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Abstract

Graph Attention Networks (GATs) have

proven a promising model that takes advantage

of localized attention mechanism to perform

knowledge representation learning (KRL) on

graph-structure data, e.g., Knowledge Graphs

(KGs). While such approaches model entities’

local pairwise importance, they lack the capa-

bility to model global importance relative to

other entities of KGs. This causes such mod-

els to miss critical information in tasks where

global information is also a significant compo-

nent for the task, such as in knowledge repre-

sentation learning. To address the issue, we

allow the proper incorporation of global infor-

mation into the GAT family of models through

the use of scaled entity importance, which is

calculated by an attention-based global ran-

dom walk algorithm. In the context of KRL, in-

corporating global information boosts perfor-

mance significantly. Experimental results on

KG entity prediction against the state-of-the-

arts sufficiently demonstrate the effectiveness

of our proposed model.

1 Introduction

Graph Attention Networks (GATs) have been suc-

cessfully applied to various tasks over graphs

(Velickovic et al., 2018; Lee et al., 2018b), such as

graph classification (Wu et al., 2019b; Lee et al.,

2018a), link prediction (Abu-El-Haija et al., 2018),

and node classification (Lee et al., 2019; Zhang

et al., 2020a). GATs learn from the underlying

graph structure by making use of localized atten-

tion mechanism (Wu et al., 2019a; Xu et al., 2019;

Vashishth et al., 2020b), where the hidden repre-

sentation of each node is computed by recursively

aggregating and attending over its corresponding

local neighbors’ features, and the weighting coeffi-

cients are calculated inductively with self-attention

∗ Equal Contribution. Corresponding author: Y. Zhao
(zhaoyu@swufe.edu.cn).

strategy (Thekumparampil et al., 2018; Qian et al.,

2018; Zhang et al., 2018). The original GATs per-

form only on single-relational homogeneous graphs

(Velickovic et al., 2018; Wang et al., 2019b). Re-

cent advancements were proposed to operate on

more general and prevalent multi-relational graphs

(Wang et al., 2019b; Hong et al., 2020; Nathani

et al., 2019; Zhang et al., 2020c), such as the repre-

sentative Knowledge Graphs (KGs) which contain

multiple types of entities (nodes) and relationships

(edges) (Zhou et al., 2018; Han et al., 2018; Wang

et al., 2019a; Zhao et al., 2020). However, these ap-

proaches can only exploit localized features within

the neighborhood of individual entities (Nathani

et al., 2019; Busbridge et al., 2019; Zhang et al.,

2020c). For some tasks, such simplified localized

feature aggregation may be sufficient, but insuffi-

cient for knowledge representation learning (KRL)

tasks that also need exploring global information

(Xie et al., 2020).

In this paper, we concentrate on how to incor-

porate global information in local attention for

knowledge representation learning. Specifically,

we allow the proper incorporation of global infor-

mation into the GAT family of models through

the use of scaled entity importance, which is es-

timated by a global random walk algorithm upon

the whole graph structural information. In KGs,

entity importance1 indicates the global significance

or authority of an entity. Intuitively, it can be quite

beneficial if an entity attends more to its “author-

itative” neighbors that have high scores of global

entity importance. For instance, a movie “Titanic”
links to different actors, among which a superstar

1The notions of its counterparts, e.g., global node impor-
tance or object authority, have been widely studied in graphs
(Li et al., 2012; Liu et al., 2017; Park et al., 2019), which
enable a number of applications such as Web search (Brin and
Page, 1998; Kleinberg, 1999), social network analysis (Weng
et al., 2010), RecSys (Jing et al., 2014), query disambiguation
(Makris et al., 2012; Saxena et al., 2020).
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Figure 1: An illustration of Graph Neural Network architectures that model on a graph which is centered on node e1
with its one-hop neighbors. Left: Graph Convolution Network (GCN); Center: Graph Attention Network (GAT);

Right: our proposed model (EIGAT) that incorporate global information in local attention through the use
of relative entity importance (REI). REIe1(ei) is calculated by an attention-based global random walk algorithm

upon the whole graph. GAT parameterizes the edge weights based on local attention score (α1i, also represented

by the distinct edge widths). Our EIGAT adds the relative importance score (represented by different scaling of

nodes), which is derived from global structural information. Note that although relationship should be drawn in

the knowledge graph, for clarity, we intentionally ignore it here, which does not hurt the presentation of the basic

idea of our model in this paper.

