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Abstract

Transformer-based language models (LMs)
pretrained on large text collections are proven
to store a wealth of semantic knowledge.
However, 1) they are not effective as sen-
tence encoders when used off-the-shelf, and
2) thus typically lag behind conversationally
pretrained (e.g., via response selection) en-
coders on conversational tasks such as intent
detection (ID). In this work, we propose CON-
VFIT, a simple and efficient two-stage proce-
dure which turns any pretrained LM into a
universal conversational encoder (after Stage 1
CONVFIT-ing) and task-specialised sentence
encoder (after Stage 2). We demonstrate that
1) full-blown conversational pretraining is not
required, and that LMs can be quickly trans-
formed into effective conversational encoders
with much smaller amounts of unannotated
data; 2) pretrained LMs can be fine-tuned
into task-specialised sentence encoders, opti-
mised for the fine-grained semantics of a par-
ticular task. Consequently, such specialised
sentence encoders allow for treating ID as a
simple semantic similarity task based on inter-
pretable nearest neighbours retrieval. We vali-
date the robustness and versatility of the CON-
VFIT framework with such similarity-based
inference on the standard ID evaluation sets:
CONVFIT-ed LMs achieve state-of-the-art ID
performance across the board, with particular
gains in the most challenging, few-shot setups.

1 Introduction and Motivation

Pretrained Transformer-based (masked) language
models (LMs) such as BERT (Devlin et al., 2019)
or RoBERTa (Liu et al., 2019b), coupled with
task-specific fine-tuning, offer unmatched state-of-
the-art performance in a wide array of standard
language understanding and conversational tasks
(Wang et al., 2019a; Mehri et al., 2020). However,
pretrained LMs do not produce coherent and effec-
tive sentence encodings off-the-shelf; their further
adaptation is required, akin to standard task fine-

tuning. For instance, Reimers and Gurevych (2019)
transform monolingual English BERT with super-
vised natural language inference and paraphrasing
data (Williams et al., 2018; Wieting and Gimpel,
2018) into a sentence encoder which excels at sen-
tence similarity and retrieval tasks (Marelli et al.,
2014; Cer et al., 2017). This transformation pro-
cess supports the creation of other similar universal
sentence encoders in monolingual and multilingual
settings (Chidambaram et al., 2019; Wieting et al.,
2020; Feng et al., 2020), and is typically based on
dual-encoder architectures.

Another parallel research thread aims at learning
conversational encoders: it validates the benefits
of masked language modeling (MLM) pretraining
on naturally conversational data (Wu et al., 2020;
Mehri et al., 2021), as well as the benefits of trans-
fer learning for conversational tasks which goes
beyond MLM as the pretraining objective (Mehri
et al., 2019; Coope et al., 2020; Henderson and
Vulić, 2021, inter alia). In particular, response
selection as a suitable pretraining task (Al-Rfou
et al., 2016; Yang et al., 2018; Henderson et al.,
2019b; Humeau et al., 2020) learns representations
that organically capture conversational cues from
conversational text data such as Reddit (Henderson
et al., 2019a), again via dual-encoder architectures.

Inspired by these two research threads, we pose
the following two crucial questions:

(Q1) Is it necessary to conduct full-scale expen-
sive conversational pretraining? In other words,
is it possible to simply and quickly ’rewire’ exist-
ing MLM-pretrained encoders as conversational
encoders via, e.g., response ranking fine-tuning on
(much) smaller-scale datasets?

(Q2) If we frame conversational tasks such as
intent detection as semantic similarity tasks in-
stead of their standard classification-based formu-
lation, is it also possible to frame supervised task-
specific learning as fine-tuning of conversational
sentence encoders? In other words, can we learn
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Figure 1: Illustration of the full CONVFIT framework which fine-tunes pretrained LMs such as BERT or RoBERTa
in two separate stages via dual-encoder networks (“zoomed-in” parts; grey blocks denote tunable parameters), and
performs intent detection with the CONVFIT-ed models via similarity-based inference. Stage 1 (S1): adaptive
conversational fine-tuning, §2.1; Stage 2 (S2): task-tailored conversational fine-tuning (for intent detection), §2.2.
Dashed lines denote baseline/ablation variants which skip one of the two stages: (i) we can directly task-tune the
sentence encoder with the task data (Stage 2) without running Stage 1, or (ii) we can skip Stage 2, and similar to
Casanueva et al. (2020), learn an MLP classifier on top of the conversational representations from Stage 1.

(a) RoBERTa (no fine-tuning) (b) RoBERTa (after S1) (c) RoBERTa (after S1 and S2)

Figure 2: t-SNE plots (van der Maaten and Hinton, 2012) of encoded utterances from the ID test set of BANKING77
(i.e., all examples are effectively unseen by the encoder models at training) associated with a selection of 12 intents,
demonstrating the effects of gradual “representation specialisation funnel”. The encoded utterances are created via
mean-pooling based on (a) the original RoBERTa LM; (b) RoBERTa after Stage 1 (i.e., fine-tuned on 1% of the
full Reddit corpus, see Figure 1); (c) RoBERTa after Stage 1 and Stage 2, fine-tuned with the OCL objective (n = 3
negatives) using the entire BANKING77 training set (see Figure 1). Additional t-SNE plots are in the Appendix.

task-specialised sentence encoders that enable sen-
tence similarity-based interpretable classification?

In order to address these two questions, we
propose CONVFIT, a two-stage CONVersational
FIne-Tuning procedure that turns general-purpose
MLM-pretrained encoders into sentence encoders
specialised for a particular conversational domain
and task. Casting the end-task (e.g., intent detec-
tion) as a pure sentence similarity problem then
allows us to recast task-tailored fine-tuning of a
pretrained LM as gradual sentence encoder special-
isation, as illustrated in Figures 1 and 2.

Our hypothesis is that the pretrained LMs, which
already store a wealth of semantic knowledge,
can be gradually turned into conversational task-
adapted sentence encoders without expensive full

pretraining. (S1) Stage 1 transforms pretrained
LMs into universal conversational encoders via
adaptive fine-tuning (Ruder, 2021) on (a fraction
of) Reddit data (see Figure 2b), relying on a stan-
dard dual-encoder architecture with a conversa-
tional response ranking loss (Henderson et al.,
2020); cf. Q1. (S2) Stage 2 further specializes the
sentence encoder via contrastive learning with in-
task data, that is, it learns meaningful task-related
semantic clusters/subspaces. We then show that the
S2 task-tailored specialisation effectively enables
a simple and interpretable similarity-based classi-
fication based on nearest neighbours (NNs) in the
specialised encoder space (see Q2 and Figure 2c).

