parse the natural language into
an intermediate representation and then use it to
guide enumeration, but they do not have any opti-
mality guarantees with respect to the neural model.
Kulal et al. (2019) synthesize programs by perform-
ing line-by-line translation of pseudocode to code
and verify consistency with test cases at the end.
However, unlike our approach, their technique enu-
merates syntactically ill-formed programs, which
they address using compiler error localization.

7 Conclusion

In this paper, we presented a technique for optimal
synthesis from multimodal specifications. On a
benchmark of complex regex synthesis problems,
we showed that this approach is substantially more
accurate than past models, and our synthesis al-
gorithm finds the model-optimal program more
frequently compared to beam search.

While we have evaluated this method on regu-
lar expressions, our technique is general and can
be applied to other classic PBE domains on which
powerful abstract interpretation techniques for fea-
sibility checking are available, such as table trans-
formations (Feng et al., 2017), tensor and string
manipulations (Wang et al., 2017), and other data
wrangling (Feng et al., 2018). Our technique, es-
pecially the notion of optimality with respect to
a model, can also be valuable for more general
program synthesis (Alet et al., 2021; Austin et al.,
2021) if pruning techniques can be developed for
the particular tasks to be performed. In particular,
Austin et al. (2021) note that large language mod-
els are not good at modeling execution semantics
of programs; we see our execution-guided pruning
techniques as a path forward in this domain.

Acknowledgments

We thank the anonymous reviewers for their valu-
able feedback. This work was partially supported
by NSF Grant IIS-1814522, NSF Grant SHF-
1762299, NSF Award CCF-1811865, and a gift
from Salesforce Inc.

References
Ferran Alet, Javier Lopez-Contreras, James Kop-

pel, Maxwell Nye, Armando Solar-Lezama, Tomas
Lozano-Perez, Leslie Kaelbling, and Joshua Tenen-
baum. 2021. A large-scale benchmark for few-shot
program induction and synthesis. In Proceedings of
the International Conference on Machine Learning
(ICML).

Jacob Andreas, Dan Klein, and Sergey Levine. 2018.
Learning with Latent Language. In Proceedings of
the Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies (NAACL).

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732.

1700

M Balog, AL Gaunt, M Brockschmidt, S Nowozin, and
D Tarlow. 2017. Deepcoder: Learning to write pro-
grams. In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

James Bornholt, Emina Torlak, Dan Grossman, and
Luis Ceze. 2016. Optimizing synthesis with metas-
ketches. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL).

Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and
Isil Dillig. 2020. Multi-modal synthesis of regular
expressions. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI).

Xinyun Chen, Chang Liu, and Dawn Song. 2019a.
Execution-guided neural program synthesis. In Pro-
ceedings of the International Conference on Learn-
ing Representations (ICLR).

Yanju Chen, Ruben Martins, and Yu Feng. 2019b.
Maximal multi-layer specification synthesis. In Pro-
ceedings of the 2019 27th ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering
(FSE).

Patrick Cousot and Radhia Cousot. 1977. Abstract in-
terpretation: a unified lattice model for static analy-
sis of programs by construction or approximation of
fixpoints. In Proceedings of the 4th ACM SIGACT-
SIGPLAN Symposium on Principles of Program-
ming Languages (POPL).

Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi
Jain, Amey Karkare, Mark Marron, Sailesh R, and
Subhajit Roy. 2016. Program synthesis using natural
language. In Proceedings of the 38th International
Conference on Software Engineering (ICSE).

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju,
Rishabh Singh, Abdel-rahman Mohamed, and Push-
meet Kohli. 2017. Robustfill: Neural Program
Learning under Noisy I/O. In Proceedings of
the International Conference on Machine Learning
(ICML).

Li Dong and Mirella Lapata. 2016. Language to log-
ical form with neural attention. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa,
Josh Tenenbaum, and Armando Solar-Lezama. 2019.
Write, execute, assess: Program synthesis with a
repl. In Proceedings of the Conference on Ad-
vances in Neural Information Processing Systems
(NeurIPS).

Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dil-
lig. 2018. Program Synthesis Using Conflict-driven
Learning. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and
Implementation (PLDI).

Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig,
and Swarat Chaudhuri. 2017. Component-Based
Synthesis of Table Consolidation and Transforma-
tion Tasks from Examples. In Proceedings of the
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI).

John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015.
Synthesizing data structure transformations from
input-output examples. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Comput.,
9(8):1735–1780.

