
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 4878–4888
August 1–6, 2021. ©2021 Association for Computational Linguistics

4878

Climbing the Tower of Treebanks: Improving Low-Resource
Dependency Parsing via Hierarchical Source Selection

Goran Glavaš
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Abstract

Recent work on multilingual dependency pars-
ing focused on developing highly multilingual
parsers that can be applied to a wide range of
low-resource languages. In this work, we sub-
stantially outperform such “one model to rule
them all” approach with a heuristic selection
of languages and treebanks on which to train
the parser for a specific target language. Our
approach, dubbed TOWER, first hierarchically
clusters all Universal Dependencies languages
based on their mutual syntactic similarity com-
puted from human-coded URIEL vectors. For
each low-resource target language, we then
climb this language hierarchy starting from
the leaf node of that language and heuristi-
cally choose the hierarchy level at which to col-
lect training treebanks. This treebank selection
heuristic is based on: (i) the aggregate size of
all treebanks subsumed by the hierarchy level
and (ii) the similarity of the languages in the
training sample with the target language. For
languages without development treebanks, we
additionally use (ii) for model selection (i.e.,
early stopping) in order to prevent overfitting
to development treebanks of closest languages.
Our TOWER approach shows substantial gains
for low-resource languages over two state-of-
the-art multilingual parsers, with more than 20
LAS point gains for some of those languages.
Parsing models and code available at: https:
//github.com/codogogo/towerparse.

1 Introduction

Syntactic parsing – grounded in a wide variety of
formalisms (Taylor et al., 2003; De Marneffe et al.,
2006; Hockenmaier and Steedman, 2007; Nivre
et al., 2016, inter alia) – has been the backbone
of natural language processing (NLP) for decades,
and an indispensable preprocessing step for tack-
ling higher-level language understanding tasks. A
recent major paradigm shift in NLP towards large-
scale pretrained language models (PLMs) (Devlin

et al., 2019; Liu et al., 2019; Brown et al., 2020)
and their end-to-end fine-tuning for downstream
tasks has reduced the downstream relevance of su-
pervised syntactic parsing. What is more, there is
more and more evidence that PLMs implicitly ac-
quire rich syntactic knowledge through large-scale
pretraining (Hewitt and Manning, 2019; Chi et al.,
2020) and that exposing them to explicit syntax
from human-coded treebanks does not offer sig-
nificant language understanding benefits (Kuncoro
et al., 2020; Glavaš and Vulić, 2021). In order to
implicitly acquire syntactic competencies, however,
PLMs need language-specific corpora at the scale
at which it can only be obtained for a tiny por-
tion of world’s 7,000+ languages. For the remain-
ing vast majority of languages – with limited-size
monolingual corpora – explicit syntax still provides
valuable linguistic bias for more sample-efficient
learning in downstream NLP tasks.

Reliable syntactic parsing requires annotated
treebanks of reasonable size: this prerequisite is,
unfortunately, satisfied for even fewer languages.
Despite the multi-year, well-coordinated annota-
tion efforts such as the Universal Dependencies
(Nivre et al., 2016, 2020) project, language-specific
treebanks are unlikely to appear anytime soon for
most world languages. This renders the transfer of
syntactic knowledge from high-resource languages
with annotated treebanks a necessity. A truly zero-
shot transfer for low-resource languages assumes a
set of training treebanks from resource-rich source
languages and a target language without any syn-
tactic annotations. Effectively, the task is then to
identify the subset of source treebanks, the parser
trained on which would yield the best parsing per-
formance for the target language. An exhaustive
search over all possible subsets of source treebanks
is not only computationally intractable1 but also

1One can create 2N − 1 different training sets from a

https://github.com/codogogo/towerparse
https://github.com/codogogo/towerparse
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uninformative in true zero-shot scenarios in which
there is no development treebank (i.e., any syn-
tactically annotated data) for the target language.
Most existing transfer methods therefore either
(1) choose one (or a few) best source languages
for each target language (Rosa and Zabokrtsky,
2015; Agić, 2017; Lin et al., 2019; Litschko et al.,
2020) or (2) train a single multilingual parser on
all available treebanks; such parsers, based on pre-
trained multilingual encoders, currently produce
best results in low-resource parsing (Kondratyuk
and Straka, 2019; Üstün et al., 2020). Other trans-
fer approaches, e.g., based on data augmentation
(Şahin and Steedman, 2018; Vania et al., 2019),
violate the zero-shot transfer by assuming a small
target-language treebank – a requirement unful-
filled for most world languages.2