The two-stage CONVFIT transformation offers
new insights and contributions to representation
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learning for conversational tasks. Unlike prior
work which conducted large-scale conversational
pretraining from scratch using large datasets, we
demonstrate that full pretraining is not needed
to obtain universal conversational encoders. By
leveraging the general semantic knowledge already
stored in pretrained LMs, we can expose (i.e.,
’rewire’) that knowledge (Vulić et al., 2021; Gao
et al., 2021b; Liu et al., 2021b) via much cheaper
and quicker adaptive fine-tuning on a tiny fraction
of the full Reddit data (e.g., even using < 0.01%
of the Reddit corpus). Further, the task-oriented
S2 CONVFIT-ing transforms pretrained LMs into
task-specialised sentence encoders. Our results
with similarity-based classification, targeting the
crucial conversational NLU task of intent detec-
tion (ID), reach state-of-the-art (SotA) across all
standard ID datasets, with particular gains in the
most challenging, few-shot setups. Importantly, we
show that the gradual application of S1 and then
S2 yields a synergistic effect, that is, it attains the
highest ID results across the board.

Finally, CONVFIT is highly versatile: it can be
used with a range of pretrained LMs and on a spec-
trum of text classification problems; it also allows
for the simple usage of diverse fine-tuning objec-
tives in both Stage 1 and Stage 2, beyond the ones
proposed and evaluated in this work.

2 Methodology

Preliminaries. For any input text t, we obtain its
encoding t = enc(t), where enc is a sentence en-
coder at any CONVFIT stage (i.e., before any fine-
tuning, after S1, or after S2), or any other sentence
encoder. The text t is tokenized into subwords
(Schuster and Nakajima, 2012) relying on each en-
coder’s dedicated tokeniser. The final encoding t is
created via a pooling operation such as (a) using the
[CLS] token, (b) or mean-pooling the output sub-
word vectors. Following prior work (Reimers and
Gurevych, 2019), we always use mean-pooling.

2.1 Stage 1: Adaptive Fine-Tuning

As in prior work on conversational pretraining
(Henderson et al., 2019b, 2020; Humeau et al.,
2020), Stage 1 relies on the response ranking task
with Reddit data and dual-encoder architectures,
which model the interaction between Reddit (con-
text, response) (c, r) pairs.1 However, unlike prior

1In each (c, r) pair, r is the response that immediately
follows the preceding context sentence in a Reddit thread;

work, instead of pretraining from scratch we fine-
tune an LM-pretrained encoder, which yields a
much quicker conversational encoder specialisa-
tion, and does not require massive amounts of data.

Response ranking is formulated as the standard
multiple negatives ranking loss (MNEG): for each
positive (ci, ri) pair (i.e., the pair observed in the
Reddit fine-tuning data), the aim is to rank the
correct response r for the input c over a set of
randomly sampled responses rj , j 6= i from other
Reddit pairs. The similarity between c-s and r-s is
quantified via the similarity function S operating
on their encodings S(c, r). Following prior work,
we use the scaled cosine similarity: S(c, r) = D ·
cos(c, r), where D is the scaling constant. Stage 1
fine-tuning with MNEG then proceeds in batches of
B positive Reddit pairs (ci, ri), . . . , (cB, rB); the
MNEG loss for a single batch is computed as:

L = −
B∑

i=1

S(ci, ri) +

B∑
i=1

log

B∑
j=1,j 6=i

eS(ci,rj) (1)

Effectively, for each batch Eq. (1) maximises the
similarity score of positive context-response pairs
(ci, ri), while it minimises the score of B − 1 ran-
dom pairs. The negative examples are all pairings
of ci with rj-s in the current batch, where such
(ci, rj) pairs do not occur in the Reddit data.2

The output of Stage 1 is the sentence encoder
encS1 which can be used ’as is’ similarly to stan-
dard sentence encoders (Henderson et al., 2020;
Casanueva et al., 2020; Feng et al., 2020): a stan-
dard ID approach stacks a Multi-Layer Perceptron
(MLP) classifier on top of the fixed sentence vec-
tors t, and fine-tunes only the MLP parameters
(Casanueva et al., 2020; Gerz et al., 2021). How-
ever, the output of S1 can also be further fed as the
input encoding for CONVFIT’s Stage 2 (Figure 1).

2.2 Stage 2: Task-Based Sentence Encoders
Stage 2 fine-tuning is inspired by metric-based
meta-learning (Vinyals et al., 2016; Musgrave
et al., 2020) and exemplar-based (also termed
prototype-based) learning (Snell et al., 2017; Sung
et al., 2018; Zhang et al., 2020), which is espe-
cially suited for few-shot scenarios. We assume
the existence of Na annotated in-task examples

see (Henderson et al., 2019a). The intuition is that sentences
which elicit similar responses should obtain similar sentence
encodings (Yang et al., 2018).

2We also experimented with another SotA loss function,
the triplet-based multi-similarity loss (Wang et al., 2019b; Liu
et al., 2021a), without any substantial performance differences.
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{(x1, y1), . . . , (xNa , yNa)}: e.g., x-s are text sen-
tences with y-s being their intent labels/classes; let
us assume that there are Nc classes {C1, . . . , CNc}
in total. The aim is to fine-tune the input sentence
encoder in such a way to encode all sentences asso-
ciated with each particular class into coherent clus-
ters, clearly separated from all other class-related
(also coherent) clusters (see Figure 2c).3

Positive and Negative Pairs. We leverage the
class labels only implicitly (see Figure 1), which
allows us to treat intent detection as a sentence
similarity task. CONVFIT S2 operates with two
sets of pairs: 1) PP is the set of positive pairs
(xi, xj), where xi and xj are text instances associ-
ated with the same class Ci; 2) NP contains nega-
tive pairs (xi, xj) where xi and xj are associated
with two different classes Ci and Cj . We construct
the set NP in a balanced way: for each positive
pair (xi, xj) ∈ PP , we add 2 × n negative pairs
into NP , where n is a tunable hyper-parameter;
n pairs (xi, xi,n′), n

′ = 1, . . . , n, are constructed
by randomly sampling utterances xi,n′ which do
not share the class with xi, and we also sample
n negatives (xj,n′ , xj) in a similar vein. We now
present three different loss functions that fine-tune
the input encoders towards task-specialised sen-
tence similarity relying on the sets PP and NP .
For all three S2 loss functions, we add a down-
projection do-dim layer with non-linearity (Tanh
used) after pooling, see Figure 1.4

SOFTMAX (SMAX) Loss. Following prior work
(Reimers and Gurevych, 2019), for each input
sentence pair (xi, xj), we concatenate their do-
dimensional encodings xi and xj (obtained after
passing them through the input encoder, pooling,
and down-projection) with their element-wise dif-
ference |xi − xj|. The objective is as follows:
LSMAX = softmax

(
W (xi⊕xj⊕|xi−xj|)

)
, where

⊕ denotes concatenation, and W ∈ R3do×2 is a
trainable weight matrix of the softmax classifier,
where 2 is the number of classification classes: the
model must simply discern between positive pairs
(from PP ) and negative pairs from NP . The clas-
sifiers are optimised via standard cross-entropy.

