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Abstract
Disfluencies is an under-studied topic in NLP,
even though it is ubiquitous in human con-
versation. This is largely due to the lack
of datasets containing disfluencies. In this
paper, we present a new challenge question
answering dataset, DISFL-QA, a derivative
of SQUAD, where humans introduce con-
textual disfluencies in previously fluent ques-
tions. DISFL-QA contains a variety of chal-
lenging disfluencies that require a more com-
prehensive understanding of the text than what
was necessary in prior datasets. Experi-
ments show that the performance of existing
state-of-the-art question answering models de-
grades significantly when tested on DISFL-
QA in a zero-shot setting. We show data
augmentation methods partially recover the
loss in performance and also demonstrate the
efficacy of using gold data for fine-tuning.
We argue that we need large-scale disflu-
ency datasets in order for NLP models to
be robust to them. The dataset is pub-
licly available at: https://github.com/

google-research-datasets/disfl-qa.

1 Introduction

During conversations, humans do not always pre-
meditate exactly what they are going to say; thus
a natural conversation often includes interrup-
tions like repetitions, restarts, or corrections. To-
gether these phenomena are referred to as disflu-
encies (Shriberg, 1994). Figure 1a shows different
types of conventional disfluencies in an utterance,
as described by Shriberg (1994).

With the growing popularity of voice assistants,
such disfluencies are of particular interest for goal-
oriented or information seeking dialogue agents,
because an NLU system, trained on fluent data,
can easily get misled due to their presence. Fig-
ure 1b shows how the presence of disfluencies in a

∗Work done during an internship at Google.

Repetition When is Eas ugh Easter this year?
Correction When is Lent I meant Easter this year?
Restarts How much no wait when is Easter this year?

(a) Conventional categories of Disfluencies. The reparan-
dum (words intended to be corrected or ignored), inter-
regnum (optional discourse cues) and repair are marked.

Passage: The Normans (Norman: Nourmands; French:
Normands; Latin: Normanni) were the people who in the
10th and 11th centuries gave their name to Normandy, a
region in France. They were descended from Norse (”Nor-
man” comes from ”Norseman”) raiders and pirates from
Denmark, Iceland and Norway who, under their leader
Rollo, . . .

q1: In what country is Normandy located?
dq1: In what country is Norse found no wait Normandy
not Norse?
T5(q1): France 3
T5(dq1): Denmark 7

q2: When were the Normans in Normandy?
dq2: From which countries no tell me when were the
Normans in Normandy?
T5(q2): 10th and 11th centuries 3
T5(dq2): Denmark, Iceland and Norway 7

(b) Contextualized Disfluencies in DISFL-QA (§2).

Figure 1: (a) Categories of disfluencies (Shriberg,
1994) (b) A passage and questions (qi) from SQUAD,
along with their disfluent versions (dqi) and predictions
from a T5-QA model.

question answering (QA) setting, namely SQUAD
(Rajpurkar et al., 2018), affects the prediction of a
state-of-the-art T5 model (Raffel et al., 2020). For
example, the original question q1 is seeking an an-
swer about the location of Normandy. In the dis-
fluent version dq1 (which is semantically equiv-
alent to q1), the user starts asking about Norse
and then corrects themselves to ask about the Nor-
mandy instead. The presence of this correctional
disfluency confuses the QA model, which tend
to rely on shallow textual cues from question for
making predictions.

https://github.com/google-research-datasets/disfl-qa
https://github.com/google-research-datasets/disfl-qa
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Unfortunately, research in NLP and speech
community has been impeded by the lack of cu-
rated datasets containing such disfluencies. The
datasets available today are mostly conversational
in nature, and span a limited number of very spe-
cific domains (e.g., telephone conversations, court
proceedings) (Godfrey et al., 1992; Zayats et al.,
2014). Furthermore, only a small fraction of the
utterances in these datasets contain disfluencies,
with a limited and skewed distribution of disflu-
encies types. In the most popular dataset in the
literature, the SWITCHBOARD corpus (Godfrey
et al., 1992), only 5.9% of the words are disflu-
encies (Charniak and Johnson, 2001), of which
> 50% are repetitions (Shriberg, 1996), which
has been shown to be the relatively simpler form
of disfluencies (Zayats et al., 2014; Jamshid Lou
et al., 2018; Zayats et al., 2019).