(e.g. “Leonardo Dicaprio”) may be more indica-

tive than other actors.

In this paper, we propose a novel Entity

Importance-aware Graph ATtention Networks,

EIGAT, which incorporates global entity impor-

tance in local attention mechanism for learning

effective knowledge representations. As shown

in Figure 1, we give a brief illustration of our pro-

posed EIGAT, which is compared to early proposed

GCN (Kipf and Welling, 2017) and GAT (Velick-

ovic et al., 2018). In EIGAT, the importance scores

of all entities are expected to be estimated upon

global information and to be incorporated in lo-

cal entity aggregation (Equation 5) for building

better entity embeddings. In particular, we pro-

vide an attention-based random walk approach to

estimate entity importance upon global structural

information for serving EIGAT. We conduct exten-

sive experiments on several different types of KGs

by entity prediction against state-of-the-art meth-

ods, which sufficiently demonstrate our proposed

EIGAT can successfully incorporating global in-

formation in local attention to improve knowledge

representation learning.

The contributions of this paper are threefold:

• We propose to incorporate global information

in local attention for knowledge representa-

tion learning.

• We propose EIGAT, a novel entity importance-

aware graph attention networks which incor-

porate global entity importance into local en-

tity aggregation.

• The extensive experimental results demon-

strate the efficacy of our proposed model in

link prediction.

2 Related Work

To make this paper self-contained, we introduce

some related topics here on Knowledge Representa-

tion Learning and Graph Neural Networks (GNNs).

2.1 Knowledge Representation Learning
(KRL)

In recent years, knowledge representation learning

on KGs has been a hot research topic (Xiao et al.,

2017; Shi and Weninger, 2017; Ebisu and Ichise,

2019; Balazevic et al., 2019; Zhang et al., 2020b).

These methods roughly fall into four categories:

(i) Translational-based models, which view rela-

tions as translations from a head entity to a tail

entity, such as Trans(E, H, R, D and G) (Bordes

et al., 2013; Wang et al., 2014; Lin et al., 2015; Ji

et al., 2015; Xiao et al., 2016), ComplEx (Trouillon

et al., 2016), JoBi ComplEx (Balkir et al., 2019).

(ii) Tensor factorization based models, which as-

sume the score of a triple can be factorized into

several tensors, such as RESCAL (Nickel et al.,

2011), NTN (Socher et al., 2013), DistMult (Yang

et al., 2015), HOLE (Nickel et al., 2016). (iii) CNN-

based models, which use convolution over embed-
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Table 1: Different variants of Graph Neural Networks: GNN (Scarselli et al., 2008), GCN (Kipf and Welling,

2017), GAT (Velickovic et al., 2018), and our proposed model EIGAT that incorporates global information in local

attention.

GNN-based Models Node Aggregation Operation Key Concepts

GNN (Scarselli et al., 2008) xj = f

(
lj , lco[j], xne[j], lne[j]

)
f(·) Transduction function

GCN (Kipf and Welling, 2017) E� = σ

(
D̃− 1

2 ÃD̃− 1
2 E�−1W �−1

)
D̃− 1

2 ÃD̃− 1
2 Convolutional operation

GAT (Velickovic et al., 2018) �ej
� = σ

( ∑
ei∈In(ej)

α�
ij · W �−1 �ei

�−1

)
αij Local attention

EIGAT (our proposed) �ej
� = σ

( ∑
ei∈In(ej)

REIej (ei)
� ∑
k∈Rij

α�
ikj · �vikj

�

)
REIej (ei), αikj

Global information
+ Local attention

dings to predict links, such as ConvE (Dettmers

et al., 2018), ConvKB (Nguyen et al., 2018), Inter-

actE (Vashishth et al., 2020a), ReInceptionE (Xie

et al., 2020), and ParamE (Che et al., 2020). (iv)

Graph neural network-based models, such as R-

GCN (Schlichtkrull et al., 2018), A2N (Bansal

et al., 2019), Nathani’s (Nathani et al., 2019),

RGHAT (Zhang et al., 2020c), ATTH (Chami et al.,

2020), which yielded state-of-the-art performance

for KRL. Along this line, we focuses on a GNN-

based approach to deal with knowledge representa-

tion learning task.