Cosine (COS) Loss. The idea is to minimise the
following distance, formulated as standard mean-
squared error: ||δl − cos(xi,xj)||2, where cos de-

3In other words, the encoder should learn to encode each
utterance into one of such semantically well-defined clusters.

4A variant with down-projection yielded slightly higher
scores than the one without it in our preliminary experiments.

notes cosine similarity, and δl is a hyper-parameter
which specifies the ’ideal’ (dis)similarity margin
in the specialised encoder space. Here, we rely on
the default parameters from Reimers and Gurevych
(2019) without any tuning: δl = 0.8 iff (xi, xj) ∈
PP , and δl = 0.3 iff (xi, xj) ∈ NP .

Online Contrastive Learning (OCL) Loss fol-
lows the formulation from Hadsell et al. (2006):

LOCL = 1 · (dcos(xi,xj))
2

+ (1− 1) ·
(
ReLU(δm − dcos(xi,xj))

)2
(2)

where 1 is the indicator function which returns 1 iff
(xi,xj) ∈ PP , and 0 iff (xi,xj) ∈ NP ; dcos =
1−cos is the cosine distance, and δm is the distance
margin, set to the default value of 0.5 (Reimers
and Gurevych, 2019) in all our experiments. The
loss ’attracts’ similar items closer together in the
specialised space, while ’repelling’ dissimilar items
(Mrkšić et al., 2017).5

Similarity-Based Inference. Intent detection in
the specialised encoder space encS2 is then per-
formed via similarity-based classification (Zhang
et al., 2020) after Stage 2.6 Assuming the simplest
case of k = 1 nearest neighbours (NN) classifi-
cation, we select the intent class for an unseen
example u as: Ic

(
argmaxt∈Pool cos(t,u)

)
. Here,

t = encS2(t) refers to the sentence encoding of
each example t ∈ Pool (which is typically the pool
of examples from the ID training set), and the Ic
function returns the intent class of any t ∈ Pool.
Why Intent Detection as a Sentence Similarity
Task? We can take the analogy of ‘intent’ being
a latent semantic class where sentences associated
with the intent are diverse surface instances of the
class (i.e., language realisations of the underly-
ing concept/intent). This means that finding the
most similar labelled instances for the given unla-
belled input instance/sentence can directly inform
us about the underlying semantic class/intent.

5We use the online version of the loss that updates the loss
focusing on hard negative pairs (i.e., negatives that are close
by cosine in the current semantic space) and hard positives
which are far apart in the current space. This typically results
in quicker convergence and slightly better performance.

6The benefits of similarity-based classification were re-
cently validated also in other NLP tasks such as cross-lingual
abusive content detection (Sarwar et al., 2021), language mod-
eling (Khandelwal et al., 2020; Guu et al., 2020), and question
answering (Kassner and Schütze, 2020), among others.
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Dataset Intents Examples Domains

BANKING77 77 13,083 1 (banking)
CLINC150 150 23,700 10
HWU64 64 25,716 21

Table 1: Intent detection datasets: key statistics.

3 Experimental Setup

Input LMs. We experiment with several popular
Transformer-based (Vaswani et al., 2017) LMs as
input (see Figure 1), aiming to validate the robust-
ness of CONVFIT, as well as to analyse the impact
of LM pretraining on the final task performance: (i)
BERT (Devlin et al., 2019) (labeled BERT hence-
forth); (ii) RoBERTa (ROB), as an improved variant
of BERT, LM-pretrained with more data (Liu et al.,
2019b); (iii) DistilRoBERTa (DROB), a distilled
more compact version of RoBERTa, LM-pretrained
with around 4 times fewer data than the teacher
RoBERTa model (Sanh et al., 2019). The cased
BASE variants are used for all input LMs: 768-
dimensional Transformer layers with 12 (BERT,
ROB) or 6 (DROB) attention layers. In addition,
to isolate the effects of LM-pretraining and CON-
VFIT-ing from the mere “parameter capacity”, we
also experiment with a BERT/ROB architecture with
RANDomly initialised parameters using the Xavier
initialisation (Glorot and Bengio, 2010).

Unless noted otherwise, CONVFIT Stage 1 al-
ways proceeds with a sample comprising 2% of the
full Reddit corpus from Henderson et al. (2019a).7

Intent Detection Datasets. As discussed in §2,
the main evaluation task is intent detection (ID),
with a particular focus on low-data (i.e., few-shot)
scenarios. Our Stage 2 fine-tuning and the final task
evaluation are based on three standard ID datasets
in English, also available as part of the recently pub-
lished DialoGLUE benchmark (Mehri et al., 2020):
BANKING77 (Casanueva et al., 2020), HWU64 (Liu
et al., 2019a), and CLINC150 (Larson et al., 2019).8

The key statistics of all three datasets are provided
in Table 1; for further details, we refer the reader to
the original work and also to (Mehri et al., 2020).

Few-Shot and Full Data Setups. Prior work has
recognised the importance of building intent detec-

7The full corpus contains 700M+ (context, response) pairs.
8The datasets provide a range of diverse ID setups, cover-

ing fine-grained ID within a single domain (e.g., BANKING77),
as well as coarser-grained ID spanning several well-defined
domains (e.g., news, calendar, alarm, restaurant booking in
HWU64 or in CLINC150). They provide a more challenging
setup (and are also better aligned with the actual ID setups
typically met in production) than some other well-known ID
datasets such as SNIPS (Coucke et al., 2018).

tors in low-data regimes (Casanueva et al., 2020;
Mehri et al., 2021). Therefore, following this ini-
tiative, we evaluate the models in two N-shot sce-
narios, where we assume that only N = 10 or
N = 30 annotated examples per intent are avail-
able for training the MLP classifier or for S2 fine-
tuning; Figure 1.9 The models are also evaluated
in the Full setup, where all annotated training ex-
amples per intent are used. Note that we always
report the scores on the same test set for each setup.
For the few-shot scenarios, we report the scores as
averages over 3 independent experimental runs.