To fill this gap, we present DISFL-QA, the first
dataset containing contextual disfluencies in an in-
formation seeking setting, namely question an-
swering over Wikipedia passages. DISFL-QA is
constructed by asking human raters to insert dis-
fluencies in questions from SQUAD-v2, a popular
question answering dataset, using the passage and
remaining questions as context. These contextual
disfluencies lend naturalness to DISFL-QA, and
challenge models relying on shallow matching be-
tween question and context to predict an answer.
Some key properties of DISFL-QA are:

• DISFL-QA is a targeted dataset for disfluen-
cies, in which all questions (≈12k) contain
disfluencies, making for a much larger disflu-
ent test set than prior datasets.

• Over 90% of the disfluencies in DISFL-
QA are corrections or restarts, making it a
much harder test set for disfluency correction
(§2.2).

• DISFL-QA contains wider diversity in terms
of semantic distractors than earlier disflu-
ency datasets, and newer phenomenon such
as coreference between the reparandum and
the repair (§2.3).

We experimentally reveal the brittleness of
state-of-the-art LM based QA models when tested
on DISFL-QA in zero-shot setting (§4.1). Since
collecting large supervision datasets containing
disfluencies for training is expensive, different
data augmentation methods for recovering the

zero-shot performance drop are also evaluated
(§3.3). Finally, we demonstrate the efficacy of
using the human annotated data in varying frac-
tions, for both end-to-end QA supervision and dis-
fluency generation based data augmentation tech-
niques (§4.2).

We argue that creation of datasets, such as
DISFL-QA, are vital for (1) improving under-
standing of disfluencies, and (2) developing robust
NLU models in general.

2 DISFL-QA: Adding Disfluencies to QA

DISFL-QA builds upon the existing SQUAD-v2
dataset, a question answering dataset which con-
tains curated paragraphs from Wikipedia and as-
sociated questions. Each question associated with
the paragraph is sent for a human annotation task
to add a contextual disfluency using the paragraph
as a source of distractors. Finally, to ensure the
quality of the dataset, a subsequent round of hu-
man evaluation with an option to re-annotate is
conducted.

2.1 Source of Questions

We sourced passages and questions from
SQUAD-v2 (Rajpurkar et al., 2018) development
set. SQUAD-v2 is an extension of SQUAD-v1
(Rajpurkar et al., 2016) that contains unanswer-
able questions written adversarially by crowd
workers to look similar to answerable ones
from SQUAD-v1. We use both answerable and
unanswerable questions for each passage in the
annotation task.

2.2 Annotation Task

To ensure high quality of the dataset, our annota-
tion process consists of 2 rounds of annotation:

First Round of Annotation. Expert raters were
shown the passage along with all the associ-
ated questions and their answers, with one of the
question-answer pair highlighted for annotation.1

The raters were instructed to use the provided con-
text in crafting disfluencies to make for a non-
trivial dataset.

The rater had to provide a disfluent version of
the question that (a) is semantically equivalent
to the original question (b) is natural, i.e., a hu-
man can utter them in a dialogue setting. When

1The raters were linguistic experts, and were trained for
the task with 2 rounds of pilot annotation.
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Type Passage (some parts shortened) Fluent Question Disfluent Question

Interrogative
Restart
(30%)

. . . Roger de Tosny travelled to the Iberian
Peninsula to carve out a state for himself. In
1064, during the War of Barbastro, William of
Montreuil led the papal army . . .

Who was in charge of
the papal army in the
War of Barbastro?

Where did the no who was
in charge of the papal army
in the Barbastro War?

Entity
Correction
(25.6%)

. . . While many commute to L.A. and Orange
Counties, there are some differences in devel-
opment, as most of San Bernardino and River-
side Counties were developed in the 1980s and
1990s. . .

Other than the 1980s, in
which decade did most
of San Bernardino and
Riverside Counties de-
velop?

Other than the 1990s I
mean actually the 1980s
which decade did San
Bernardino and Riverside
counties develop?

Adverb/Adj.
Correction
(20%)

. . . Southern California is home to Los Angeles
International Airport, the second-busiest air-
port in the United States by passenger volume;
San Diego International Airport the busiest sin-
gle runway airport in the world. . .

What is the second
busiest airport in the
United States?

What airport in the United
States is the busiest no sec-
ond busiest?

Entity Type
Correction
(21.1%)

. . . To the east is the Colorado Desert and the
Colorado River, and the Mojave Desert at the
border with Nevada. To the south is the Mexico-
United States border. . .

What is the name of the
water body that is found
to the east?

What is the name of the
desert wait the water
body that is found to the
east?