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

Ashwin Kalyan, Abhishek Mohta, Oleksandr Polozov,
Dhruv Batra, Prateek Jain, and Sumit Gulwani. 2018.
Neural-guided deductive search for real-time pro-
gram synthesis from examples. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Sumith Kulal, Panupong Pasupat, Kartik Chandra,
Mina Lee, Oded Padon, Alex Aiken, and Percy S
Liang. 2019. Spoc: Search-based pseudocode to
code. In Proceedings of the Conference on Ad-
vances in Neural Information Processing Systems
(NeurIPS).

Nate Kushman and Regina Barzilay. 2013. Using Se-
mantic Unification to Generate Regular Expressions
from Natural Language. In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (NACCL).

Mina Lee, Sunbeom So, and Hakjoo Oh. 2016. Syn-
thesizing Regular Expressions from Examples for
Introductory Automata Assignments. In Proceed-
ings of the ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experi-
ences (GPCE).

Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark
Barrett, and Morgan Deters. 2014. A dpll (t) theory
solver for a theory of strings and regular expressions.
In International Conference on Computer Aided Ver-
ification (CAV), pages 646–662. Springer.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective Approaches to Attention-
based Neural Machine Translation. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP).

https://doi.org/10.1162/neco.1997.9.8.1735

1701

Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani,
Butler Lampson, and Adam Tauman Kalai. 2013. A
machine learning framework for programming by
example. In Proceedings of the International Con-
ference on Machine Learning (ICML).

Anders Møller. 2017. dk.brics.automaton – finite-
state automata and regular expressions for Java.
http://www.brics.dk/automaton/.

Flemming Nielson, Hanne R Nielson, and Chris Han-
kin. 2015. Principles of program analysis. Springer.

Maxwell Nye, Luke Hewitt, Joshua Tenenbaum, and
Armando Solar-Lezama. 2019. Learning to infer
program sketches. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML),
pages 4861–4870.

Illia Polosukhin and Alexander Skidanov. 2018. Neu-
ral program search: Solving programming tasks
from description and examples. In Workshop at the
International Conference on Learning Representa-
tions (ICLR Workshop).

Patti Price. 1990. Evaluation of spoken language sys-
tems: The atis domain. In Proceedings of the
DARPA Workshop on Speech and Natural Language.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL).

Mohammad Raza, Sumit Gulwani, and Natasa Milic-
Frayling. 2015. Compositional program synthesis
from natural language and examples. In Proceed-
ings of the International Joint Conference on Artifi-
cial Intelligence (IJCAI).

Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013.
Stochastic superoptimization. SIGPLAN Not.,
48(4):305–316.

Eui Chul Shin, Illia Polosukhin, and Dawn Song. 2018.
Improving neural program synthesis with inferred
execution traces. In Proceedings of the Conference
on Advances in Neural Information Processing Sys-
tems (NeurIPS), pages 8917–8926.

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili
Mou, and Lu Zhang. 2020. Treegen: A tree-based
transformer architecture for code generation. In Pro-
ceedings of the Association for the Advancement of
Artificial Intelligence (AAAI), pages 8984–8991.

Chenglong Wang, Po-Sen Huang, Alex Polozov, Marc
Brockschmidt, and Rishabh Singh. 2018. Execution-
guided neural program decoding. In the Workshop
on Neural Abstract Machines and Program Induc-
tion (NAMPI).

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017. Pro-
gram synthesis using abstraction refinement. In Pro-
ceedings of the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL).

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a Semantic Parser Overnight. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics (ACL).

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. SQLizer: Query Synthe-
sis from Natural Language. In Proceedings of the
ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and
Applications (OOPSLA).

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett.
2020a. Benchmarking multimodal regex synthesis
with complex structures. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Xi Ye, Qiaochu Chen, Xinyu Wang, Isil Dillig, and
Greg Durrett. 2020b. Sketch-Driven Regular Ex-
pression Generation from Natural Language and Ex-
amples. In Transactions of the Association for Com-
putational Linguistics (TACL).

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In 2018 IEEE/ACM 15th Interna-
tional Conference on Mining Software Repositories
(MSR).

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL).

Pengcheng Yin and Graham Neubig. 2018. TRANX:
A transition-based neural abstract syntax parser for
semantic parsing and code generation. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations
(EMNLP).

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Association for
the Advancement of Artificial Intelligence (AAAI).

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In Proceedings of the Conference on Uncertainty in
Artificial Intelligence (UAI).

https://doi.org/10.1145/2499368.2451150

1702

S0 → V1

V1 → T1 | startwith(V1) | endwith(V1) | contain(V1)

| not(V1) | and(V1, V1) | or(V1, V1)

| optional(V1) | star(V1)

| concat3(V1, V1) | repeat(V1, k)

| repatleast(V1, k) | reprange(V1, k1, k2)

T1 → c | <let> | <cap> | <low>
| <num> | <any> | <spec> | <null>

Figure 9: Regex CFG. Here k ∈ Z+ and c is a character
class, such as <a>, <1>, etc.