2.2 Graph Attention Networks (GATs)
Graph Neural Networks (GNNs) develop a deep

neural network to deal with arbitrary graphs for

representation learning (Scarselli et al., 2008; Zhou

et al., 2019; Hou et al., 2020). Graph Convolutional

Networks (GCNs) are one of their most promi-

nent progress (Schlichtkrull et al., 2018; Wu et al.,

2019a; Xu et al., 2019; Vashishth et al., 2020b),

which generalize local convolutional operation on

the graph-structured data, i.e. gather information

from one-hop neighbors and all neighbors con-

tribute equally in the message passing. Inspired by

the successful development of the attention mech-

anism in NLP and CV, Velickovic et al. (2018)

proposed Graph Attention Networks (GATs) by

incorporating local attention mechanism (Vaswani

et al., 2017; Qian et al., 2018; Lu and Li, 2020) into

GCNs, which calculate the hidden states of each

node by attending over its neighbors (Thekumpara-

mpil et al., 2018; Lee et al., 2018b; Yang et al.,

2019).

Recently, several advanced extensions of GATs

were proposed for operating on knowledge graphs.

Han et al. (2018) proposed to jointly apply atten-

tion to KGs and external text data. Busbridge

et al. (2019) proposed RGAT by extending non-

relational GATs to incorporate relational informa-

tion, but with poor performance. Nathani et al.

(2019) proposed a triple-level attention model that

captures the integrated features of both entity and

relation in a given entity’s neighborhood, and

Zhang et al. (2020c) proposed a two-level hierarchi-

cal attention mechanism. These studies are related

to our work in the sense that we all use GNNs to

capture more structural information in KGs. How-

ever, all of them ignore global information in local

attention computation.

Most recently, (Xu et al., 2020) proposed a

Transformer-based model to enhance the copy

mechanism for abstractive summarization by con-

sidering the global importance of each source word

based on the degree centrality in the Transformer,

which inspires our idea of incorporating global

information in local attention for KRL. Table 1
summarizes the key concepts and other different

settings of GNNs.

3 Methodology

In this section, we introduce the details of the pro-

posed EIGAT model that incorporates global in-

formation in local attention for knowledge repre-

sentation learning on KGs. We start by describing

a single entity importance-aware graph attention

layer, which is the building block of our model’s

overall architecture. Before that, we briefly intro-

duce the notations of this paper.

Notations. In a graph attention networks with

L layers, the input to �-th layer (� = 1, . . . , L)

are two embedding sets: (1) the output entity
embeddings from (�-1)-th layer which is repre-

sented by a matrix E�−1 ∈ R
η�−1×Ne , E�−1 =

{ �e1�−1, �e2
�−1, . . . , �eNe

�−1}, where Ne is the num-
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ber of entities, and η�−1 is the dimension of output

entity embedding in (�-1)-th layer. (2) the output
relationship embeddings from (�-1)-th layer, de-

noted by a matrix R�−1 ∈ R
ζ�−1×Nr , R�−1 =

{�r1�−1, �r2
�−1, . . . , �rNr

�−1}, where Nr and ζ�−1

represent the number of relationships and the out-

put relationship’s feature dimension in (�-1)-th

layer, respectively. The �-th layer then produces

the corresponding new output embedding matrices

(of potentially different cardinality), E� ∈ R
η�×Ne

and R� ∈ R
ζ�×Nr . Specifically, we describe the

�-th graph attention layer.

3.1 Local Attention Evaluation
A triple relation tkij = (ei

rk−→ ej) indicates a rela-

tionship rk between head entity ei and tail entity ej .