In this work, we propose a simple and effec-
tive heuristic for selecting a good set of source
treebanks for any given low-resource target lan-
guage. In our approach, named TOWER, we first
hierarchically cluster all Universal Dependencies
(UD) languagues. To this end, we compute syntac-
tic similarity of languages by comparing manually
coded vectors of their syntactic properties from the
URIEL database (Littell et al., 2017). We then it-
eratively ‘climb’ that language hierarchy level by
level, starting from the leaf node of the target lan-
guage. We stop ‘climbing’ (i.e., select the set of
source treebanks subsumed by the current hierar-
chy level), when the relative decrease in linguistic
similarity of the training sample w.r.t the target
language outweighs the increase in size of the train-
ing sample. We additionally exploit the linguistic
similarity between the target language and its clos-
est sources with existing development treebanks to
inform a model selection (that is, early-stopping)
heuristic. TOWER substantially outperforms state-
of-the-art multilingual parsers – UDPipe (Straka,
2018), UDify (Kondratyuk and Straka, 2019), and
UDapter (Üstün et al., 2020) on low-resource lan-
guages, while offering comparable performance for
high-resource languages.

2 Climbing the TOWER of Treebanks

Constructing the TOWER. We start by hierar-
chically clustering the set of 89 languages from
Universal Dependencies 3 based on their syntactic

collection of N source treebanks.
2For the vast majority of world languages there does not

exist a single manually annotated syntactic tree.
3We worked with the UD version 2.5.

Figure 1: Part of the syntax-based hierarchical cluster-
ing of UD languages (ISO 639-1 codes).

similarity. To this end, we represent each language
with its syntax knn vector from the URIEL
database (Littell et al., 2017). Features of these
103-dimensional vectors correspond to individual
syntactic properties from manually coded linguis-
tic resources such as WALS (Dryer and Haspel-
math, 2013) and SSWL (Collins and Kayne, 2009).
URIEL’s syntax knn strategy replaces feature
values missing in those resources with kNN-based
predictions (cf. (Littell et al., 2017) for more de-
tails). We then carry out hierarchical agglomer-
ative clustering with Ward’s linkage (Anderberg,
2014) with Euclidean distances between URIEL
vectors guiding the clustering. Figure 1 shows a
dendrogram of one part of the resulting hierarchy.
We display the complete hierarchy in the Appendix.
The syntax-based clustering largely reflects mem-
berships in language (sub)families, with a few no-
table exceptions: e.g., Tagalog (tl), from the Aus-
tronesian family appears to be syntactically similar
to (and is joined with) Scottish (gd), Irish (ga),
and Welsh (cy) from the Celtic branch of the Indo-
European family.

Treebank Selection (TBS). For a given test tree-
bank, we start climbing the hierarchy from the leaf
node of the treebank’s language. Let sl denote
the number of climbing steps we take from the
target leaf node l. If the target test treebank also
has the corresponding training portion, in-treebank
training constitutes the first training configuration
(we denote this configuration with sl = −1). For
resource-rich languages with several training tree-
banks, we create the next training sample by con-
catenating all of those treebanks (we denote this
level with sl = 0).4 For low-resource target lan-

4For example, for the Russian test treebank SynTagRus,
the training set at sl = −1 consists of the train portion of
the same SynTagRus treebank; at sl = 0, we concatenate
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guages without any training treebanks, the first
training sample is collected at sl = 1, where the
language is joined with other languages. The train-
ing set corresponding to a hierarachy level (i.e.,
each join in the tree) concatenates all training tree-
banks of all languages (i.e., leaf nodes) of the re-
spective hierarchy subtree.5

Let {Sn}Nn=0 (or −1) be the set of training configu-
rations collected by climbing the hierarchy starting
from the target language l and let Sn = ∪{Tk}Kk=1

be the n-th training set consisting of K training
treebanks. As we climb the hierarchy (i.e., as n
increases), the training set Sn is bound to grow; at
the same time, the sample of training languages
becomes increasingly dissimilar w.r.t. the target
language l. In other words, as we climb higher
up the induced syntactic hierarchy of languages,
we train on more data but from a mixture of (syn-
tactically) more distant languages. Let lk be the
language of the training treebank Tk. We then quan-
tify the syntactic similarity sim(Sn, l) between the
training set Sn and the target language l as follows:

sim(Sn, l) =
1

|Sn|

K∑
k=1

|Tk| · cos(lk, l) (1)

with cos(lk, l) as cosine similarity between URIEL
vectors of lk and l, and relative sizes of individual
treebanks |Tk|/|Sn| as weights. We then use the
following simple heuristic to select the best train-
ing set Sn: we stop climbing when the relative
growth of the training set becomes smaller than the
relative decrease of the similarity with the target
language, i.e., we select the smallest n for which
the following condition is satisifed:

|Sn+1|
|Sn|

<
sim(Sn, l)

sim(Sn+1, l)
. (2)