Others
(3.3%)

. . . Complexity measures are very generally de-
fined by the Blum complexity axioms. Other
complexity measures used in complexity the-
ory include communication complexity and de-
cision tree complexity. . .

What is typically used
to broadly define com-
plexity measures?

What is defined no is typi-
cally used to broadly define
complexity measures?

Table 1: Example passage and fluent questions from the SQUAD dataset and their disfluent versions provided by
human raters, categorized by the type of disfluency along with their estimated percentage in the DISFL-QA dataset.

writing the disfluent version of a question, we in-
structed raters not to include partial words or filled
pauses (e.g., “um”, “uh”, “ah” etc.), as they can be
detected relatively easily (Johnson and Charniak,
2004; Jamshid Lou and Johnson, 2017). Raters
were shown example disfluencies from each of the
categories in Table 1. On average, raters spent 2.5
minutes per question. Introduction of a disfluency
increased the mean length of a question from 10.3
to 14.6 words.

Human Evaluation + Re-annotation. To as-
sess and ensure high quality of the dataset, we
asked a another set of human raters the following
yes/no questions:

1. Is the disfluent question consistent with re-
spect to the fluent question? i.e., the disflu-
ent question is semantically equivalent to the
original question in that they share the same
answer.

2. Is the disfluent question natural? Naturalness
is defined in terms of human usage, grammat-
ical errors, meaningful distractors etc.

After the first round of annotation, we found
that the second pool of raters found the disfluent
questions to be consistent and natural 96.0% and

88.5% of the time, with an inter-annotator agree-
ment of 97.0% and 93.0%2, respectively. This
suggests that the initial round of annotation re-
sulted in a high quality dataset. Furthermore,
for the cases identified as either inconsistent or
unnatural, we conducted a second round of re-
annotation with updated guidelines to make re-
quired corrections.

2.3 Categories of Disfluencies

To assess the distribution of different types of
disfluencies, we sampled 500 questions from the
training and development sets and manually an-
notated the nature of disfluency introduced by the
raters. Table 1 shows the distribution of these cat-
egories in the dataset.

A notable difference between DISFL-QA and
SWITCHBOARD (Godfrey et al., 1992) is that
DISFL-QA contains a larger fraction of correc-
tions and restarts, which have been shown to be the
hardest disfluencies to detect and correct (Zayats
et al., 2014; Jamshid Lou et al., 2018; Yang et al.,
2020). From Table 1, we can see that ≈30% and
>65% of the disfluencies in DISFL-QA are restarts
and corrections respectively.

In addition to the specific categories men-

2Cohen’s κ = 0.55, indicating moderate agreement.
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Dataset Switchboard DISFL-QA
Domain Telephonic

Conversations
Wikipedia

Passages

Goal-oriented No Yes

Contextual No Yes

Size (# sentences) 7.9k 11.8k

Disfluencies 20% 100%

Correction & Restarts <50% >90%

Coreferences <1% ≈10%

Table 2: Comparison of DISFL-QA with SWITCH-
BOARD. DISFL-QA is more diverse, contains harder
disfluencies and new phenomenon like coreference.

tioned in Table 1, the dataset includes other
challenging phenomena which are shared across
these categories. For instance, example below
shows disfluencies which introduce coreferences
between the reparandum and the repair (mentions
marked [.]), allowing more complex corrections
not present in existing datasets:

Who does
BSkyB have an

operating license
from ?

→

Who removed [BSkyB’s]
operating license no scratch

that who do [they] have [their]
operating license from ?

Table 2 summarizes the key differences between
DISFL-QA and the SWITCHBOARD dataset.

3 Experimental Setup

3.1 Models to Compare
We use two different modeling approaches to an-
swer disfluent questions in DISFL-QA.

LMs for QA. We use BERT (Devlin et al.,
2019) and T5 (Raffel et al., 2020) as our QA
models in the standard setup which has shown to
achieve state-of-the-art performance for SQUAD.
We fine-tune BERT for a span selection task,
whereby predicting start and end probabilities
for all the tokens in the context.

T5 is finetuned under the standard text2text for-
mulation, when given (question, passage) as input
the model generates the answer as the output. For
predicting <no answer>, the model was trained
to generate “unknown”.

LMs for Disfluency Correction. We also fine-
tune the above LMs as disfluency correction mod-
els. Given the disfluent question as input, a cor-
rection model predicts the fluent question, which
is then fed into a QA model. For BERT, we use the

Rule Fluent Disfluent

Q What was the
Norman religion?

