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Abstract

Biomedical entity linking is the task of link-
ing entity mentions in a biomedical document
to referent entities in a knowledge base. Re-
cently, many BERT-based models have been
introduced for the task. While these mod-
els have achieved competitive results on many
datasets, they are computationally expensive
and contain about 110M parameters. Little is
known about the factors contributing to their
impressive performance and whether the over-
parameterization is needed. In this work, we
shed some light on the inner working mech-
anisms of these large BERT-based models.
Through a set of probing experiments, we have
found that the entity linking performance only
changes slightly when the input word order is
shuffled or when the attention scope is lim-
ited to a fixed window size. From these ob-
servations, we propose an efficient convolu-
tional neural network with residual connec-
tions for biomedical entity linking. Because
of the sparse connectivity and weight sharing
properties, our model has a small number of
parameters and is highly efficient. On five pub-
lic datasets, our model achieves comparable
or even better linking accuracy than the state-
of-the-art BERT-based models while having
about 60 times fewer parameters. 1

1 Introduction

Biomedical entity linking (EL) (Zheng et al., 2014)
is the task of linking biomedical mentions (e.g., dis-
eases and drugs) to standard referent entities in a cu-
rated knowledge base (KB). For example, given the
sentence “The average NH3 concentrations were
low.”, the mention NH3 should be linked to the en-
tity KB:Ammonia. Biomedical EL is an important
research problem, with applications in many down-
stream tasks, such as biomedical question answer-
ing (Lee et al., 2020), information retrieval, and

1The code is publicly available at https://github.com/
laituan245/rescnn_bioel

information extraction (Wang et al., 2020; Huang
et al., 2020; Lai et al., 2021b; Zhang et al., 2021).
In general, two main challenges of the EL task are:
(1) ambiguity - the same word or phrase can be
used to refer to different entities; (2) variety - the
same entity can be referred to by different words or
phrases. Unlike in the general domain, mentions in
biomedical documents are relatively unambiguous
(D’Souza and Ng, 2015; Li et al., 2017). Build-
ing a system for biomedical EL involves primarily
addressing the variety problem.
Recently, many BERT-based models have been

introduced for biomedical EL (Ji et al., 2020; Sung
et al., 2020; Liu et al., 2020, 2021). While these
models can achieve state-of-the-art results on many
biomedical EL datasets, they are computationally
expensive and contain about 110M parameters.
Even though there are scientific labs that have a
lot of computing resources, many researchers still
have minimal access to large-scale computational
power (Strubell et al., 2019). Therefore, it is of
practical importance to provide a more scalable so-
lution for biomedical entity linking. Furthermore,
the factors contributing to the success of these large
BERT-based models remain unclear. And thus, it
is not known whether the over-parameterization is
needed to achieve competitive performance.
In this work, through a set of probing experi-

ments, we shed some light on the inner workings
of existing BERT models for biomedical EL. Sur-
prisingly, the performance only changes slightly
when the input word order is shuffled or when the
attention scope is restricted. Based on these obser-
vations, we propose an effective convolutional neu-
ral network with residual connections (ResCNN)
for the task. Because of the sparse connectivity
and weight sharing properties, ResCNN has a small
number of parameters and is highly efficient. Exper-
iments on five datasets show that the performance
of ResCNN is comparable to the state-of-the-art
(SOTA) BERT-based models while having about

https://github.com/laituan245/rescnn_bioel
https://github.com/laituan245/rescnn_bioel
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Figure 1: An illustration of the adopted approach to EL.
In this example, the closest neighbor to the source men-
tion is the entity name anilines. Therefore, this mention
should be linked to the entity C0003038.

60 times fewer parameters.

2 Methods

In the following sections, we will first describe
some preliminaries relating to the formulation of
the EL problem and a general approach for the task
(Sec. 2.1). We will then go into details about our
probing experiments in Sec. 2.2. We will describe
the design of our ResCNN model in Sec. 2.3.