Model Selection (MS). Early stopping based on
the model performance on a development set (dev)
is an important mechanism for preventing model
overfitting in supervised machine learning. In a
truly zero-shot transfer setup, on the one hand, we
do not have any development data in the target

the training portions of Russian GSD, PUD, and SynTagRus
treebanks.

5Note that the number of climbs sl needed to reach some
hierarchy level depends on the language l: e.g., the hierarchy
level joining Tagalog (tl) with Scottish, Irish, and Welsh ({gd,
ga, cy}) is reached in sl = 1 climbs from Tagalog, sl = 2
climbs from Scottish and sl = 3 climbs from Irish and Welsh.

language. Model selection based on the develop-
ment set of the source language, on the other hand,
overfits the model to the source language, which
may hurt effectiveness of the cross-lingual transfer
(Keung et al., 2020; Chen and Ritter, 2020). For
test treebanks with a respective development por-
tion, TOWER uses that development set for model
selection. For low-resource languages l without
development treebanks, we compile a proxy de-
velopment set Dl = ∪{Dk}Kk=1 by collecting all
development treebanks Dk from the hierarchy level
closest to l that encompasses at least one treebank
with a development set.6 Intuitively, the more
syntactically similar Dl is to l, the more benefi-
cial the model selection based on Dl will be for
performance on l, the optimal model checkpoint
w.r.t. l should be closer to the model checkpoint
exhibiting best performance on Dl. Accordingly,
with M as the model checkpoint with best per-
formance on Dl, we select the model chekpoint
M ′ = bsim(Dl, l) ·Mc (see Eq.(1)) as the “opti-
mal” checkpoint for the target language l.

Shallow Biaffine Parser. TOWER employs the
shallow biaffine parser of Glavaš and Vulić (2021),
stacked on top of the pretrained XLM-R (Conneau
et al., 2020). Compared to the standard biaffine
parser (Dozat and Manning, 2017; Kondratyuk
and Straka, 2019; Üstün et al., 2020), this shallow
variant forwards word-level representations (aggre-
gated from subword output) directly into biaffine
products, bypassing deep feed-forward transforma-
tions that produce dependent- and head-specific
vectors (Dozat and Manning, 2017). The shallow
variant is reported to perform comparably (Glavaš
and Vulić, 2021), while being faster to train.

3 Evaluation and Discussion

Treebanks and Baselines. We evaluate TOWER

on 138 (test) treebanks from Universal Dependen-
cies (Nivre et al., 2020).7 We compare TOWER

against two state-of-the-art multilingual parsers:
(1) UDify (Kondratyuk and Straka, 2019) couples
the multilingual BERT (mBERT) (Devlin et al.,

6E.g., Dl for l=tl consists of develompent portions of ga
and gd treebanks, whereas Dl for l=cy consists only of the
development set of ga.

7We work with UD v2.5. Due to mismatches between
XLM-R’s subword tokenizer and word-level treebank tokens
we skip: all Chinese treebanks, Assyrian (AS), Old Russian
(RNC and TOROT), Skolt Sami (Giellagas), Japanese (Mod-
ern and BCCWJ), A. Greek (Perseus), Gothic (PROIEL), Cop-
tic (Scriptorium), OC Slavonic (PROIEL) and Yoruba (YTB).
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∩UDify ∩UDapt HIGH LOW

Model UAS LAS UAS LAS UAS LAS UAS LAS

UDify 80.9 73.9 – – 89.2 85.3 39.9 22.2
UDapter – – 63.8 52.8 90.9 87.6 43.9 29.3

TOWER 82.4 74.3 68.9 56.0 90.0 86.3 53.7 33.8
-TBS 80.8 73.2 62.8 51.7 89.4 85.6 47.0 30.1
-MS 82.1 74.1 67.9 55.2 89.4 85.6 51.2 32.2
-TBS-MS 80.7 83.1 62.4 51.3 89.4 85.6 45.9 29.0

Table 1: Parsing performance (UAS, LAS) on different UD treebank subsets for state-of-the-art multilingual parsers
UDify and UDapter and variants of our TOWER method. Bold: best performance in each column.
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Figure 2: LAS performance of UDify, UDapter and TOWER on 12 high-resource treebanks (top figure), and 11
low-resource languages (bottom figure).