What was replaced with no no
what was the Norman religion?

V When was the Duchy
of Normandy
founded?

When was the Duchy of Normandy
offered ugh I mean founded?

ADJ What is the original
meaning of the word
Norman?

What is the English rather
original meaning of the word
Norman?

ADV Who did Beyoncé
perform privately for
in 2011?

Who did Beyoncé perform
publicly oops privately for in
2011?

ENT Who was a
prominent Huguenot
in Holland?

Who was a prominent Saint
Nicholas no I mean Huguenot in
Holland?

Table 3: Example of synthetically generated disfluent
questions using the contextual heuristics.

state-of-the-art BERT-based disfluency correction
model by Jamshid Lou and Johnson (2020) trained
on SWITCHBOARD. We also train T5 models on
DISFL-QA to prevent the distribution skew be-
tween SWITCHBOARD and DISFL-QA, and ac-
count for new phenomena like coreferences.

3.2 Training Settings
We train the BERT and T5 variants on the follow-
ing two data configurations:

ALL where the model is trained on all of
SQUAD-v2, including the non-answerable ques-
tions. Evaluation is done against the entire test set.

ANS where the model is trained only on an-
swerable questions from SQUAD-v1, without the
capabilities of handling non-answerable questions.

3.3 Datasets
Human Annotated Datasets. We use 3 datasets
in our experiments: SQUAD-v1, SQUAD-v2, and
DISFL-QA. We split the 11, 825 annotated ques-
tions in DISFL-QA into train/dev/test set contain-
ing 7182/1000/3643 questions, respectively. The
split was also done at an article level such that the
questions belonging to the same passage belong in
the same split. For zero-shot experiments, we only
use the train of SQUAD.

Evaluation is done on the subset of SQuAD-v2
development set that corresponds to the DISFL-
QA test to ensure fair comparison.

Heuristically Generated Data. We also gener-
ate disfluencies heuristically to validate the impor-
tance of human annotated disfluencies. Inspired
by the disfluency categories seen in our annota-
tion task, we derive the following heuristics to



3313

Model Train Eval HasAns-F1 NoAns-F1 Overall-F1

BERT-QA

ALL
SQUAD 83.87 70.55 77.46

Heuristics 51.45 ↓ 32.42 74.49 ↑ 3.94 62.53 ↓ 14.93

DISFL-QA 40.97 ↓ 42.90 75.97 ↑ 5.42 57.81 ↓ 19.65

ANS
SQUAD 89.63 - 89.63

Heuristics 80.52 ↓ 9.11 - 80.52 ↓ 9.11

DISFL-QA 78.88 ↓ 10.75 - 78.88 ↓ 10.75

T5-QA

ALL
SQUAD 91.38 87.67 89.59

Heuristics 39.98 ↓ 51.40 92.57 ↑ 4.90 65.27 ↓ 24.32

DISFL-QA 35.31 ↓ 56.07 90.06 ↑ 2.39 61.64 ↓ 27.95

ANS
SQUAD 93.71 - 93.71

Heuristics 81.73 ↓ 12.01 - 81.73 ↓ 12.01

DISFL-QA 80.39 ↓ 13.32 - 80.39 ↓ 13.32

Disfluency
Correction

+
T5-QA

ALL
SQUAD 91.38 87.67 89.59

Heuristics 42.83 ↓ 48.55 92.18 ↑ 4.51 66.56 ↓ 23.03

DISFL-QA 43.61 ↓ 47.77 89.55 ↑ 1.88 65.71 ↓ 23.88

ANS
SQUAD 93.71 - 93.71

Heuristics 82.27 ↓ 10.44 - 82.27 ↓ 10.44

DISFL-QA 82.64 ↓ 11.07 - 82.64 ↓ 11.07

Table 4: Breakdown of zero-shot performance of fine-tuned BERT and T5 QA models, trained only on the SQUAD
dataset, and evaluated on SQUAD, Heuristics (§3.3), and DISFL-QA test sets. We also evaluate the performance
by using state-of-the-art disfluency detection model by Jamshid Lou and Johnson (2020) in a pipelined fashion.

augment our data with silver3 standard disfluen-
cies: (i) SWITCH-Q which inserts prefix of an-
other question as a prefix to the original question,
and (ii) SWITCH-X, where X could be verb, adjec-
tive, adverb, or entity, and is inserted as a reparan-
dum in the question.