2.1 Preliminaries
Problem Formulation Given an entity mention
m from a biomedical text and a knowledge base
(KB) consisting ofN entities  = {e1, e2, ..., eN},
the task is to find the entity ei ∈  that m refers to.
We assume that each entity is associated with a pri-
mary name and a list of alternative names. We
denote the set of all names in the KB as  =
{n1, n2, ..., nM}, whereM is the number of names.
We use Tm and Tnj to denote the textual forms of m
and nj respectively. Except for a list of names for
each entity, we do not assume the availability of any
other information in the KB (e.g., entity types or
description sentences). Our formulation is general
and suitable for a wide range of real-world settings.

General Approach A general approach to EL is
to train an encoder � that encodes mentions and
entity names into the same vector space (Gillick
et al., 2019) (Figure 1). Before inference, we use �
to pre-compute embeddings for all the entity names
in the KB. During inference, mentions are also en-
coded by � and entities are retrieved using a simple
distance function such as cosine similarity. In this

Figure 2: Attention scope restriction. In this example,
the window size of the limited attention head is 3.

work, we adopt this general approach, because it
is more efficient and simpler than the two-stage re-
trieval and re-ranking systems (Wu et al., 2020).
Several recent SOTA methods for biomedical EL
also follow this approach. For example, Liu et al.
(2020) models � using SAPBERT, a BERT model
pretrained on UMLS synonyms:

�(m) = SAPBERTCLS(Tm)
�(nj) = SAPBERTCLS(Tnj ) ∀ nj ∈ 

(1)

where SAPBERTCLS returns the final hidden state
corresponding to the [CLS] token. Since SAPBERT
was pre-trained on almost 12M pairs of synonyms,
it can be directly used without further fine-tuning on
the target task’s training data. However, for several
datasets, the performance can still be improved by
training with task-specific supervision.

2.2 Probing Experiments
Previous studies have shown that BERT can en-
code a wide range of syntactic and semantic features
(Tenney et al., 2019; Jawahar et al., 2019). However,
it is unknown to what extent existing BERT models
for biomedical EL utilize such rich linguistic sig-
nals. We take the first step towards answering this
question by investigating the most basic aspects.

Word Order Permutation We analyze whether
BERT models fine-tuned for biomedical EL even
consider one of the most fundamental properties of
a sequence - the word order. In this probing exper-
iment, we first train an EL model on the original
(unshuffled) training set of a dataset. We then eval-
uate the model on the development set under the
condition that the tokens of each mention/entity-
name are shuffled.

Attention Scope Restriction The self-attention
mechanism of BERT makes each token in the input
directly interact with every other token (Vaswani
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et al., 2017). As a result, the attention operation is
quadratic to the input length. To analyze whether di-
rect connections between distant tokens are crucial
for biomedical EL, we conduct experiments where
we restrict the attention scope to a local window
(Figure 2). We first train a BERT-based EL model
on the provided training set of a dataset. We use
the original attention mechanism during training.
During evaluation, we limit the attention scope to a
fixed window size by applying a masking operation:

M[i, j] =

{

1, if |i − j| ≤ ⌊w∕2⌋
-∞, otherwise

Attention(Q, K, V) = softmax
(

M⊙QKT

√

p

)

V

(2)

where Q, K, and V are the matrices of the queries,
keys, and values (respectively) of an attention head
(Vaswani et al., 2017). w denotes the window size
(w is odd), ⊙ denotes element-wise multiplication,
and p is a scaling factor. We restrict the attention
scope of every token at every layer except for the
[CLS] token at the last layer. We let the token attend
to every other token at the last layer.