2019) with the deep biaffine parser (Dozat and
Manning, 2017) and trains on all UD treebanks; (2)
UDapter (Üstün et al., 2020) extends mBERT with
adapter parameters (Houlsby et al., 2019; Pfeiffer
et al., 2020) that are contextually generated (Pla-
tanios et al., 2018) from URIEL vectors – the pa-
rameters of the adapter generator are trained on
treebanks of 13 diverse resource-rich languages se-
lected by Kulmizev et al. (2019). We additionally
quantify the contributions of TOWER’s heuristic
components (TBS and MS, see §2) by evaluating
variants in which we (1) remove TBS and train on
the closest language with training data (-TBS), (2)
remove MS and just select the model checkpoint
that performs best on the proxy dev set Dl (-MS),
and (3) remove both TBS and MS (-TBS-MS).

Training and Optimization Details. We limit
input sequences to 128 subword tokens. We use
XLM-R Base with L = 12 layers and hidden size

H = 768 and apply a dropout (p = 0.1) on its out-
puts before forwarding them to the shallow parsing
head. We train in batches of 32 sentences and op-
timize parameters with Adam (Kingma and Ba,
2015) (starting learning rate 10−5). We train for 30
epochs, with early stopping based on dev loss.8

Results and Discussion. We show detailed re-
sults for all 138 treebanks in the Appendix. In
Table 1, we show averages over different treebank
subsets: treebanks on which both TOWER and (1)
UDify (∩UDify; 111 treebanks) and (2) UDapter
(∩UDapt; 39 treebanks) have been evaluated, (3)
12 high-resource languages on which UDapter was
trained (HIGH) and (4) 11 low-resource treebanks
(LOW) for which all three models have been eval-
uated. We show LAS scores for languages from

8For low-resource languages without the dev set, we use
the proxy Dl (see 2). We checkpoint the model (i.e., measure
the dev loss) 10 times per epoch and stop training when the
loss does not decrease over 10 consecutive checkpoints.
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HIGH and LOW in Figure 2. Similar trends are
observed with UAS scores.

TOWER outperforms UDify and UDapter in all
setups except HIGH, with especially pronounced
gains for LOW. This renders TOWER particu-
larly successful for the intended use case: low-
resource languages without any training data. Ad-
mittedly, the fact that TOWER is built on XLM-
R, whereas UDify and UDapter use mBERT, im-
pedes the direct “apples-to-apples” comparison.
Two sets of results, however, strongly suggest that
it is TOWER’s heuristics (TBS & MS) that drive
its performance rather than the XLM-R (instead
of mBERT) encoder. First, UDapter outperforms
TOWER on high-resource languages with large
training treebanks (i.e., the HIGH setup). For these
languages, however, TOWER effectively does not
employ its heuristics: (i) TBS selects the large
language-specific treebank(s), as adding any other
language prohibitively reduces the perfect similar-
ity sim(S0, l) = 1 (see Eq. (1)); (ii) MS is not used
because each high-resource treebank has its own
dedicated dev set. Secondly, removing TOWER’s
heuristics (see -TBS-MS in Table 1) brings its per-
formance slightly below that of UDapter, rendering
TBS (primarily) and MS (rather than the XLM-R
encoder) crucial for TOWER’s gains. Comparing
-TBS and -MS reveals that, somewhat expectedly,
selecting the “optimal” training sample (TBS) con-
tributes to the overall performance more than the
heuristic early stopping (MS).

Looking at individual low-resource languages
(Fig. 2), we observe largest gains for Amharic (am)
and Sanskrit (sa). While Sanskrit benefits from
TOWER selecting training languages from the same
family (Marathi, Urdu, and Hindi), Amharic (Afro-
Asiatic family), interestingly, benefits from tree-
banks of syntactically similar languages from an-
other family (cf. the full TOWER hierarchy in the
Appendix) – Tamil and Telugu (Dravidian family).
Similarly, Tagalog (Austronesian language) pars-
ing massively benefits from training on Scottish
and Irish treebanks (Indo-European, Celtic).