Following (Nathani et al., 2019), the representation

�vikj
� of the triple tkij is built as follows:

�vikj
� = W�

1 ·
[
�ei

�−1‖ �rk�−1‖ �ej
�−1] , (1)

where W�
1 denotes a linear transformation matrix

in �-th layer, �ei
�−1, �rk

�−1 and �ej
�−1 denote the

output embeddings of ei, rk and ej in (�-1)-th layer,

respectively. ‖ represents concatenation. We then

calculate the absolute relation attention value b�ikj
of the triple tkij .

b�ikj = LeakyReLU
(
W�

2 · �vikj
�
)
, (2)

where W�
2 and LeakyReLU are a linear weight vec-

tor in �-th layer and a non-linearity active function

respectively that act upon the embedding �vikj
� in

turn. We then utilize softmax to evaluate the rela-

tive relation attention value α�
ikj of the triple tkij in

�-th layer.

α�
ikj = softmaxik(b

�
ikj) =

exp{b�ikj}∑
en∈In(ej)

∑
r∈Rnj

exp{b�nrj}
.

(3)

In(ej) denotes the neighbors pointing to targeted

tail entity ej , Rnj denotes the set of relationships

between en and ej .

3.2 Global Entity Importance Estimation
To obtain global entity importance EI(ei) of an

entity ei, we formally introduce a relation attention-

based global random walk method, as follows:

EI(ei)
t = (1− d) + d×

∑
em∈In(ei)

∑
r∈Rmi

bmri∑
en∈Out(em)

∑
r̄∈Rmn

bmr̄n
EI(em)t−1 ,

(4)

where d is a hyperparameter denoting the probabil-

ity that an imaginary surfer randomly moves to a

neighboring entity. (1− d) denotes the probability

of teleporting to any other entities randomly, which

is able to alleviate the information island prob-
lem caused by the isolated entities that lack of any

in-degree or out-degree neighbors (e.g. #median

in-degree=0 in NELL-995 in Table 2). Out(em)
denotes the neighborhoods that an entity em points

to. EI(em)t−1 denotes the EI score of the entity

em in (t-1)-th iteration. The random walk distance2

t depends on both the number of attention layers

L and training epochs C, t ∈ (1, L × C]. The

relation weights (e.g. bmri) are calculated by Equa-

tion (2). Unlike conventional fixed weights-based

random walk methods (Mihalcea and Tarau, 2004;

Florescu and Caragea, 2017), a novelty is that the

dynamic relation weights (e.g. bmri) are iteratively

and automatically optimized during training by the

graph attention mechanism. In line with the theo-

retical desiderata for modeling node importance in

MRGs, this method develops the following essen-

tial characteristics: (i) Neighborhood-awareness,

i.e. neighboring EI scores can be taken into account

when a given entity’s importance score is modeled.

(ii) Relationship-awareness, i.e. different relation-

ships could play a different role in propagating EI

score. (iii) Centrality-awareness, i.e. more central

nodes inherently and reasonably would be more im-

portant than less central nodes. (iv) Universal and
flexible, i.e. it utilizes only graph global structural

information.

3.3 Incorporate Global Information in Local
Attention

Though attention mechanism can assign different

importance to nodes via learned weights, it is still a

local computation. The attention value, e.g., αikj in

Equation (3), is the function of pairwise feature in-

teraction within local neighborhood and do not take

account of entity importance from global graph

structure. To this end, we incorporate global infor-

mation in local attention computation, as shown in

Figure 1 (EIGAT).

Specifically, to generate the output embedding

�ej
� of tail entity ej in �-th layer, we incorporate

global relative head entity importance REIej (ei)
�

in local attention to conduct entity aggregation with

its associated triple representations �vikj
� weighted

2To denote EI score of ei in �-th layer explicitly, we omit
the training epoch symbol and denote it as EI(ei)

� in the
following.
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by their relative attention values α�
ikj , as follows:

�ej
� = σ

⎛
⎝ ∑

ei∈In(ej)

REIej (ei)
�
∑

k∈Rij

α�
ikj · �vikj

�

⎞
⎠ , (5)

and

REIej (ei)
� = softmaxIn(ej)(EI(ei)

�)

=
exp {EI(ei)

�}∑
e′i∈In(ej)

exp {EI(e′i)�}
, ∀ei ∈ In(ej) .