2.3 ResCNN for Biomedical Entity Linking

As to be discussed in Section 3, the performance of
existing BERT models only changes slightly when
the input word order is shuffled or when the atten-
tion scope is limited. These observations suggest
that a simpler model that mainly focuses on cap-
turing local interactions may perform as well as
SOTA BERT-based models. A natural candidate
that exhibits the desired properties is the convolu-
tional neural network (CNN) architecture. CNNs
have been empirically shown to be quite effective
in capturing local features (Kim, 2014). Further-
more, CNNs typically use fewer parameters than
Transformer-based models because of their sparse
connectivity and weight sharing properties. To this
end, we introduce a simple but effective CNN with
residual connections (ResCNN) for biomedical EL.
Given an input text (e.g., a query mention or an
entity name), ResCNN computes a vector represen-
tation for the input through several layers.

Token Embedding Layer We first use the BERT
WordPiece tokenizer (Wu et al., 2016) to split the
original input text into a sequence of tokens. We

Figure 3: Encoding block of ResCNN.

then transform each token into an initial vector rep-
resentation by re-using the first embedding layer
of PubMedBERT (Gu et al., 2020). This opera-
tion is very similar to using traditional word em-
beddings such as GloVe (Pennington et al., 2014),
and so it can be carried out efficiently. We keep
the embedding layer fixed and do not tune its pa-
rameters during training. An advantage of Word-
Piece tokenization is that a relatively small vocabu-
lary (e.g., 30,000 wordpieces) is sufficient to model
large, naturally-occurring corpora. In contrast, the
vocabulary size of traditional word embeddings is
typically much larger.

Encoding Layer Our encoding layer consists of
several encoding blocks (Figure 3). Each block has
multiple convolutional filters of varying window
sizes (Kim, 2014). Each filter is followed by an
ReLU activation. We also employ a position-wise
fully connected feed-forward network after apply-
ing the convolutional filters. In addition, there is a
residual connection between the input and output
of each encoding block. Residual connections al-
leviate the vanishing gradient problem (He et al.,
2016). Overall, our encoding blocks are quite sim-
ilar to the Transformer encoder layers (Vaswani
et al., 2017). However, we use local convolutional
filters for feature extraction instead of the global
attention mechanism.

Pooling Layer To obtain the final vector repre-
sentation for the input, we apply a pooling opera-
tion. In this work, we experiment with two different
pooling strategies: (1) Max Pooling (Kim, 2014)
(2) Self-Attention Pooling (Zhu et al., 2018).
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Models Top-1 Accuracy (on development sets) Avg. % change
NCBI-d BC5CDR-d BC5CDR-c MedMentions COMETA

SAPBERT (Fine-Tuned) (2020) 91.1 90.9 98.2 54.4 74.9
Word Order Permutation
⬥ Shuffle unigrams 88.2 90.2 94.0 53.2 65.6 -4.58%
⬥ Shuffle bigrams 89.1 90.8 96.4 53.8 71.9 -1.87%
⬥ Shuffle trigrams 90.5 91.0 97.7 54.0 73.1 -0.87%
Attention Scope Restriction
◼ Context size = 3 91.1 90.3 97.9 53.2 71.9 -1.44%
◼ Context size = 5 91.2 90.9 97.6 53.8 73.4 -0.74%

Table 1: Results of our conducted probing experiments with SAPBERT (Liu et al., 2020).

Models Top-1 Accuracy (on test sets) Avg. % change
NCBI-d BC5CDR-d BC5CDR-c

BIOSYN (Dense) (Sung et al., 2020) 90.7 92.9 96.6
Word Order Permutation
⬥ Shuffle unigrams 67.0 77.0 74.8 -21.94%
⬥ Shuffle bigrams 77.7 87.2 85.6 -10.62%
⬥ Shuffle trigrams 82.7 91.4 92.2 -5.0%
Attention Scope Restriction
◼ Context size = 3 81.0 84.5 96.5 -6.61%
◼ Context size = 5 78.8 87.5 96.5 -6.35%

Table 2: Results of our conducted probing experiments with BIOSYN (Sung et al., 2020).