To facilitate contextual disfluencies, we use the
reparandums from the context. For SWITCH-
VERB/ADJ/ADV/ENT, this was done by picking
tokens and phrases from the context passage. For
SHIFT-Q, we used other questions associated with
the same passage. We used spaCy4 NER and POS
tagger to extract relevant entities and POS tags,
and sample interregnum from a list of fillers. Ta-
ble 3 shows an example from each of the heuris-
tics. We then finally combine all the heuristics
(ALL in Table 3) by uniformly sampling a single
disfluent question from the set of possible trans-
formations of the question.

3.4 Evaluation Method

In all our experiments, we evaluate QA per-
formance using the standard SQUAD-v2 eval-
uation script which reports EM and F1 scores
over the HasAns (asnwerable) and NoAns (non-
answerable) slices along with the overall scores.
For brevity, we report only the F1 numbers as we

3The silver nature of the data is due to the fact that we can
not enforce naturalness or semantic equivalence of §2.

4https://spacy.io/

observed similar trends in EM and F1 across our
experiments.

4 Experiments

We conduct experiments with DISFL-QA to an-
swer the following questions: (a) Are state-of-the-
art LM based QA models robust to introduction of
disfluencies in the questions under a zero-shot set-
ting ? (b) Can we use heuristically generated syn-
thetic disfluencies to aid the training of QA models
to handle disfluencies ? (c) Given a small amount
of labeled data, can we recover performance by
fine-tuning the QA models or training a disfluency
correction model to pre-process the disfluent ques-
tions into fluent ones before inputting to the QA
models ? (d) In the above setting, can we train a
generative model to generate more disfluent train-
ing data ?

4.1 Zero-Shot Performance

Table 4 shows the performance of different vari-
ants measuring their zero-shot capabilities.

Performance of BERT-QA and T5-QA. We
see from Table 4 that when tested directly on on
heuristics and DISFL-QA test sets, both the BERT-
QA and T5-QA models exhibit significant per-
formance drop, as compared to the performance
on the fluent benchmark of SQUAD. The perfor-
mance drop for the complete models is greater

https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
https://spacy.io/
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Original HasAns NoAns

Prediction NoAns WrongAns HasAns

SQUAD 71 150 216
DISFL-QA 1091 168 174

Table 5: Breakdown of prediction errors for the T5-
QA-ALL model on the fluent and disfluent questions.
WrongAns represents that the model predicted an in-
correct span from context.

when compared to their answerable-only counter-
parts. The best performing T5-ALL model shows
a drop of 27.95 F1 points for the complete setup
and 13.32 F1 point for the answerable only T5-
ANS model. This shows BERT and T5 are not
robust when questions contain disfluencies.

Disfluency Correction + T5-QA. We use the
BERT based state-of-the-art disfluency correc-
tion (Jamshid Lou and Johnson, 2020) as a pre-
processing step before feeding the input to our
T5-QA model. The models trained on SWITCH-
BOARD are not able to fill a significant perfor-
mance gap, with the complete and answerable
models recovering 4.07 and 2.25 F1 points, re-
spectively. We will revisit this setting in the few-
shot experiments.

DISFL-QA test-set vs. Heuristics test-set.
Next, we compare the performance of heuristi-
cally generated disfluent questions against the
human annotated questions. In general, human
annotated disfluent questions exhibit larger per-
formance drop compared to heuristics, across
different models.

Taking a closer look at the T5-ALL model
shows that DISFL-QA shows a bigger drop in
HasAns cases and smaller increase in NoAns
cases, as compared to the heuristics test set. For
the T5-ANS model, DISFL-QA shows a larger
drop in performance which is attributed to the
model picking wrong answer span. Based on
this, we hypothesize that between the two datasets,
heuristics are able to confuse the models in over-
predicting <no answer>, but DISFL-QA is su-
perior when it comes to confuse the models to
picking a different answer span altogether (as seen
in Table 4 for models in ANS setting). This
demonstrates that collecting a dataset like DISFL-
QA via human annotation holds value for contex-
tual disfluencies.

HasAns
F1

NoAns
F1

Overall
F1

Fluent (⋆) 91.38 87.67 89.59
Zero-Shot 35.21 90.06 61.64

+ SW-ADJ 68.49 86.24 77.03
+ SW-ADV 67.37 85.27 75.98
+ SW-ENT 74.76 85.95 80.14
+ SW-Q 70.03 78.94 74.31
+ SW-VERB 68.01 87.16 77.22

+ ALL 78.86 85.96 82.27

Table 6: Performance on DISFL-QA with individual
(SW-XX) and combined (ALL) heuristics based data
augmentation and fine-tuning.