(6)

In Eq. (5), we bring in global relative entity im-

portance REIej (ei)
� of different head entities in

In(ej) for learning more about those significant

neighboring entities, and thus could get better

knowledge representations for the targeted tail en-

tity ej .
To stabilize the learning process of self-attention,

as suggested by (Velickovic et al., 2018), we em-

ploy multi-head attention. Specifically, M inde-

pendent attention mechanisms execute the trans-

formation of Eq. (5), and then their features are

concatenated as:

�ej
� =

M∥∥∥∥∥
m=1

σ

⎛
⎝ ∑

ei∈In(ej)

REIej (ei)
�,m

∑
k∈Rij

α�,m
ikj · �vikj

�,m

⎞
⎠

(7)

We conduct a linear transformation on input re-

lationship embedding �rk
�−1 ∈ R

ζ�−1
in �-th layer

as:
�rk

� = W�,R · �rk�−1 , (8)

where W�,R ∈ R
ζ�×ζ�−1

is a weight matrix, ζ�−1

and ζ� are dimensions of input and output relation-

ship embeddings, respectively. �rk
� ∈ R

ζ� repre-

sents the output relationship embedding in the �-th
layer.

4 Model Architecture

Our model follows an encoder-decoder framework:

(i) the encoder model includes L attention layers,

(ii) the decoder model provides a scoring function

(Eq. 11) to calculate the likelihood of given triples

being valid. Based on it, the KG incompleteness

issue is expected to be alleviated by link predic-

tion (Section 5), i.e., inferring possible missing

relations, e.g. (ei, rk, ?) or (?, rk, ej).

4.1 Encoder
Based on a single attention layer introduced above,

we build the overall architecture of our encoder

model with L layers. In practice, we set L=2 for

our encoder model. In the final L-th layer, instead

of concatenation (Equation 7), we employ aver-

aging and delay applying the final non-linearity

activation:

�ej
L =

σ

⎛
⎝ 1

M

M∑
m=1

∑
ei∈In(ej)

REIej (ei)
L,m

∑
k∈Rij

αm
ikj �vikj

L,m

⎞
⎠

(9)

To keep initial entity information in the final em-

bedding, we obtain the final entity embedding

�e� ∈ R
ηL by combining the transformed initial

embeddings �e0 ∈ R
η0 and the output entity em-

bedding �eL ∈ R
ηL of the L-th layer, as follows:

�e� = W� · �e0 + �eL, ∀e ∈ E . (10)

W� ∈ R
ηL×η0 is a projecting matrix. The initial

entity embeddings (i.e. �e0, ∀e ∈ E) and relation-

ship embeddings (i.e. �r0, ∀r ∈ R) are pre-trained

by Bordes et al. (2013).

4.2 Decoder

Among the existing KG completion (KGC) models,

we utilize the most recent model ConvKB (Nguyen

et al., 2018) as decoder model3. Given a triple tkij ,
the scoring function is formally defined as:

f(tkij) =
( |Ω|∥∥∥

m=1

g([�ei
�, �rk

L, �ej
�] ∗ ωm)

)
·W , (11)

where Ω denotes the set of filters, τ=|Ω| and ω ∈ Ω.

Ω and W are shared parameters and independent

of ei, rk and ej . g(·) is an activation function such

as ReLU. ∗ denotes a convolution operator. These

τ feature maps are concatenated into a single vector

∈ R
τφ which is then computed with a weight vector

W ∈ R
τφ via a dot product to give a likelihood

score for the triple tκij . φ denotes the dimension of

entity and relation embeddings. In practice, we set

φ=ηL=ζL for ConvKB.

4.3 Optimization

We utilize a two-step training procedure for the

encoder-decoder framework, which is a routine op-

timization way for it (Zhou et al., 2019). (i) We

first train the encoder model to learn the embed-

dings of entities and relationships, by minimizing

3We choose ConvKB here, and it is not difficult for other
KGC methods, such as CapsE (Nguyen et al., 2019), ConvE
(Dettmers et al., 2018), etc. Note that we also tried different
models as decoder, but found that ConvKB performs best.
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Table 2: Statistics of datasets.