4 Conclusion

We proposed TOWER, a simple yet effective ap-
proach to the crucial problem of source language
selection for multilingual and cross-lingual depen-
dency parsing. It leverages the language hierarchy,
induced from syntax-based manually coded URIEL
language vectors, and simple treebank selection

heuristics to inform the source selection. A wide-
scale UD evaluation and comparisons to current
state-of-the-art multilingual dependency parsers
validated the effectiveness of TOWER, especially in
low-resource languages. Moreover, while the main
experiments in this work were based on one partic-
ular state-of-the-art parsing architecture, TOWER is
fully independent of the chosen underlying parsing
model, and thus widely applicable.
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Goran Glavaš is supported by the Baden
Württemberg Stiftung (Eliteprogramm, AGREE
grant). The work of Ivan Vulić is supported by
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Appendix

Treebank Method UAS LAS

Afrikaans
AfriBooms (af)

UDPipe 89.38 86.58
UDify 86.97 83.48
TOWER 88.26 85.28

Akkadian
PISANDUB (akk)

UDify 27.65 4.54
UDapter 26.4 8.2
TOWER 33.45 6.12

Amharic
ATT (am)

UDify 17.38 3.49
UDapter 12.8 5.91
TOWER 72.64 38.41

Ancient Greek
PROIEL (grc)

UDPipe 85.93 82.11
UDify 78.91 72.66
TOWER 85.04 79.85

Arabic NYUAD (ar) TOWER 33.53 15.94

Arabic
PADT (ar)

UDPipe 87.54 82.94
UDify 87.72 82.88
UDapter 88.66 84.42
TOWER 88.92 83.72

Arabic PUD (ar) UDify 76.17 67.07
TOWER 75.94 59.72

Armenian
ArmTDP (hy)

UDPipe 78.62 71.27
UDify 85.63 78.61
TOWER 86.57 80.51

Bambara
CRB (bm)

UDify 30.28 8.6
UDapter 28.7 8.1
TOWER 31.33 8.03

Basque
BDT (eu)

UDPipe 86.11 82.86
UDify 84.94 80.97
UDapter 87.25 83.33
TOWER 84.28 80.02

Belarusian
HSE (be)

UDPipe 78.58 72.72
UDify 91.82 87.19
UDapter 84.16 79.33
TOWER 86.40 81.56

Bhojpuri BHTB (bho) UDapter 52.9 37.34
TOWER 52.62 35.86

Breton
KEB (br)

UDify 63.52 39.84
UDapter 72.91 58.5
TOWER 67.73 44.47

Bulgarian
BTB (bg)

UDPipe 93.38 90.35
UDify 95.54 92.4
TOWER 95.67 92.03

Buryat
BDT (bxr)

UDPipe 32.6 18.83
UDify 48.43 26.28
UDapter 48.68 28.89
TOWER 51.53 29.16

Catalan
AnCora (ca)

UDPipe 93.22 91.06
UDify 94.25 92.33
TOWER 94.04 92.08

Croatian
SET (hr)

UDPipe 91.1 86.78
UDify 94.08 89.79
TOWER 92.22 87.02

Czech
CAC (cs)

UDPipe 92.99 90.71
UDify 94.33 92.41
TOWER 94.91 92.10

Czech
CLTT (cs)

UDPipe 86.9 84.03
UDify 91.69 89.96
TOWER 94.11 91.38

Czech
FicTree (cs)

UDPipe 92.91 89.75
UDify 95.19 92.77
TOWER 95.12 91.83

Czech
PDT (cs)

UDPipe 93.33 91.31
UDify 94.73 92.88
TOWER 95.01 92.41

Czech PUD (cs) UDify 92.59 87.95
TOWER 93.26 87.06

Treebank Method UAS LAS

Danish
DDT (da)

UDPipe 86.88 84.31
UDify 87.76 84.5
TOWER 85.60 82.14

Dutch
Alpino (nl)

UDPipe 91.37 88.38
UDify 94.23 91.21
TOWER 93.42 90.31

Dutch
LassySmall (nl)

UDPipe 90.2 86.39
UDify 94.34 91.22
TOWER 92.45 88.29

English ESL (en) TOWER 30.22 6.45

English
EWT (en)

UDPipe 89.63 86.97
UDify 90.96 88.5
UDapter 93.12 89.67
TOWER 92.16 89.29

English
GUM (en)