Hyperparameters and Optimisation. CONVFIT
is implemented via the sentence-transformers
(sbert) repository (Reimers and Gurevych, 2019),
which is in turn built on top of the HuggingFace
repository (Wolf et al., 2020). Similar to Casanueva
et al. (2020), we do not rely on any development
data, and follow the general suggestions from prior
work (Reimers and Gurevych, 2019; Casanueva
et al., 2020) for the hyperparameter setup, which is
adopted across all intent ID datasets.10 For S1 with
MNEG, we always train for 2 epochs in batches of
256 with default hparams from sbert.11

In Stage 2, with all three evaluated objective
functions the batch size is 32, the maximum se-
quence length is 48, the output layer’s dimension-
ality is set to do = 512. Unless stated otherwise,
we always fine-tune for 10, 5, and 2 epochs for the
10-shot, 30-shot, and Full setups, respectively. For
the COS and OCL variants, unless noted otherwise,
we report the results with n = 3 negative examples
per each positive in 10-shot and 30-shot setups, and
with n = 1 (for computational tractability) in the
Full setup. An analysis of the impact of n on the
final ID performance is presented later in §4.

Following the suggested settings of Reimers
and Gurevych (2019); Vulić et al. (2020), in both
CONVFIT stages we use the AdamW optimiser
(Loshchilov and Hutter, 2018); the learning rate is
2e−5 with the warmup rate of 0.1 and linear decay

9We use the same fixed few-shot and test sets for each
intent detection dataset as released by Mehri et al. (2020).

10For all MLP intent classifiers, this implies relying on
the empirically validated and stable setup from prior work
(Casanueva et al., 2020): the best results are achieved with a
2-layer fully-connected MLP (768-dim hidden layers), trained
via SGD with the high learning rate (0.5) and linear decay,
and very aggressive dropout rates (0.75); training lasts for 500
epochs; batch size is 32. This setup achieved strong results in
our preliminary experiments as well, and is thus adopted here.

11256 is the maximum batch size with BASE BERT and
RoBERTa which allows us to run Stage 1 fine-tuning on a
single 12GiB GTX GPU.
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afterwards, and the weight decay rate is set to 0.01.

Similarity-Based Classification. The intent class
is chosen according to the k = 1 NNs, based on the
cosine distance in the fine-tuned space.12 Impor-
tantly, in few-shot setups we use only the few-shot
data as the NN pool for classification.

3.1 Model Variants and Baselines

We experiment with a range of model variants
enabled by the CONVFIT framework (see Fig-
ure 1), and compare their performance in the ID
task against an array of cutting-edge universal and
conversational sentence encoders. All the models
in evaluation are summarised here for clarity.

LM+S1+S2-LOSS. Sentence encoders after run-
ning the full CONVFIT pipeline, where intent de-
tection is based on similarity-based NN classifica-
tion. LM in the label of this variant denotes the
input LM, and LOSS is the loss function used in
Stage 2 (i.e., SMAX, COS, or OCL).

LM+S2-LOSS. Sentence encoders optimised only
via Stage 2 CONVFIT, skipping Stage 1 (see Fig-
ure 1); similarity-based intent detection.

LM+S1. The input LM is converted into a (general-
purpose) conversational encoder via Stage 1 CON-
VFIT-ing; intent detection is performed via stan-
dard feature-based MLP classification on top of the
sentence encodings as in prior work.

SotA Sentence Encoders. We evaluate three
widely used state-of-the-art sentence encoders in
the standard feature-based MLP classification ap-
proach to intent detection:13 (i) ConveRT (Hender-
son et al., 2020) is a dual sentence encoder pre-
trained with the conversational response selection
task (Henderson et al., 2019b) on the full Red-
dit data (Al-Rfou et al., 2016; Henderson et al.,
2019a); (ii) multilingual Universal Sentence En-
coder (mUSE) (Yang et al., 2020) is a multilin-
gual and better-performing version of the USE
model for English (Cer et al., 2018), which again
relies on a standard dual-encoder framework (Hen-
derson et al., 2019b; Humeau et al., 2020) and
is pretrained on massive amounts of data; (iii)
Language-agnostic BERT Sentence Embedding
(LaBSE) (Feng et al., 2020) adapts pretrained multi-
lingual BERT (mBERT) (Devlin et al., 2019) into a
sentence encoder using a dual-encoder framework

12Very similar results are observed with k = 3 and k = 5.
13For more technical details regarding each sentence en-

coder, we refer the reader to the original work.

(Yang et al., 2019) with larger embedding capacity
(i.e., it provides a shared multilingual vocabulary
spanning 500k subwords).14

4 Results and Discussion

The main results are summarised in Table 2, and
further results and analyses are available in §4.1,
with additional results in the Appendix.15 These re-
sults offer multiple axes of comparison, succinctly
discussed in what follows.

MLP versus Similarity-Based ID. First, we note
that CONVFIT-ed LMs achieve peak ID scores
across all three ID datasets, and in all data se-
tups, with ROB+S1+S2-OCL being the highest-
performing model variant overall. Running Stage 1
does transform input LMs into effective (univer-
sal) conversational encoders already: for MLP-
based ID, we observe competitive or even improved
performance (cf., the results on BANKING77 and
HWU64 as two more challenging evaluation sets)
with the ROB+S1 and BERT+S1 variants against
current state-of-the-art (conversational) sentence
encoders such as ConveRT, USE, and LaBSE.

Importantly, the results after Stage 2 ‘unani-
mously’ suggest the effectiveness of treating ID
as a semantic similarity task, and additional task-
specific specialisation of the sentence encoders
with in-task data. Put simply, it seems more ef-
fective to use the in-task training data to ‘task-
specialise’ the sentence encoder space than to learn
a standard (MLP) classifier, which directly maps
from the feature space to intent labels (Sarwar et al.,
2021). The gains are especially pronounced in few-
shot setups (e.g., see 10-shot BANKING77).

We speculate that dual-encoder contrastive learn-
ing surpasses MLP-based approaches especially
in few-data scenarios because it learns from finer-
grained and more abundant information in such
low-data scenarios: i.e., we learn to contrast be-
tween pairs of instances rather than simply learn-
ing an MLP-based mapping from an instance to
its underlying class intent/class. This formula-
tion can also capture some subtle cross-instance
(dis)similarities which cannot be captured by MLP.

14LaBSE is the current SotA encoder across a wide array
of languages (Feng et al., 2020; Litschko et al., 2021; Gerz
et al., 2021). Besides dual-encoder training, LaBSE lever-
ages standard self-supervised objectives used in pretraining of
mBERT and XLM: masked and translation language modeling
(Conneau and Lample, 2019); see the original work.