Performance Gap Breakdown. For models
trained on ALL setting, we find that the perfor-
mance drop is largely due to the drop in F1 (over
50 points) on HasAns questions as opposed to
NoAns questions, where it is almost negligible
or even positive in some cases. Upon closer
analysis (Table 5) we find that a major fraction
of prediction errors for HasAns is attributed to
HasAns→ NoAns errors, instead of HasAns→

WrongAns.5

We believe that the disfluencies are causing
the answerable questions to resemble the non-
answerable ones as seen by both BERT and T5
models under ALL setting. This results in an
overly conservative model in terms of answer-
ability and instead resorts to over-predicting
<no answer>, causing gain in non-answerable
recall at the cost of precision. In contrast, for a
comparable ANS model the drop in F1 is smaller,
primarily due to relatively easier decision making,
i.e. not required to decide when to answer vs. not.

Fine-tuning on Heuristic Data. In this experi-
ment, we fine-tune on heuristically generated data
from §3.3 and directly test on DISFL-QA. Ta-
ble 6 compares the performance of the heuristics
fine-tuned model on the DISFL-QA test-set. The
overall heuristics trained model (ALL) is able to
cover a significant performance drop from 61.64
to 82.27, an increase of 20.63 F1 points. How-
ever, this still is 7.32 F1 points short of the fluent
performance.

Amongst the individual heuristics, we observe
the following order of effectiveness w.r.t. perfor-
mance on the HasAns cases: ENT > SQ >

ADJ > VERB > ADV. One possible expla-

5We use the standard SQUAD evaluation script and mark
a prediction as WrongAns iff F1(pred,gold)< 0.8.
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Figure 2: Few shot performance for different frac-
tion of training data. We can see that performance on
HasAns cases increases monotonically with increase
in gold data. However, for the NoAns cases, the per-
formance first takes a drop (compared to zero-shot) and
then increases.

nation for SWITCH-ENT and SWITCH-Q being
more effective is the fact that our original anno-
tated dataset has a relatively high percentage of
entity and interrogative correction.

4.2 Few Shot Performance

Next, we evaluate the performance of the models
when we use a part of human annotated gold dis-
fluent data for training: (i) direct end-to-end super-
vision, (ii) generation based data augmentation,
and (iii) training disfluency correction models.

Direct Supervision (k-shot). In this setting, we
pick a SQUAD-v2 T5 model and then perform a
second round of fine-tuning with varying percent-
ages of DISFL-QA gold training data. We exper-
iment with 1, 5, 10, 25, 50, and 100 percent of the
total gold data.

Figure 2 shows the performance for the
HasAns and NoAns cases as we increase the
amount of training data. The HasAns perfor-
mance increases gradually from 35.31 F1 points,
in the zero-shot setting, to 86.40 F1 points with
complete training data. Interestingly, for the
NoAns cases, the performance first drops from
90.06 F1 points, in the zero-shot setting, to 82.02
F1 with 5% data and then monotonically increas-
ing to 86.53 F1 with complete data. This can
be attributed to the fact that the zero-shot models
were under-predictive (high recall, low precision
for <no asnwer>) due to lack of robustness to
disfluent inputs.

HasAns
F1

NoAns
F1

Overall
F1

Fluent (⋆) 91.38 87.67 89.59
Zero-Shot 35.21 90.06 61.64
Heuristics 78.86 85.96 82.27

Direct Supervision

25% Data 83.58 83.84 83.71
+ Q → DQ 86.44 84.53 85.52
+ CQ → DQ 87.47 83.11 85.37

50% Data 85.09 85.33 85.20

100% Data 86.40 86.53 86.46
+ Q → DQ 86.95 85.73 86.33
+ CQ → DQ 87.29 85.22 86.29

Pipelined

DQ → Q 87.65 86.70 87.19
CDQ → Q 87.99 86.02 87.04

Table 7: Performance on the test set of DISFL-QA
when using gold human annotated data in training dif-
ferent components.

Furthermore, Table 7 compares the perfor-
mance of using the gold training data of DISFL-
QA against the heuristics data. It shows that the
models trained with disfluent data from DISFL-
QA are able to cover a major gap in answerable
slice, which wasn’t possible with the heuristically
generated data. Direct supervision bring an addi-
tional performance improvement of 4.19 F1 points
over the heuristics.