UDPipe 87.27 84.12
UDify 89.14 85.73
TOWER 90.07 86.61

English
LinES (en)

UDPipe 84.15 79.71
UDify 87.33 83.71
TOWER 87.12 82.91

English PUD (en) UDify 91.52 88.66
TOWER 90.89 87.33

English
ParTUT (en)

UDPipe 90.29 87.27
UDify 92.84 90.14
TOWER 89.36 85.63

English Pronouns (en) TOWER 89.50 85.37

Erzya
JR (myv)

UDify 31.9 16.38
UDapter 34.21 19.15
TOWER 36.44 19.38

Estonian
EDT (et)

UDPipe 88.0 85.18
UDify 89.53 86.67
TOWER 90.24 87.08

Estonian EWT (et) TOWER 88.80 84.54

Faroese
OFT (fo)

UDify 67.24 59.26
UDapter 77.15 69.2
TOWER 77.43 68.41

Finnish
FTB (fi)

UDPipe 90.68 87.89
UDify 86.37 81.4
TOWER 91.91 89.05

Finnish PUD (fi) UDify 89.76 86.58
TOWER 88.24 82.48

Finnish
TDT (fi)

UDPipe 89.88 87.46
UDify 86.42 82.03
UDapter 91.87 89.01
TOWER 92.78 90.22

French FQB (fr) TOWER 93.36 87.00
French FTB (fr) TOWER 28.04 14.80

French
GSD (fr)

UDPipe 90.65 88.06
UDify 93.6 91.45
TOWER 94.06 91.31

French PUD (fr) UDify 88.36 82.76
TOWER 91.02 83.52

French
ParTUT (fr)

UDPipe 92.17 89.63
UDify 90.55 88.06
TOWER 87.90 79.33

French
Sequoia (fr)

UDPipe 92.37 90.73
UDify 92.53 90.05
TOWER 92.07 89.93

French
Spoken (fr)

UDPipe 82.9 77.53
UDify 85.24 80.01
TOWER 84.41 74.77

Galician
CTG (gl)

UDPipe 86.44 83.82
UDify 84.75 80.89
TOWER 83.85 80.65
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Treebank Method UAS LAS

Galician
TreeGal (gl)

UDPipe 82.72 77.69
UDify 84.08 76.77
TOWER 77.57 66.87

German
GSD (de)

UDPipe 85.53 81.07
UDify 87.81 83.59
TOWER 89.11 84.19

German HDT (de) TOWER 97.65 96.54
German LIT (de) TOWER 86.55 78.74

German PUD (de) UDify 89.86 84.46
TOWER 89.15 81.02

Greek
GDT (el)

UDPipe 92.1 89.79
UDify 94.33 92.15
TOWER 94.13 91.16

Hebrew
HTB (he)

UDPipe 89.7 86.86
UDify 91.63 88.11
UDapter 91.86 88.75
TOWER 90.71 87.05

Hindi
HDTB (hi)

UDPipe 94.85 91.83
UDify 95.13 91.46
UDapter 95.29 91.96
TOWER 95.12 91.42

Hindi PUD (hi) UDify 71.64 58.42
TOWER 73.02 50.68

Hungarian
Szeged (hu)

UDPipe 84.04 79.73
UDify 89.68 84.88
TOWER 87.87 81.02

Indonesian
GSD (id)

UDPipe 85.31 78.99
UDify 86.45 80.1
TOWER 83.71 76.84

Indonesian PUD (id) UDify 77.47 56.9
TOWER 76.71 53.16

Irish
IDT (ga)

UDPipe 80.39 72.34
UDify 80.05 69.28
TOWER 80.33 66.80

Italian
ISDT (it)

UDPipe 93.49 91.54
UDify 95.54 93.69
UDapter 95.32 93.46
TOWER 94.47 91.98

Italian PUD (it) UDify 94.18 91.76
TOWER 94.13 89.01

Italian
ParTUT (it)

UDPipe 92.64 90.47
UDify 95.96 93.68
TOWER 95.06 91.57

Italian PoSTWITA (it) TOWER 86.95 81.75
Italian TWITTIRO (it) TOWER 86.93 80.91
Italian VIT (it) TOWER 91.80 87.05

Japanese
GSD (ja)

UDPipe 95.06 93.73
UDify 94.37 92.08
UDapter 94.87 92.84
TOWER 92.58 89.44

Japanese PUD (ja) UDify 94.89 93.62
TOWER 91.12 88.41

Karelian KKPP (krl) UDapter 61.86 48.35
TOWER 62.18 45.60

Kazakh
KTB (kk)