15For brevity, in the main paper we report the results with
the two better-performing S2 losses: COS and OCL.
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BANKING77 CLINC150 HWU64

Model Variant 10 30 Full 10 30 Full 10 30 Full

Similarity-Based Classification

ROB+S1+S2-COS 86.48 91.33 94.35 92.87 95.91 97.20 85.06 90.46 92.98
BERT+S1+S2-COS 84.32 90.91 93.91 91.80 95.58 96.56 85.13 89.41 91.93
DROB+S1+S2-COS 85.13 90.75 94.06 91.64 95.48 97.00 83.64 89.68 92.94

ROB+S1+S2-OCL 87.38 91.36 94.16 92.89 96.42 97.34 85.32 90.06 92.42
BERT+S1+S2-OCL 85.97 90.65 93.77 91.53 95.53 96.82 85.04 89.41 92.21
DROB+S1+S2-OCL 86.04 90.78 93.89 91.98 95.60 97.04 83.64 89.50 92.84

ROB+S2-COS 84.96 90.81 94.19 91.56 95.64 96.78 84.52 89.87 92.19
BERT+S2-COS 81.27 90.32 93.73 89.58 95.08 96.54 82.90 89.12 91.78
DROB+S2-COS 83.28 90.58 93.91 89.47 95.32 86.78 82.43 89.41 92.10

ROB+S2-OCL 85.78 90.98 93.77 92.64 95.40 96.87 84.76 89.31 92.01
BERT+S2-OCL 82.28 89.77 93.54 90.71 95.07 96.62 83.09 88.94 92.57
DROB+S2-OCL 82.60 90.65 93.38 90.78 95.02 96.69 81.69 88.75 92.38

Baselines: MLP Classification

ROB+S1 83.08 90.16 93.38 90.98 94.12 96.42 81.13 87.73 91.44
BERT+S1 82.69 89.82 93.67 89.88 94.07 96.33 82.25 88.01 91.12

CONVERT∗ 83.32 89.37 93.01 92.62 95.78 97.16 82.65 87.88 91.24
USE∗ 84.23 89.74 92.81 90.85 93.98 95.06 83.75 89.03 91.25
USE (ours) 82.95 89.09 92.81 90.27 93.54 94.91 82.71 88.20 91.64
LABSE 81.69 88.96 92.60 90.89 93.41 95.12 81.60 86.15 90.99

Table 2: Accuracy scores (×100%) on the three ID data sets with varying number of training examples (10 ex-
amples per intent; 30 examples per intent; Full training data). n = 3 negatives are used in Stage 2 for 10-shot
and 30-shot setups, n = 1 for the Full setup (see §3). The peak scores per column are in bold, the second best
is underlined. *The scores were taken directly from prior work, and computed on different 10/30-shot samples
(and are thus not directly comparable, Zhao et al. 2021). For clarity, we show only a subset of (arguably most
informative) model variants; the complete table with additional evaluated variants is available in the Appendix.

Extending beyond pure absolute performance, de-
cisions based on k-NN similarity-based ID in the
specialised space are also easy to interpret (Simard
et al., 1992; Wallace et al., 2018).

Stage 1 + Stage 2? The scores in Table 2 indicate
that Stage 2 alone already transforms pretrained
LMs into very strong task-specialised sentence en-
coders. However, a more careful comparison of
LM+S1+S2-LOSS versus LM+S2-LOSS variants re-
veals that Stage 1 fine-tuning is universally use-
ful (regardless of the chosen loss function in S2),
and yields ID performance gains. In other words,
the coarser-grained adaptive fine-tuning already
exposes some conversational knowledge from the
pretrained LMs, and such knowledge does have
substantial impact on task-specialised S2 tuning.
In sum, this finding is line with prior work in other
domains and NLP tasks (Gururangan et al., 2020;
Glavaš et al., 2020; Ruder, 2021): both domain-
adaptive (our S1) and task-adaptive additional tun-
ing (our S2) of general-purpose LMs have a syner-
gistic positive impact on the final task performance.

The impact of the gradual two-stage sentence
encoder transformation is also clearly visible from
the t-SNE visualisation in Figure 2. Besides this, a
standard quantitative measure of cluster coherence,
the Silhouette coefficient σ (Rousseeuw, 1987) also
points in the same direction: σ = 0.067 for the test
examples and model variant from Figure 2a, σ =
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Training Set Size (# of Examples per Intent)
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RAND+S2 RAND+S1+S2 ROB+S1+S2

Figure 3: A comparison of a randomly initialised
RoBERTa (RAND) against LM-pretrained RoBERTa af-
ter S2 CONVFIT-ing with OCL; BANKING77.

0.188 (Figure 2b), and σ = 0.698 (Figure 2c).16 17

Impact of Input LMs. While the results suggest
that the CONVFIT framework is applicable and ef-
fective with any pretrained LM, the choice of the
input LM naturally impacts the absolute ID perfor-
mance. As expected, the CONVFIT variants with
RoBERTa achieve the highest scores across the
board. A comparison between DROB and BERT re-
veals that the pretraining data size and regime seem
to play a more critical role than the parameter ca-
pacity: the more compact DROB LM is competitive
with or even outscores BERT-based variants.18

16Higher σ scores are desirable as they imply more coherent
and compact clusters, and a stronger inter-cluster separation.

17Stage 2 tuning with more in-task data also naturally yields
a better separation of examples into coherent clusters , which
then naturally improves NN-based classification. For instance,
running the ROB+S1+S2-OCL (n = 3) variant in 10-shot,
30-shot, and Full data setups yields the respective σ scores for
the same set of test examples from Figure 2: σ10 = 0.378,
σ30 = 0.548, σFull = 0.698, validating the intuition.

18Given the versatility of CONVFIT, in future work we plan
to extend the experiments to other pretrained LMs such as
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Figure 4: Varying the amount of Reddit data for Stage 1 CONVFIT; ×1 refers to the Reddit size used in all our
other Stage 1 fine-tuning experiments (≈2% of the full Reddit corpus from Henderson et al. (2019a)), while other
Reddit data sizes are relative to this corpus size (e.g., ×1/32 means that we use 2%/32 ≈ 0.0625% of the full
Reddit corpus). Similar plots (with similar findings) using the COS loss in Stage 2 are available in the Appendix.
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Figure 5: Impact of the number of negative examples n
in 10-shot and 30-shot setups. The CONVFIT variants
are ROB+S2-OCL and ROB+S1+S2-OCL (labelled +S1
and +S1+S2 in the figures, respectively).

Variant 10 30 Full

ROB+S1+S2-COS 82.37 94.39 98.12
ROB+S2-COS 70.71 92.14 97.42

MLP-Based

ROB+S1 48.26 85.49 97.16
USE 47.25 87.21 97.31
LABSE 43.10 87.32 97.42

Table 3: Results on English ATIS (Accuracy ×100).