Generation Based Data Augmentation. We
use the T5 model for synthetically generating dis-
fluent question from fluent question in the text2text
framework. We use the training set of DISFL-
QA to train the following generative models:
(i) context-free generation (Q → DQ), and (ii)
context-dependent generation (CQ → DQ) which
use passage as well for generation.

Table 8 shows example generation from the
two models. We observe that CQ → DQ is able
to learn meaningful contextual disfluency genera-
tion, whereas Q → DQ can lead to non-meaningful
or inconsistent disfluencies due to lack to context.

We then pick 5k random (question, answer)
pairs from SQUAD training data and apply our
generative model to produce disfluent training data
for the QA models. Table 7 shows the perfor-
mance of using data augmentation. We perform
data augmentation under two different train data
settings: (1) 25% data, and (2) 100% data. Inter-
estingly, for the models trained on 25% train data
+ generated data, we observe a gain of 1.81 F1
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Passage: . . . Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the
landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome . . .

Fluent Question : What does a genome map list the order of ?
T5 Q → DQ : What is no what does a genome map list the order of ?
T5 CQ → DQ : What does a genome sequence list the order of no sorry what does a genome map list the order of?

Passage: . . . The presence of fat in the small intestine produces hormones that stimulate the release of pancreatic lipase
from the pancreas and bile from the liver which helps in . . .

Fluent Question : What is one molecule of fat ?
T5 Q → DQ : What is one molecule of protein no fat ?
T5 CQ → DQ : What is one molecule of bile no wait fat ?

Passage: . . . In 1964, Nikita Khrushchev was removed from his position of power and replaced with Leonid Brezhnev.
Under his rule, the Russian SFSR . . .

Fluent Question : When did Leonid Brezhnev die ?
T5 Q → DQ : When was the age of Leonid Brezhnev ?
T5 CQ → DQ : When did Nikita Khrushchev er I mean Leonid Brezhnev die ?

Table 8: Example disfluent question (DQ) as generated by the Q → DQ and CQ → DQ T5 generative models
for data augmentation. We observe that CQ → DQ generates meaningful disfluencies compared to context-free
generation, the latter leading to irrelevant or inconsistent questions in some cases.

points (83.71 → 85.52) in the overall performance
which is close to the absolute performance of us-
ing 50% gold data. However, for the setup with
100% gold data + generated data, we did not ob-
serve a similar improvement in the overall perfor-
mance.

Pipelined: Disfluency Correction + QA. Un-
fortunately, existing disfluency correction mod-
els and datasets assume that fluent text is a sub-
sequence of the disfluent one, and hence these ap-
proaches cannot solve disfluencies in DISFL-QA
involving coreference. For fair comparison, we
train a T5 generation model as a DISFL-QA spe-
cific disfluency correction model using the train-
ing set of DISFL-QA, with a simple DQ → Q and
CDQ → Q T5 task formulation.

With this pipelined approach, we get further im-
provements with an overall F1 of 87.19 (Table 7),
however, still lacking by ≈2.4 F1 points compared
to the fluent dataset. This shows that such com-
plex cases require better modeling, preferably in
an end-to-end setup.

5 Related Work

5.1 Disfluency Correction
The most popular approach in literature poses
disfluency correction as a sequence tagging task,
in which the fluent version of the utterance is
obtained by identifying and removing the dis-
fluent segments (Zayats et al., 2014; Ferguson
et al., 2015; Zayats et al., 2016; Lou and John-

son, 2017; Jamshid Lou and Johnson, 2020; Wang
et al., 2020). . Traditional disfluency correc-
tion models use syntactic features (Honnibal and
Johnson, 2014), language models (Johnson et al.,
2004; Zwarts and Johnson, 2011), discourse mark-
ers (Crible, 2017), or prosody-based features for
learning (Zayats and Ostendorf, 2019; Wang et al.,
2017) while recent disfluency correction mod-
els largely utilize pre-trained neural representa-
tions (Lou et al., 2018). Most of these mod-
els depend on human-annotated data. As a re-
sult, recently, data augmentation techniques have
been proposed (Yang et al., 2020; McDougall
and Duckworth, 2017) to alleviate the strong de-
pendence on labeled data. However, the resulting
augmented data either via heuristics (Wang et al.,
2020) or generation models (Yang et al., 2020) is
often limited in terms of disfluencies types and
may not well capture natural disfluencies in daily
conversations.