#Edges

Datasets #Entities #Rel Train Validation Test Total Mean in-degree Median in-degree Density

Kinship 104 25 8544 1068 1074 10,686 82.15 82.5 0.998
FB15k-237 14,541 237 272,115 17,535 20,466 310,116 18.71 8 0.001
NELL-995 75,492 200 149,678 543 3992 154,213 1.98 0 2.71E-5

a hinge-loss function, as follows:

L1 =
∑

tkij∈G

∑

tkij
′∈G′

max
{
htkij

′ − htkij
+ γ, 0

}
. (12)

Here, htkij
= ‖�ei�+ �rk

L−�ej
�‖�1 indicates the trans-

lational scoring function of the triple tκij (Bordes

et al., 2013). γ > 0 is a margin hyper-parameter.

(ii) We then train and learn the parameters of the

decoder model ConvKB for link prediction , by

minimizing a soft-margin loss function, as follows:

L2 =
∑

tkij∈{G∪G′}
log

(
1+ exp

(
ltkij

· f(tkij)
))

+ λ ‖W‖22 ,

(13)

in which, ltkij
=

{
1, tkij ∈ G
−1, tkij ∈ G′ . G and G′ are the

sets of positive triples and negative triples, respec-

tively.

G′ = {tki′j |e′i ∈ E \ ei} ∪ {tkij′ |e′j ∈ E \ ej} . (14)

5 Experiments

We evaluate the effectiveness of our proposed

model EIGAT by link prediction (determined by

Equation 11), which aims to infer possible missing

relations, i.e., predict ej given (ei, rk, ?) or predict

ei given (?, rk, ej).

5.1 Datasets
We use three public benchmark datasets for link pre-

diction experiments, including: Kinship (Lin et al.,

2018), NELL-995 (Xiong et al., 2017), FB15K-237
(Toutanova et al., 2015), where we discard another

popular dataset WN18RR due to its too sparse to

learn global information. The basic statistics of all

datasets are included in Table 2. To explore the

performance of our proposed model on different

datasets with different global topology character-

istics, we compute their density value (Coleman

and Moré, 1983) and report them in Table 2. Since

the densities in NELL-995 is sparser than Kinship
and FB15K-237, and its median in-degree even is

0, it is relative hard for global entity importance

estimation in NELL-995.

Definition 1. (Graph Density). Graph density
aims to measure how sparse a graph is. Similar to
(Coleman and Moré, 1983), given a graph G, it’s
formally defined as follows:

D(G) = E

N(N − 1)
, (15)

where N denotes the number of nodes in G, and E
denotes the number of edges in G. The lower the
D(G), the sparser the graph is.

Table 3: Hyperparameters for the encoder model

EIGAT on all datasets.

Datasets Kinship NELL-995 FB15k-237

Learning rate 1e-2 1e-3 1e-3
Weight decay 1e-6 1e-6 1e-6
Epochs 4000 3000 3200
Dropouts 0.3 0.5 0.5
Leaky Relu 0.2 0.2 0.2
nheads 2 2 2
Final dimensions 200 200 200
Negative ratio 2 2 2
Margin 1 1 1
RW parameter d 0.85 0.85 0.85

Table 4: Hyperparameters for the decoder model

EIGAT on all datasets.

Datasets Kinship NELL-995 FB15k-237

Learning rate 1e-2 1e-3 1e-3
Weight decay 1e-5 5e-6 5e-7
Epochs 400 200 200
Dropouts 0.0 0.3 0.2
Filters 50 400 50

5.2 Baselines
To demonstrate the effectiveness of our proposed

model EIGAT for link prediction, we compare it

with the following state-of-the-art (SOTA) base-

lines:

• TransE (Bordes et al., 2013): a most widely

used and early KGC models.

• DistMult (Yang et al., 2015): a popular tensor

factorization-based KGC model which uses a

bi-linear scoring function to calculate knowl-

edge triples’ scores.
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Table 5: Link prediction results on Kinship and NELL-995. The results of baselines are directly taken from the

original papers. The best scores are in bold.