Importance of LM Pretraining is illustrated by
Figure 3. The trend is quite straightforward: se-
mantic knowledge acquired by LM-pretraining is
particularly important in the fewest-shot (i.e., 10-
shot) setups, and the gap gets reduced with more
in-task data available for S2 tuning. However, the
gap remains substantial even in the Full setups.

Figure 3 also reveals that the strength of CON-
VFIT Stage 1 is in adapting the knowledge acquired
at LM pretraining: S1 fine-tuning of RAND with
smaller amounts of Reddit data cannot match ROB

as the input LM, although the gap does become
smaller with more in-task data for S2.

Stage 2: Fine-Tuning Losses. Table 2 reveals that
strong ID performance after S2 tuning is achieved
with different loss functions from §2.2, with differ-
ent input LMs, even without any careful tuning of
hyper-parameters for single settings. This verifies
the versatility and robustness of CONVFIT. Both
COS and OCL yield consistently strong results, and
we expect that even higher absolute scores might

ELECTRA (Clark et al., 2020) and T5 (Raffel et al., 2020).

be achieved by applying more sophisticated (con-
trastive learning) loss functions from prior work
(Hermans et al., 2017; Liu et al., 2021a) in Stage 2.

4.1 Further Discussion
Stage 1: Amount of Reddit Examples. We now
analyse what amount of Reddit data is required
to turn input LMs into conversational encoders,
by reducing S1 fine-tuning data through subsam-
pling. The scores over different sizes are provided
in Figure 4, and we note that they extend to other
CONVFIT variants (see §3.1). As expected, having
more Reddit data does yield better results on aver-
age, but even a small sample of Reddit data (e.g.,
≈50K (c, r) pairs) 1) transforms the input LM into
an effective sentence encoder (e.g., its MLP-based
ID results are on par with those achieved with USE,
LaBSE, and ConveRT), and 2) improves over the
CONVFIT variant that skips S2 completely. This
implies that perhaps more careful domain-driven
data sampling in the future might yield even more
domain-adapted conversational encoders after S1.

Amount of Negative Examples in Stage 2 has
only a moderate to negligible impact on the final
performance, as shown in Figure 5. Small gains
when moving from n = 1 to n = 3 are observed
only for the 10-shot setup: there, having more neg-
atives may implicitly play the role of data augmen-
tation for fine-tuning. However, with more in-task
examples, the dependence on n becomes incon-
sequential, and the performance saturates quickly
(e.g., see the curves in the 30-shot setups).

Stage 2: Few-Shot versus Full. Framing the ID
task a sentence similarity seems especially benefi-
cial for few-shot scenarios, as the model can lever-
age prototype-based (or instance-based) similari-
ties (Snell et al., 2017) in the specialised encoder
space. However, the strong performance with fully
CONVFIT-ed models persists also in Full setups.
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Figure 6: Impact of the number of data instances at
inference. The ROB+S1+S2-OCL variant is tuned in 10-
shot setups in S2, and additional data (30-shot or Full)
is used only at inference without any S2 retuning.

This finding is further corroborated with the re-
sults on another standard ID dataset, English ATIS
(Hemphill et al., 1990; Xu et al., 2020), see Ta-
ble 3. There, we observe even more prominent dif-
ferences in favour of similarity-based ID enabled
by CONVFIT, again especially in the two low-data
setups. The proposed prototype-based learning and
inference holds promise to boost few-shot perfor-
mance even more in future work, through addi-
tional metric learning (Zhang et al., 2020) or data
augmentation techniques (Lee et al., 2021).

One limitation of CONVFIT, especially promi-
nent in Full scenarios, is its quadratic time complex-
ity. Future work will look into effective sampling
strategies and adaptations towards more sample-
efficient and quicker fine-tuning (Tran et al., 2019;
Tian et al., 2020; O’Neill and Bollegala, 2021).

Data Augmentation for Inference. Adding more
data instances for similarity-based inference, serv-
ing as exemplars/prototypes, is likely to boost the
final intent detection performance without the need
to retrain the model. The intuition is that additional
instances can provide finer-grained prototypes for
inference, semantically more similar to the input
query sentences than the original training data. To
test this hypothesis, we conduct a simple probing
experiment, where we train the ROB+S1+S2-OCL

(n = 3) variant in the 10-shot setup, but then
run inference (i) with the same 10 shots; (ii) in
the 30-shot setup (i.e., effectively performing the
inference-time data augmentation, relying on 20
more data instances per intent class at inference);
(iii) in the Full setup.

The scores are summarised in Figure 6. They
clearly indicate that performance does rise with
more data instances at inference, even without
any model retraining/re-tuning, confirming that
increased semantic variability helps at inference.
This finding is salient for all three evaluation sets.19

19The same trends persist with other CONVFIT variants.

As expected, the absolute performance of 30-shot
or Full inference when the model is trained in 10-
shot setups is lower than in the setup where the
more abundant data is additionally used for CON-
VFIT Stage 2 task-tuning.

Based on these findings, we restate that a promis-
ing path for future research concerns investigating
and ‘task-adapting’ automatic paraphrase genera-
tion models (Krishna et al., 2020; Dopierre et al.,
2021; Schick and Schütze, 2021) such as the one
that rely on prompting large models (e.g., GPT-3,
T5) (Gao et al., 2021a). Such paraphrases might
provide a richer and semantically more varied set
of data instances for CONVFIT task-tailored fine-
tuning and similarity-based inference.

5 Conclusion and Future Work

We proposed CONVFIT, a two-stage conversa-
tional fine-tuning procedure that transforms pre-
trained LMs (e.g., BERT, RoBERTa) into universal
(after Stage 1) and task-specialised conversational
sentence encoders (after Stage 2) through dual-
encoder architectures. The semantic knowledge
already stored in the pretrained LMs gets ’rewired’
for a particular domain and task. We demonstrated
that such task-specialised sentence encoders enable
casting intent detection (ID) as simple sentence
similarity; CONVFIT-ed encoders yield strong ID
results across diverse ID datasets and setups.

The CONVFIT framework is very versatile and
opens up many future research paths and further
extensions and experimentation beyond the scope
of this paper. For instance, it is possible to re-
place the current contrastive loss functions with
other recent effective contrastive losses (van den
Oord et al., 2018; Gunel et al., 2021, inter alia), or
mine hard (instead of using random) negative exam-
ples (Lauscher et al., 2020; Kalantidis et al., 2020;
Robinson et al., 2021). We will also extend CON-
VFIT to other pretrained models, experiment with
automatic paraphrasers for data augmentation, and
port the framework to other conversational tasks
(e.g., slot labelling for dialogue), as well as to other,
non-dialogue text classification tasks.
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A Additional Experiments and Results

Additional experiments and analyses that further
support the main claims of the paper have been rel-
egated to the appendix for clarity and compactness
of our presentation in the main paper. They largely
follow the trends observed in the results which are
provided in the main paper. In sum, we provide
the following additional results and information,
which offer further empirical support of our main
claims in this paper:

Table 4 provides the results with all input LMs
in our comparison in all the CONVFIT variants
discussed in §3.1 across different data setups on all
three intent detection datasets. It can be seen as a
full (i.e., expanded) version of Table 2 provided in
the main paper.