We acknowledge that most of the components
of our model are not novel as CNNs with resid-
ual links have been used in other tasks (Conneau
et al., 2017; Huang and Wang, 2017). Nevertheless,
our work provides evidence for the importance of
carefully justifying the complexity of existing or
newly proposed models. Depending on the specific
task, a lightweight model may perform as well as
the large BERT-based models. Also, our proposed
ResCNN achieves SOTA performance on several
datasets while being even more efficient than previ-
ous CNN-based or RNN-based methods (Sec. 3).

3 Experiments
Data and Experimental Setup We experiment
across five different datasets: NCBI (Dogan et al.,
2014), BC5CDR-c and BC5CDR-d (Li et al.,
2016), MedMentions (Mohan and Li, 2019), and
COMETA (Basaldella et al., 2020). For each
dataset, we follow the data split by Liu et al. (2020).
It is worth highlighting that even though the five
datasets can all be categorized as “biomedical
datasets”, they have very different characteristics.
For example, while MedMentions was constructed
by annotating scientific papers, COMETAwas built
by crawling Reddit (a social media forum). We re-
port results in terms of top-1 accuracy. Details

about the hyperparameters are in the appendix.

Probing Results (SAPBERT) Table 1 shows the
results of our probing experiments with SAPBERT
(Liu et al., 2020). When the inputs’ unigrams
are randomly re-ordered, the performance of SAP-
BERT only drops by about 4.58% on average. The
difference is even less noticeable when we shuf-
fle trigrams instead of unigrams. Therefore, SAP-
BERT is highly insensitive to word-order random-
ization. These results agree with recent studies on
general-domain BERT models (Pham et al., 2020;
Sinha et al., 2021). Table 1 also shows that the
performance of SAPBERT only changes slightly
when the attention scope is limited.

Probing Results (BIOSYN) We have also ex-
perimented with BERT models trained on the
BIOSYN framework (Sung et al., 2020). We di-
rectly use the trained BERT models downloaded
from https://github.com/dmis-lab/BioSyn. Table
2 shows the results of our conducted probing ex-
periments with BIOSYN. Note that the authors of
BIOSYN only provided the trained checkpoints for
NCBI-d, BC5CDR-d, and BC5CDR-c. Overall,
the changes are more prominent for models trained
on BIOSYN than for SAPBERT. Nevertheless, the
performance only drops by about 5.0% on average

https://github.com/dmis-lab/BioSyn
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Models Top-1 Accuracy (on test sets) Nb. Parameters
NCBI-d BC5CDR-d BC5CDR-c MedMentions COMETA

BNE (2019) 87.7 90.6 95.8 - - 4.1M
CNN-based Ranking (2020) 89.6 - - - - 4.6M
SAPBERT (Fine-Tuned) * (2020) 92.3 93.2 96.5 50.4 75.1 110M
BIOSYN * (2020) 91.1 93.2 96.6 OOM 71.3 110M
BIOSYN (init. w/ SAPBERT) * 92.5 93.6 96.8 OOM 77.0 110M
ResCNN (Self-Attention Pooling) 92.2 93.2 96.9 55.0 79.4 1.8M
ResCNN (Max Pooling) 92.4 93.1 96.8 53.5 80.1 1.7M

Table 3: Overall test results on the five biomedical EL datasets. “-” denotes results not reported in the cited paper.
The symbol * denotes BERT-based models. OOM stands for out-of-memory.

Models NCBI-d BC5CDR-d BC5CDR-c MedMentions COMETA
CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

SAPBERT (2020) 534s 58s 551s 66s 3478s 276s OOM 6269s 6156s 470s
ResCNN + Max Pooling 33s 18s 35s 21s 169s 69s 3274s 1565s 289s 109s
Speedup (compared to SAPBERT) 16.2x 3.2x 15.7x 3.1x 20.6x 4.0x - 4.0x 21.3x 4.3x

Table 4: Inference time of different models on CPU and GPU. OOM stands for out-of-memory.

when the inputs’ trigrams are randomly re-ordered.
The performance also only changes by 6.61% when
the attention window is set to be 3.