Kinship NELL-995

Hits@N (%) Hits@N (%)

MR MRR @1 @3 @10 MR MRR @1 @3 @10

TransE (Bordes et al., 2013) 6.8 0.309 0.9 64.3 84.1 2100 0.401 34.4 47.2 50.1
DistMult (Yang et al., 2015) 5.26 0.516 36.7 58.1 86.7 4213 0.485 40.1 52.4 61
ComplEx (Trouillon et al., 2016) 2.48 0.823 73.3 89.9 97.11 4600 0.482 39.9 52.8 60.6
ConvE (Dettmers et al., 2018) 2.03 0.833 73.8 91.7 98.14 3560 0.491 40.3 53.1 61.3
ConvKB (Nguyen et al., 2018) 3.3 0.614 43.62 75.5 95.3 600 0.43 37.0 47 54.5
R-GCN (Schlichtkrull et al., 2018) 25.92 0.109 3 8.8 23.9 7600 0.12 8.2 12.6 18.8
Nathani’s (Nathani et al., 2019) 1.94 0.904 85.9 94.1 98 965 0.530 44.7 56.4 69.5

EIGAT (Ours) 1.66 0.963 94.8 96.6 98.4 1210 0.545 46.4 58.4 71.5

• ComplEx (Trouillon et al., 2016): an ad-

vanced extension of DistMult which encodes

entities and relationships into complex vector

space instead of real-valued vector space.

• ConvE (Dettmers et al., 2018): a popular con-

volutional network-based KGC model.

• ConvKB (Nguyen et al., 2018): another SOTA

convolutional network-based KGC model.

• R-GCN (Schlichtkrull et al., 2018): an ad-

vanced extension of GCN that can effectively

model multi-relational data.

• Nathani’s (Nathani et al., 2019): a recent KGC

model that models the local neighborhood via

graph relational attention network.

• A2N (Bansal et al., 2019): a recent model

that learns query-dependent representations

of entities based on a GNN structure.

• HAKE (Zhang et al., 2020b): a SOTA KGC

model that models semantic hierarchies

• InteractE (Vashishth et al., 2020a):a recent ex-

tension of ConvE that increase the interaction

between relation and entity embeddings.

• ReInceptionE (Xie et al., 2020): a recent ex-

tension of ConvE that uses local-global struc-

tural information.

• ParamE (Che et al., 2020): another extension

of ConvE that use relation embeddings.

• ATTH (Chami et al., 2020): a SOTA model

that use hyperbolic space and attention-based

geometric transformation.

• RGHAT (Zhang et al., 2020c): a SOTA KGC

model that models the local neighborhood via

hierarchical attention mechanism.

5.3 Evaluation Protocol
We utilize ranking criteria for evaluation. For each

testing triple, we remove the head entity or tail en-

tity and replace it by each of the entities in E in turn.

The model scores of the corrupted triples would

be computed by the decoder model (Eq. 11) and

then sorted by descending order. We can obtain the

exact rank of the correct triple in the candidates.

Similar to most baselines, we report the experi-

mental results in “Filter” setting, i.e. removing

corrupted triples that are already present in datasets

during ranking. The evaluation metrics include:

the mean reciprocal rank (MRR), mean rank (MR),

and the proportion of correct entities ranked in the

top N (HITS@N, N=1, 3, 10).

5.4 Training Protocol
Table 3 and Table 4 report the detailed hyperpa-

rameter settings of encoder and decoder models for

EIGAT, respectively. In the training, we set M=2

heads attention mechanism. The final dimensions

of entity and relation embeddings are set to 200.

The slop parameter α of LeakyReLU in Eq. (2)

is set as 0.2 on all datasets. We use auxiliary rela-

tions from 2-hop neighborhood to aggregate more

information about the neighborhoods. EI scores

are initialized randomly in (0,1). We utilize a typi-

cal value for d = 0.85 (Mihalcea and Tarau, 2004;

Florescu and Caragea, 2017).

5.5 Results and Analysis
Table 5 and Table 6 demonstrate the results of link

prediction (significance level of 0.05). We can

observe that: (i) The results clearly indicate that
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Table 6: Link prediction results on FB15K-237. The

results of baselines are directly taken from the original

papers. The best scores are in bold.