5.2 Question Answering Under Noise

In the QA literature, our work is related to two
threads that aim to improve robustness of QA
models: (i) QA under adversarial noise, and (ii)
noise arising from speech phenomena.

Prior work on adversarial QA have predomi-
nantly generated adversaries automatically (Zhao
et al., 2018), which are verified by humans to en-
sure semantic equivalence (i.e. answer remains
same after perturbation). For instance, Ribeiro
et al. (2018) generated adversaries using para-
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phrasing, while Mudrakarta et al. (2018) per-
turbed questions based on attribution. Closest
work to ours is Jia and Liang (2017), who mod-
ified SQUAD to contain automatically generated
adversarial sentence insertions.

Our work is more closely related to prior work
on making NLP models robust to noise arising
from speech phenomena. Earlier work (Surdeanu
et al., 2006; Leuski et al., 2006) have built QA
models which are robust to disfluency-like phe-
nomenon, but they were limited in the corpus com-
plexity, domain, and scale. Recently there has
been renewed interest in constructing audio en-
riched versions of existing NLP datasets, for ex-
ample, the SPOKEN-SQUAD (Li et al., 2018) and
SPOKEN-COQA (You et al., 2020) with the aim
to show the effect of speech recognition errors on
QA task. However, since collecting audio is chal-
lenging, another line of work involves testing the
robustness of NLP models to ASR errors in tran-
scribed texts containing synthetic noise using TTS
→ ASR technique (Peskov et al., 2019; Peng et al.,
2020; Liu et al., 2020; Ravichander et al., 2021).
Our work suggests a complementary approach to
data collection to surface a specific speech phe-
nomenon that affects NLP.

6 Conclusion

This work presented DISFL-QA, a new challenge
set containing contextual semantic disfluencies in
a QA setting. DISFL-QA contains diverse set
of disfluencies rooted in context, particularly a
large fraction of corrections and restarts, unlike
prior datasets. DISFL-QA allows one to directly
quantify the effect of presence of disfluencies in
a downstream task, namely QA. We analyze the
performance of models under varying when sub-
jected to disfluencies under varying degree of gold
supervision: zero-shot, heuristics, and k-shot.

Large-scale LMs are not robust to disfluencies.
Our experiments showed that the state-of-the-art
pre-trained models (BERT and T5) are not ro-
bust when directly tested on disfluent input from
DISFL-QA. Although a naturally occurring phe-
nomenon, the noise introduced by the disfluent
transformation led to a non-answerable behavior
at large.

Contextual heuristics partially recover perfor-
mance. We derived heuristics, in attempt to re-
semble the contextual nature of DISFL-QA, by

introducing semantic distractors based on NER,
POS, and other questions. In our experiments, we
found that heuristics are effective in: (1) confus-
ing the models in zero-shot setup, and (2) partially
recovering the performance drop on DISFL-QA
with fine-tuning. This indicates that the heuristics
might be capturing some key aspects of DISFL-
QA.

Efficacy of gold training data. We use the gold
data for supervising various models: (i) end-to-
end QA model, (ii) disfluency correction, and
(iii) disfluency generation (for data augmentation).
For all the experiments, gold supervision outper-
forms heurisitics’ supervision significantly. Fur-
thermore, we observed that in a low resource setup
generation based data augmentation can match the
performance of a high resource modeling setup.

7 Discussion

While DISFL-QA aims to fill a major gap between
speech and NLP research community, understand-
ing disfluencies holistically requires the following:

General disfluencies focused NLP research.
We believe understanding of disfluencies is a key
ingredient for enabling natural human-machine
communication in the near future, and call upon
the NLP community to devise generalized few-
shot or zero-shot approaches to effectively handle
disfluencies present in input to NLP models, with-
out requiring task specific disfluency datasets.

Constructing datasets for spoken problems.
We would also like to bring attention to the fact
that being a speech phenomenon, a spoken setup
would have been an ideal choice for disfluencies
dataset. This would have accounted for higher
degree of confusion, hesitations, corrections, etc.
while recalling parts of context on the fly, which
otherwise one may find hard to create synthetically
when given enough time to think.

However, such a spoken setup is extremely te-
dious for data collection mainly due to: (i) pri-
vacy concerns with acquiring speech data from
real world speech transcriptions, (ii) creating sce-
narios for simulated environment is a challenging
task, and (iii) relatively low yield for cases con-
taining disfluencies. In such cases, we believe that
a targeted and purely textual mode of data collec-
tion can be more effective both in terms of cost
and specificity.
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