Entity Linking Accuracy Table 3 shows the
linking performance of various models. Despite
having less than 2M parameters, our CNN-based
models achieve better results than the previous
BERT-based SOTA systems on three of the datasets.
It is worth noting that SAPBERT (Liu et al., 2020)
was pre-trained on almost 12M pairs of UMLS syn-
onyms. Without such pre-training, our lightweight
models still match the performance of SAPBERT.

Inference Time Table 4 shows the speed of var-
ious models on CPU and on GPU. Compared to
SAPBERT, our model is about 3 to 4 times faster
on GPU and about 15 to 20 times faster on CPU. It
takes less time to run our model on CPU than run-
ning SAPBERT on GPU. These results demonstrate
the efficiency of our proposed model.

4 Conclusions and Future Work

Our work has shown that while BERT has been
widely used for many NLP tasks, it is sometimes
an overkill for some tasks, in which case, a sim-
pler model can be as effective as BERT and is of-
ten much more efficient. An interesting future di-
rection is to study further how to systematically
simplify/compress BERT based on the insights ob-
tained using probing experiments to increase effi-
ciency while maintaining effectiveness. We plan to
extend our work to other domains as well as other
information extraction tasks (Lai et al., 2020; Lin

et al., 2020; Wen et al., 2021; Lai et al., 2021a; Li
et al., 2020).
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A Reproducibility Checklist

In this section, we present the reproducibility infor-
mation of the paper.

Implementation Dependencies Libraries Py-
torch 1.6.0 (Paszke et al., 2019), Transformers 4.4.2
(Wolf et al., 2020), Numpy 1.19.5 (Harris et al.,
2020), CUDA 11.0.

Computing Infrastructure The experiments
were conducted on a server with Intel(R) Xeon(R)
Gold 5120 CPU @ 2.20GHz and NVIDIA Tesla
V100 GPUs. The allocated RAM is 191.9G. GPU
memory is 16G.

Datasets NCBI-d, BC5CDR-c, and BC5CDR-
d can be downloaded from https://github.com/

dmis-lab/BioSyn. MedMentions can be down-
loaded from https://github.com/chanzuckerberg/

MedMentions. COMETA can be downloaded from
https://github.com/cambridgeltl/cometa.

Average Runtime We have presented the infor-
mation of the inference time of our models in the
main paper.

Number of Model Parameters We have dis-
cussed about the models’ sizes in the main paper.

Hyperparameters of Best-Performing Models
Each of our best ResCNN models consists of 4
encoding blocks. Each encoding block has 100 fil-
ters of kernel size 1, 100 filters of kernel size 3,
and 100 filters of kernel size 5 (300 filters in total).
The learning rate used for training our models is set
to be 0.001. We use the Adam optimizer to train

the ResCNN models. We use Huggingface’s Trans-
former library to experiment with different BERT
models (Wolf et al., 2020).

Expected Validation Performance For each of
the MedMentions and COMETA datasets, we re-
port the test performance of the checkpoint with
the best validation score in the main paper. For
each of the remaining three datasets, we use the
corresponding development (dev) set to search for
the hyperparameters and then train on the train-
dev (train+dev) set to report the final performance
(Sung et al., 2020). The final validation scores of
our ResCNN models are shown in the Table 5.
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Models Top-1 Accuracy (on test sets) Nb. Parameters
NCBI-d BC5CDR-d BC5CDR-c MedMentions COMETA

ResCNN (Self-Attention Pooling) 92.9 97.0 99.5 55.0 79.3 1.8M
ResCNN (Max Pooling) 95.0 91.8 99.3 53.8 79.9 1.7M

Table 5: Final validation scores of our ResCNN models on the five biomedical EL datasets.