UDPipe 53.3 33.38
UDify 74.77 63.66
UDapter 74.13 60.74
TOWER 73.70 59.88

Komi Permyak UH (koi) UDapter 36.89 23.05
TOWER 42.36 25.81

Komi Zyrian IKDP (kpv) UDify 36.01 22.12
TOWER 40.87 24.71

Komi Zyrian
Lattice (kpv)

UDify 28.85 12.99
UDapter 28.4 12.5
TOWER 33.29 17.33

Treebank Method UAS LAS

Korean
GSD (ko)

UDPipe 87.7 84.24
UDify 82.74 74.26
UDapter 89.39 85.91
TOWER 86.04 81.70

Korean
Kaist (ko)

UDPipe 88.42 86.48
UDify 87.57 84.52
TOWER 88.78 86.11

Korean PUD (ko) UDify 63.57 46.89
TOWER 61.78 38.40

Kurmanji
MG (kmr)

UDPipe 45.23 34.32
UDify 35.86 20.4
UDapter 26.37 12.1
TOWER 72.00 51.02

Latin
ITTB (la)

UDPipe 91.06 88.8
UDify 92.43 90.12
TOWER 91.25 87.67

Latin
PROIEL (la)

UDPipe 83.34 78.66
UDify 84.85 80.52
TOWER 83.74 77.75

Latin
Perseus (la)

UDPipe 71.2 61.28
UDify 78.33 69.6
TOWER 73.53 62.16

Latvian
LVTB (lv)

UDPipe 87.2 83.35
UDify 89.33 85.09
TOWER 92.26 88.52

Lithuanian ALKSNIS (lt) TOWER 87.35 81.58

Lithuanian
HSE (lt)

UDPipe 51.98 42.17
UDify 79.06 69.34
TOWER 79.25 65.47

Livvi KKPP (olo) UDapter 57.86 43.34
TOWER 62.77 44.62

Maltese
MUDT (mt)

UDPipe 84.65 79.71
UDify 83.07 75.56
TOWER 76.64 67.31

Marathi
UFAL (mr)

UDPipe 70.63 61.41
UDify 79.37 67.72
UDapter 61.01 44.4
TOWER 70.39 57.77

Mbya Guarani
Dooley (gun) TOWER 18.10 5.82

Mbya Guarani
Thomas (gun) TOWER 32.36 11.23

Moksha JR (mdf) UDapter 40.15 26.55
TOWER 44.21 27.45

Naija
NSC (pcm)

UDify 45.75 32.16
UDapter 49.24 36.72
TOWER 52.03 34.95

North Sami
Giella (sme)

UDPipe 78.3 73.49
UDify 74.3 67.13
TOWER 53.53 42.05

Norwegian
Bokmaal (no)

UDPipe 92.39 90.49
UDify 93.97 92.18
TOWER 94.77 93.12

Norwegian
Nynorsk (no)

UDPipe 92.09 90.01
UDify 94.34 92.37
TOWER 93.96 91.65

Norwegian
NynorskLIA (no)

UDPipe 68.08 60.07
UDify 75.4 69.6
TOWER 75.43 69.82

Old French
SRCMF (fro)

UDPipe 91.74 86.83
UDify 91.74 86.65
TOWER 89.75 83.48

Persian
Seraji (fa)

UDPipe 90.05 86.66
UDify 89.59 85.84
TOWER 91.29 87.43
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Treebank Method UAS LAS

Polish
LFG (pl)

UDPipe 96.58 94.76
UDify 96.67 94.58
TOWER 97.06 95.18

Polish PDB (pl) TOWER 94.99 89.95
Polish PUD (pl) TOWER 94.13 87.44

Portuguese
Bosque (pt)

UDPipe 91.36 89.04
UDify 91.37 87.84
TOWER 91.50 88.29

Portuguese
GSD (pt)

UDPipe 93.01 91.63
UDify 94.22 92.54
TOWER 93.80 91.98

Portuguese PUD (pt) UDify 87.02 80.17
TOWER 87.27 77.86

Romanian
Nonstandard (ro)

UDPipe 89.12 84.2
UDify 90.36 85.26
TOWER 90.59 84.41

Romanian
RRT (ro)