Figure 8 (COS loss in Stage 2) and Figure 9 (OCL

loss in Stage 2) demonstrate the impact of using
LM-pretrained Transformers versus randomly ini-
tialised Transformers in the CONVFIT framework
(both in the full S1+S2 setup, as well as in the
setup where only task-tuning (S2) is employed).
The patterns in the results, presented over all three
evaluation sets, largely follow the patterns observed
in Figure 3, which is provided in the main paper.

Figure 10 plots how the amount of Reddit data in
Stage 1 impacts the final intent detection perfor-
mance when the COS loss is used for task-tuning
in Stage 2. The observed trends in results are very
similar to the ones obtained with the OCL loss, pre-
sented in the main paper (see Figure 4).

Figure 11 presents the impact of the number of
negative examples n during Stage 2 fine-tuning
with the COS loss; the observed trends are very
similar to the ones with the OCL loss, presented in
the main paper (see Figure 5).

Figure 12 provides t-SNE plots with varying
amounts of task data for Stage 2 task-tuning (10-
shot versus 30-shot versus Full data setups), demon-
strating that very tight and coherent clusters emerge
even in the 10-shot setups. Figure 13 shows t-SNE
plots after 10-shot Stage 2, when varying amounts
of Reddit data for Stage 1 fine-tuning are used
(e.g., skipping Stage 1 completely versus using
≈50k (context, response) Reddit pairs). Finally,
Figure 14 demonstrates that the patterns which
emerge after Stage 1 and Stage 2 CONVFIT-ing
do not depend on the chosen input LM, and on the
chosen loss function in Stage 2: the trends very

similar to Figure 2 (provided in the main paper) are
also observed with distilRoBERTa as the input LM,
and COS as the S2 loss. Figure 7 shows visible
impact of adaptive Stage 1 fine-tuning even when
only 50k Reddit (context, response) pairs are used.

B Models and Evaluation Data

URLs to the models are provided in Table 6. The
intent detection evaluation data is available online:
1. BANKING77, CLINC150, and HWU64 intent
detection data have been downloaded from the Di-
aloGLUE repository:
github.com/alexa/dialoglue

We use the 10-shot data provided in the reposi-
tory, and use their script to generate 30-shot setups
for all three datasets.
2. The English ATIS intent detection dataset is
extracted from the recently published MultiATIS++
dataset (Xu et al., 2020), available here:
github.com/amazon-research/
multiatis

For reproducibility, we will release the generated
10-shot and 30-shot data splits.

Our code is based on PyTorch, and relies on the
two following widely used repositories:

• sentence-transformers
www.sbert.net

• huggingface.co/transformers/

Figure 7: t-SNE plots of encoded utterances from the
test set of BANKING77 (a subset of 12 intents, see
the legend in Figure 2) after Stage 1 fine-tuning of
RoBERTa using only ≈50k (context, response) pairs
from Reddit; cf., Figure 2a.

github.com/alexa/dialoglue
github.com/amazon-research/multiatis
github.com/amazon-research/multiatis
www.sbert.net
huggingface.co/transformers/
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BANKING77 CLINC150 HWU64

Model Variant 10 30 Full 10 30 Full 10 30 Full

Similarity-Based Classification

ROB+S1+S2-COS 86.48 91.33 94.35 92.87 95.91 97.20 85.06 90.46 92.98
BERT+S1+S2-COS 84.32 90.91 93.91 91.80 95.58 96.56 85.13 89.41 91.93
DROB+S1+S2-COS 85.13 90.75 94.06 91.64 95.48 97.00 83.64 89.68 92.94
RAND+S1+S2-COS 79.03 87.37 91.69 83.96 89.98 94.12 76.30 82.62 88.20

ROB+S1+S2-OCL 87.38 91.36 94.16 92.89 96.42 97.34 85.32 90.06 92.42
BERT+S1+S2-OCL 85.97 90.65 93.77 91.53 95.53 96.82 85.04 89.41 92.21
DROB+S1+S2-OCL 86.04 90.78 93.89 91.98 95.60 97.04 83.64 89.50 92.84
RAND+S1+S2-OCL 80.62 87.01 91.49 84.91 90.98 94.44 77.23 82.99 88.85

ROB+S2-COS 84.96 90.81 94.19 91.56 95.64 96.78 84.52 89.87 92.19
BERT+S2-COS 81.27 90.32 93.73 89.58 95.08 96.54 82.90 89.12 91.78
DROB+S2-COS 83.28 90.58 93.91 89.47 95.32 86.78 82.43 89.41 92.10
RAND+S2-COS 70.32 84.16 90.75 76.31 86.69 91.76 65.89 79.18 86.43

ROB+S2-OCL 85.78 90.98 93.77 92.64 95.40 96.87 84.76 89.31 92.01
BERT+S2-OCL 82.28 89.77 93.54 90.71 95.07 96.62 83.09 88.94 92.57
DROB+S2-OCL 82.60 90.65 93.38 90.78 95.02 96.69 81.69 88.75 92.38
RAND+S2-OCL 63.15 81.30 89.71 69.91 85.53 92.18 60.48 76.67 86.90

ROB+S1+S2-SMAX 86.27 90.58 94.06 92.44 95.62 96.76 85.87 88.83 92.48
BERT+S1+S2-SMAX 84.44 90.16 93.09 90.31 93.84 95.91 83.28 88.18 92.29
DROB+S1+S2-SMAX 83.32 89.85 93.47 90.42 94.13 96.47 83.36 88.75 92.57
RAND+S1+S2-SMAX 76.79 85.55 90.97 82.22 87.69 92.91 76.30 81.51 88.85

ROB+S2-SMAX 84.61 90.49 93.66 91.89 95.17 96.71 83.46 88.57 92.57
BERT+S2-SMAX 81.33 89.44 92.63 89.69 93.38 96.12 81.51 87.83 91.58
DROB+S2-SMAX 82.60 89.31 93.54 89.44 93.96 96.04 82.53 87.36 91.91
RAND+S2-SMAX 73.38 83.67 90.32 76.71 85.53 92.62 68.77 79.74 88.94