FB15K-237

Hits@N (%)

MR MRR @1 @3 @10

TransE (Bordes et al., 2013) 323 0.279 19.8 37.6 44.1
DistMult (Yang et al., 2015) 512 0.281 19.9 30.1 44.6
ComplEx (Trouillon et al., 2016) 546 0.278 19.4 29.7 45
ConvE (Dettmers et al., 2018) 245 0.312 22.5 34.1 49.7
ConvKB (Nguyen et al., 2018) 216 0.289 19.8 32.4 47.1
R-GCN (Schlichtkrull et al., 2018) 600 0.164 10 18.1 30
ATTH (Chami et al., 2020) - 0.348 25.2 38.4 54.0
HAKE (Zhang et al., 2020b) - 0.346 25.0 38.1 54.2
InteractE (Vashishth et al., 2020a) 172 0.354 26.3 - 53.5
ReInceptionE (Xie et al., 2020) 173 0.349 - - 52.8
ParamE (Che et al., 2020) - 0.399 31.0 43.8 57.6
RGHAT (Zhang et al., 2020c) 196 0.522 46.2 54.6 63.1

EIGAT (Ours) 154 0.541 47.6 57.1 66.1

EIGAT significantly and consistently outperforms

all state-of-the-art baselines on most metrics in

all benchmark datasets, which demonstrate the ef-

fectiveness of our proposed model. (ii) The ad-

vantages EIGAT compared to baselines on NELL-
995 seem to be smaller than others. It is be-

cause that rich global structural information in rel-

ative dense graphs, i.e., Kinship, and FB15K-237,

leads to more effective entity importance estima-

tion by global random walk methods, comparing

with less global structural knowledge in relative

sparse graphs, i.e., NELL-995. The results demon-

strate NELL-995 is more difficult than others for

EIGAT to learn, but the comparable results also ver-

ify the effectiveness and robustness of our model

on both scenarios.

5.6 Ablation Study

To analyze the behavior of global information in

EIGAT, we compare EIGAT with EIGAT-Remove-

global (i.e., removing global entity importance

from EIGAT). The comparison results in Table 7 in-

dicate that EIGAT achieves improvements against

EIGAT-Remove-global on all metrics. In particular,

on MR, EIGAT surpasses EIGAT-Remove-global

by a large margin 56. The results demonstrate

our model can successfully take account of global

information in local attention to aggregate more

effective entity representations.

5.7 Case Study

Table 8 gives examples of entity prediction results

of EIGAT on the FB15k-237 testing set (predicting

tail entities). This illustrates the efficacy of our

proposed EIGAT. Given a head entity and a relation,

the top predicted tail entities (and the true one) are

Table 7: Ablation Study. Link prediction results by

different variants of our model on FB15K-237.

FB15K-237

Hits@N (%)

MR MRR @1 @3 @10

EIGAT-Remove-global 210 0.518 46 54 62.6
EIGAT 154 0.541 47.6 57.1 66.1

depicted. Even if the true fact is not always at

the best front, the predicted results can still reflect

common-sense.

Table 8: Example predictions on the FB15K-237 test

set using EIGAT. Bold indicates the test triplet’s true

tail and italics other true tails present in the training

set.

Head Entity Relation Tail Entities

X-Men production companies

Marvel Entertainment,
DC Comics,

20th Century Studios,
American Zoetrope

United States
of America

form of government

presidential régime,
Democracy, republic,

parliamentary monarchy,
parliamentary system

Belgium time zones
Central European Time,

Atlantic Time Zone,
Belgium

6 Conclusion and Future Work

In this paper, we propose to incorporate global

information in local attention for knowledge repre-

sentation learning and introduce a novel GAT-based

model that incorporates global entity importance.

In particular, we provide an attention-based global

random walk approach to estimate entity impor-

tance. The experimental results of entity prediction

demonstrate that our model can successfully take

into account global information in local attention

to improve knowledge representation learning. In-

teresting future work directions include general-

izing EIGAT to other relational graphs (e.g. het-

erogeneous information network (HIN), user-item

graph in recommendation system), and exploring

an advanced variant of EIGAT in a semi-supervised

learning scenario.
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