A Guarantee of Optimality

Theorem 1 (Guarantee of Optimality). Suppose
given a CFG G = (V,Σ, R, S0), specification φ,
natural language N and model Mθ, OPSYNTH

returns a program P ∗. Then, for any program
P |= φ, Mθ(P) ≤Mθ(P

∗).

Proof. Assume P ∗ is the returned program of
OPSYNTH(G, φ,N,Mθ) and there exits a program
P such that P |= φ and Mθ(P) > Mθ(P

∗). Since
Mθ(P) > Mθ(P

∗), P must have been present in
the worklist and considered as a concrete program
before the model visited P ∗. But then, given that
P |= φ, then OPSYNTH will return P rather than
P ∗, which contradicts the assumption.

B CFG for Regular Expressions

We present the CFG for the regex domain language
taken from STRUCTUREDREGEX (Ye et al., 2020a)
in Figure 9. Its correspondence to the constructions
in the standard regular expression is shown in the
Appendix A of Ye et al. (2020a).

C Encoding for the INFEASIBLE
Procedure for Regex

We describe our detailed instantiation of the
INFEASIBLE procedure described in Section 3.2
in the regex domain. Recall that we encode the
semantics of a regex in terms of the set of strings it
can match, and we use the program InLang(s, P)
(denoted as P ′) to represent whether s is in the set
of strings that can be matched by P . To encode a
program P ′ for consistency checking, we use the
set of encoding rules presented in Figure 10 to gen-
erate its over- and under- approximated semantics.

3We note concat as cat in the paper.

In the regex domain, for most of the constructs,
we can model the precise semantics except for the
non-terminal symbols in the partial program.

D Neural Model Details

As described in Section 3.1, our neural model re-
sembles an Abstract Syntax Network (Rabinovich
et al., 2017) tailored to fit the regex DSL used in
STRUCTUREDREGEX. We show the grammar in
Figure 2. As there is no production rule having op-
tional or sequential cardinality, we do not include
the “constructor field module” from the ASN in
our implementation. We encode the NL using a
single-layer Bi-LSTM encoder with a hidden state
size of 100. In the decoding phase, we set the size
of the hidden state in the decoder LSTM as well as
the size of the embedding of R(nj , ij) to be 100.
To obtain the contexts, we use the Luong general
attention scheme (Luong et al., 2015). To prevent
overfitting, we apply a dropout of 0.3 to all the em-
bedding, outputs of recurrent modules, and context
vectors. Our model is trained using Adam (Kingma
and Ba, 2015) with a learning rate of 0.003 and a
batch size of 25.

E SELECTLEAF FUNCTION Details

The SELECTLEAF function selects one non-
terminal leaf node in the partial program to expand.
We find that when programmatic constraints
are integrated into the search process, the order
of choose which non-terminal to expand can
impact the cost needed to synthesize the target
program. We give a concrete example of how
the way we select non-terminal leaf nodes to
expand can affect the cost of synthesis. Consider
a timestep where we obtain the feasible partial
program cat(V1,V2) from the queue, where
both V1 and V2 can be expanded to <0> or <1>

with a probabilities 0.9 and 0.1 respectively.
Suppose cat(<0>,V2) is feasible, cat(V1,<0>)

is infeasible, and the only feasible complete
program is cat(<1>,<1>). If we choose to
expand V1 first, then the search procedure goes as
follows: {(cat(<0>,V2), 3)→ (cat(<0>,<0>),7)
→ (cat(<0>,<1>),7)→ (cat(<1>,V2),7)→
(cat(<1>,<0>),7)→ (cat(<1>,<1>),3)}, which
takes 6 steps. Now, if we expand V2 first,
the search procedure is: {(cat(V1,<0>), 7)
→ (cat(V1,<1>),3),→ (cat(<0>,<1>),7),→
(cat(<1>,<1>),3)}, which only takes 4 steps.