Baselines: MLP Classification

ROB+S1 83.08 90.16 93.38 90.98 94.12 96.42 81.13 87.73 91.44
BERT+S1 82.69 89.82 93.67 89.88 94.07 96.33 82.25 88.01 91.12
DROB+S1 82.95 89.55 93.34 89.76 93.46 96.02 81.23 87.64 90.91

CONVERT∗ 83.32 89.37 93.01 92.62 95.78 97.16 82.65 87.88 91.24
USE∗ 84.23 89.74 92.81 90.85 93.98 95.06 83.75 89.03 91.25
USE (ours) 82.95 89.09 92.81 90.27 93.54 94.91 82.71 88.20 91.64
LABSE 81.69 88.96 92.60 90.89 93.41 95.12 81.60 86.15 90.99

Baselines: Full Fine-Tuning

BERT (BASE)∗∗ 79.87 – 93.02 89.52 – 95.93 81.69 – 89.97

Table 4: Accuracy scores (×100%) on the three intent detection data sets with varying number of training examples
(10 examples per intent; 30 examples per intent; Full training data). As mentioned in §3, n = 3 negatives are used
in Stage 2 for 10-shot and 30-shot setups, n = 1 for the Full setup. The peak scores per column are in bold, the
second best is underlined. *The scores were taken directly from prior work, and computed on different 10/30-shot
samples (and are thus not directly comparable, Zhao et al. 2021) **The scores achieved by full (regular) fine-tuning
of BERT (BASE) have been taken directly from Mehri et al. (2020), and were not available for the 30-shot setup.
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Figure 8: A comparison of a randomly initialized BERT or RoBERTa architecture (RAND) with LM-pretrained
RoBERTa after Stage 2 CONVFIT-ing; evaluation on all three intent detection datasets; the COS loss used in S2.
Figure 9 shows the similar plots with the OCL loss used in S2.
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Figure 9: A comparison of a randomly initialized BERT or RoBERTa architecture (RAND) with LM-pretrained
RoBERTa after Stage 2 CONVFIT-ing; evaluation on all three intent detection datasets; the OCL loss used in S2.
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(a) 10-shot (ROB+S1+S2-COS)
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Figure 10: Varying the amount of Reddit data for Stage 1 CONVFIT; ×1 refers to the Reddit size used in all our
other Stage 1 fine-tuning experiments (≈2% of the full Reddit corpus from Henderson et al. (2019a)), while other
Reddit data sizes are relative to this corpus size (e.g., ×1/32 means that we use 2%/32 ≈ 0.0625% of the full
Reddit corpus). Stage 2 loss is COS (n = 3).
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Figure 11: Impact of the number of negative examples n on intent detection performance in 10-shot and 30-shot
setups. The CONVFIT model variants are ROB+S2+COS and ROB+S1+S2+COS, that is, RoBERTa is the input
LM in all experiments, and the results show model variants with the COS loss in Stage 2, without and with S1
fine-tuning (labelled +S2 and +S1+S2 in the figures, respectively).

BANKING77 CLINC150 HWU64
After 10 30 10 30 10 30
Epoch 1 86.30 91.40 92.80 96.02 86.15 90.33
Epoch 2 87.38 91.36 92.89 96.42 85.32 90.06
Epoch 5 87.28 91.46 93.29 96.32 85.69 89.98

Table 5: Impact of longer Stage 2 CONVFIT-ing on the final performance; ROB+S1+S2-OCL.
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(a) RoBERTa (10-shot S2) (b) RoBERTa (30-shot S2) (c) RoBERTa (Full S2)

Figure 12: t-SNE plots (van der Maaten and Hinton, 2012) of encoded utterances from the test set of BANKING77
(i.e., all examples are effectively unseen by the encoder models at training) associated with a selection of 12 intents.
The encoded utterances are created via mean-pooling based on fine-tuned RoBERTa encoders which underwent
Stage 1 plus Stage 2 in the (a) 10-shot Stage 2 setup (i.e., 10 examples per intent); (b) 30-shot setup; (c) Full setup
(see also §3). Stage 2: fine-tuning with the OCL objective (n = 3 negatives). The results suggest that even in
10-shot setups it is possible to learn coherent clusters and clear cluster separations; however, the clusters become
less and less compact, and less separated in the semantic space as we fine-tune with fewer in-task instances (e.g.,
compare the clusters in the 10-shot versus Full setup), and the fine-tuned encoder model is more prone to incorrect
cluster assignments. This (initially) visual observation is also supported by the Silhouette coefficient scores (higher
is better): (a) σ = 0.378, (b) σ = 0.548, (c) σ = 0.698.

(a) RoBERTa (10-shot S2) (b) RoBERTa (30-shot S2) (c) RoBERTa (Full S2)

Figure 13: t-SNE plots of encoded utterances from the test set of BANKING77 (i.e., all examples are effectively
unseen by the encoder models at training) associated with a selection of 12 intents. The encoded utterances are
created via mean-pooling based on RoBERTa as the input LM: (a) without any Stage 1 fine-tuning with Reddit
data; (b) Stage 1 fine-tuning with only 50k (context, response) Reddit pairs; (c) Stage 1 fine-tuning with 2% of the
full Reddit corpus of Henderson et al. (2019a) (≈15M pairs). Stage 2 in all three cases is performed in 10-shot
setups with the OCL objective (n = 3 negatives). The respective Silhouette coefficient scores (higher is better): (a)
σ = 0.320, (b) σ = 0.338, (c) σ = 0.378.

(a) DistilRoBERTa (no fine-tuning) (b) DistilRoBERTa (after S1) (c) DistilRoBERTa (after S1 and S2)

Figure 14: t-SNE plots of encoded utterances from the test set of BANKING77 (i.e., all examples are effectively
unseen by the encoder models) associated with a selection of 12 intents. The encoded utterances are created via
mean-pooling based on (a) the original DistilRoBERTa LM; (b) DistilRoBERTa after Stage 1 (i.e., fine-tuned on
2% of the full Reddit corpus, see Figure 1); (c) DistilRoBERTa after Stage 1 and Stage 2, fine-tuned with the COS
objective (n = 3 negatives) using the entire BANKING77 training set (see Figure 1).
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Name Abbreviation URL

bert-base-cased BERT huggingface.co/bert-base-uncased
roberta-base ROB huggingface.co/roberta-base
distilroberta-base DROB huggingface.co/distilroberta-base
LaBSE LaBSE huggingface.co/sentence-transformers/LaBSE
multilingual USE USE tfhub.dev/google/universal-sentence-encoder-multilingual-large/3

Table 6: URLs of the language models used in this work.

huggingface.co/bert-base-uncased
huggingface.co/roberta-base
huggingface.co/distilroberta-base
huggingface.co/sentence-transformers/LaBSE
tfhub.dev/google/universal-sentence-encoder-multilingual-large/3