UDPipe 91.31 86.74
UDify 93.16 88.56
TOWER 93.61 87.70

Romanian
SiMoNERo (ro) TOWER 91.19 86.75

Russian
GSD (ru)

UDPipe 88.15 84.37
UDify 90.71 86.03
TOWER 91.85 88.28

Russian PUD (ru) UDify 93.51 87.14
TOWER 94.59 88.26

Russian
SynTagRus (ru)

UDPipe 93.8 92.32
UDify 94.83 93.13
UDapter 94.04 92.24
TOWER 95.28 93.75

Russian
Taiga (ru)

UDPipe 75.45 69.11
UDify 84.02 77.8
TOWER 84.83 77.71

Sanskrit
UFAL (sa)

UDify 40.21 18.56
UDapter 44.32 22.22
TOWER 63.05 44.66

Scottish Gaelic
ARCOSG (gd) TOWER 81.32 73.82

Serbian
SET (sr)

UDPipe 92.7 89.27
UDify 95.68 91.95
TOWER 94.36 90.93

Slovak
SNK (sk)

UDPipe 89.82 86.9
UDify 95.92 93.87
TOWER 93.77 90.87

Slovenian
SSJ (sl)

UDPipe 92.96 91.16
UDify 94.74 93.07
TOWER 94.91 93.50

Slovenian
SST (sl)

UDPipe 73.51 67.51
UDify 80.37 75.03
TOWER 78.64 73.10

Spanish
AnCora (es)

UDPipe 92.34 90.26
UDify 92.99 90.5
TOWER 92.67 90.44

Spanish
GSD (es)

UDPipe 90.71 88.03
UDify 90.82 87.23
TOWER 92.12 89.64

Treebank Method UAS LAS

Spanish PUD (es) UDify 90.45 83.08
TOWER 89.66 80.23

Swedish
LinES (sv)

UDPipe 86.07 81.86
UDify 88.77 85.49
TOWER 88.63 85.07

Swedish PUD (sv) UDify 89.17 86.1
TOWER 89.20 84.95

Swedish
Talbanken (sv)

UDPipe 89.63 86.61
UDify 91.91 89.03
UDapter 92.62 90.26
TOWER 89.70 86.60

Swedish Sign Language
SSLC (swl)

UDPipe 50.35 37.94
UDify 40.43 26.95
TOWER 31.56 20.57

Swiss Ger. UZH (gsw) UDapter 59.74 45.49
TOWER 55.61 40.17

Tagalog
TRG (tl)

UDify 64.04 40.07
UDapter 84.78 69.52
TOWER 91.78 74.32

Tamil
TTB (ta)

UDPipe 74.11 66.37
UDify 79.34 71.29
UDapter 70.28 46.05
TOWER 71.28 64.36

Telugu
MTG (te)

UDPipe 91.26 85.02
UDify 92.23 83.91
UDapter 83.52 71.1
TOWER 90.43 81.97

Thai PUD (th) UDify 49.05 26.06
TOWER 78.23 53.80

Turkish GB (tr) TOWER 75.36 59.39

Turkish
IMST (tr)

UDPipe 74.19 67.56
UDify 74.56 67.44
UDapter 76.97 69.63
TOWER 77.90 70.00

Turkish PUD (tr) UDify 67.68 46.07
TOWER 62.29 41.57

Ukrainian
IU (uk)

UDPipe 88.29 85.25
UDify 92.83 90.3
TOWER 92.54 89.89

Upper Sorbian
UFAL (hsb)

UDPipe 45.58 34.54
UDify 71.55 62.82
UDapter 62.28 54.2
TOWER 70.98 60.90

Urdu
UDTB (ur)

UDPipe 87.5 81.62
UDify 88.43 82.84
TOWER 87.43 81.62

Uyghur
UDT (ug)

UDPipe 78.46 67.09
UDify 65.89 48.8
TOWER 79.11 66.41

Vietnamese
VTB (vi)

UDPipe 70.38 62.56
UDify 74.11 66.0
TOWER 72.40 63.50

Warlpiri
UFAL (wbp)

UDify 21.66 7.96
UDapter 24.2 12.1
TOWER 31.85 16.24

Welsh CCG (cy) UDapter 70.75 54.43
TOWER 77.22 57.56

Wolof
WTB (wo) TOWER 69.06 58.13
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Figure 3: Dendrogram of the full syntax-based hierarchical clustering of 89 languages from UD v2.5. Languages
are denoted with their ISO 639-1 codes.