We want to find an order to expand the nodes

1703

Φ{+,−}(InLang, y,x, z) = (y ∧ (x ∈ z0))

f ∈ {startwith,endwith,contain,not,optional,star} Φ{+,−}(f, y, z) = (y = f(z1))

f ∈ {cat,and,or,repeat,repatleast} Φ{+,−}(f, y, z) = (y = f(z1, z2))

f ∈ {reprange} Φ{+,−}(f, y, z) = (y = f(z1, z2, z3))

Figure 10: Φ+,− in the regex domain. Here we omit the T1 and k case. The encoding for non-terminal symbols is
rule (a) in Figure 6 where > = star(<any>) and ⊥ = <null>.

that leads to most effective pruning. We tested the
following ways of selecting leaf nodes: (1) pre-
order traversal, (2) choosing the highest-level leaf
node, (3) choosing the lowest-entropy leaf node.
We found that pre-order traversal worked better
than the other strategies in most cases. Given the
same budget, using per-order traversal solves more
programs while exploring fewer states compared to
the other ways. The superiority of pre-order traver-
sal on the regex synthesis task can be attributed
to that our INFEASIBLE function needs concrete
terminal leaf nodes to prune effectively, and using
pre-order traversal prioritizes deepest nodes and
usually yields terminal leaf nodes more quickly
than other strategies.

F Implementation Details of the
Baselines

ALPHAREGEX We implemented the top-down
enumerative synthesizer presented in (Lee et al.,
2016). Although (Lee et al., 2016) only uses <0>
and <1> as terminals, here we extended the syn-
thesizer to support most of the ASCII characters.

DEEPCODER We implemented DEEPCODER

with a few modifications from its original
implementation (Balog et al., 2017). First,
we assign each token in the examples with
a class, and embed the token by both its
value and its class. For instance, consider
the positive example (ax4,+) of the regex
concat(repeat(<low>,2),repatleast(<num>,

1) (2 lower letters followed by 1 or more digits.
We assign “a” and “b” with the “<low>” class,
and assign “4” with the “<num>” class. The final
embedding of the token “a” is the concatenation
of the embedding of the value Emb(a) and the
class Emb(<low>). We use such combined
embeddings for better generalizability. Then, we
encode the examples with a Bi-LSTM encoder.
Each example is encoded into a hidden vector,

which is later max-pooled. Finally, we apply
a linear layer on the pooled representation for
the whole program, and predict the the set of
probabilities for each of the constructs in the DSL.

We extended ALPHAREGEX to synthesize pro-
grams using the probability of constructs obtained
from the neural model. In the STRUCTURE-
DREGEX grammar, we associate each construct
with the score returned from the neural network
and calculate the score of a partial program by sum-
ming up the score of all the constructs that are used
in the partial program. We specify the synthesizer
to prioritize exploring the partial programs with the
highest score so far.

Recall that in Section 5 that DEEPCODER

doesn’t achieve high performance in the STRUC-
TUREREGEX dataset. Since most of the constructs
are recursive in the regex language and DEEP-
CODER search is essentially doing a depth-first
search, the synthesizer first needs to exhaustively
check all possible programs associated with the
highest probability constructs before it can move
on to explore those programs with any other con-
structs. For example, suppose the concat has
the highest probability and the synthesizer ex-
plores programs up to maximum depth 5, the syn-
thesizer will prioritize exploring programs like
concat(concat(concat(concat(<low>)))) and
searching in this way does not help the synthesizer
to find the ground truth regex.

ROBUSTFILL We implemented the ATTENTION

A model from ROBUSTFILL (Devlin et al., 2017),
which predicts programs given I/O examples. We
encode the I/O with the same I/O embedding and
I/O encoder used in our implementation of DEEP-
CODER. We replaced the LSTM decoder in the
original implementation with our ASN decoder.
During decoding, we extract a context vector from
each of the examples provided in the example set,
and pool them with max-pooling as the final con-

1704

text vector. The probability distribution over rules
for node n is then given as:

Attn(hn, context(φ)) = MaxPool(

{Attn(hn, context(e))}e∈E)

pθ(r|n, P,N) = softmax(FFNN(hn;

Attn(hn, context(φ))))

We set the size of value embedding and class
embedding to be 50, and the size of hidden state in
encoder Bi-LSTM and LSTM in ASN to be 100.

TREESEARCH As the code of TREESEARCH

(Polosukhin and Skidanov, 2018) is not publicly
available code, we implemented our own version
of TREESEARCH on top of TRANX which is re-
ported to be more powerful than the originally used
SEQ2TREE on various datasets (Yin and Neubig,
2018). During search, we set the threshold to be
10−5, and the max queue size to be 100.

OPSYNTH+R We naturally combine OPSYNTH

and ROBUSTFILL by concatenating the context
vectors from NL and examples, as in Section 4.
The hyper-parameters for the NL encoder are the
same as those for the base synthesizer, and the
hyper-parameters for the I/O encoder are the same
as ROBUSTFILL.

