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Abstract

Intermediate task fine-tuning has been shown
to culminate in large transfer gains across
many NLP tasks. With an abundance of can-
didate datasets as well as pre-trained language
models, it has become infeasible to experiment
with all combinations to find the best transfer
setting. In this work, we provide a compre-
hensive comparison of different methods for
efficiently identifying beneficial tasks for inter-
mediate transfer learning. We focus on param-
eter and computationally efficient adapter set-
tings, highlight different data-availability sce-
narios, and provide expense estimates for each
method. We experiment with a diverse set
of 42 intermediate and 11 target English clas-
sification, multiple choice, question answer-
ing, and sequence tagging tasks. Our results
demonstrate that efficient embedding based
methods, which rely solely on the respective
datasets, outperform computational expensive
few-shot fine-tuning approaches. Our best
methods achieve an average Regret@3 of 1%
across all target tasks, demonstrating that we
are able to efficiently identify the best datasets
for intermediate training. 1

1 Introduction

Large pre-trained language models (LMs) are con-
tinuously pushing the state of the art across various
NLP tasks. The established procedure performs
self-supervised pre-training on a large text corpus
and subsequently fine-tunes the model on a spe-
cific target task (Devlin et al., 2019; Liu et al.,
2019b). The same procedure has also been ap-
plied to adapter-based training strategies, which
achieve on-par task performance to full model
fine-tuning while being considerably more param-
eter efficient (Houlsby et al., 2019) and faster to

∗Contributions made prior to joining Amazon.
1Code released at https://github.com/

Adapter-Hub/efficient-task-transfer.

train (Rücklé et al., 2021).2 Besides being more ef-
ficient, adapters are also highly modular, enabling
a wider range of transfer learning techniques (Pfeif-
fer et al., 2020b, 2021a,b; Üstün et al., 2020; Vidoni
et al., 2020; Rust et al., 2021; Ansell et al., 2021).

Extending upon the established two-step learn-
ing procedure, incorporating intermediate stages of
knowledge transfer can yield further gains for fully
fine-tuned models. For instance, Phang et al. (2018)
sequentially fine-tune a pre-trained language model
on a compatible intermediate task before target
task fine-tuning. It has been shown that this is most
effective for low-resource target tasks, however,
not all task combinations are beneficial and many
yield decreased performances (Phang et al., 2018;
Wang et al., 2019a; Pruksachatkun et al., 2020).
The abundance of diverse labeled datasets as well
as the continuous development of new pre-trained
LMs calls for methods that efficiently identify in-
termediate dataset that benefit the target task.

So far, it is unclear how adapter-based ap-
proaches behave with intermediate fine-tuning. In
the first part of this work, we thus establish that
this setup results in similar gains for adapters, as
has been shown for full model fine-tuning (Phang
et al., 2018; Pruksachatkun et al., 2020; Gururan-
gan et al., 2020). Focusing on a low-resource target
task setup, we find that only a subset of interme-
diate adapters yield positive gains, while others
hurt the performance considerably (see Table 1 and
Figure 2). Our results demonstrate that it is nec-
essary to obtain methods that efficiently identify
beneficial intermediately trained adapters.

In the second part, we leverage the transfer re-
sults from part one to automatically rank and iden-
tify beneficial intermediate tasks. With the rise
of large publicly accessible repositories for NLP

2Adapters are new weights at every layer of a pre-trained
transformer model. To fine-tune a model on a downstream
task, all pre-trained transformer weights are frozen and only
the newly introduced adapter weights are trained.

https://www.informatik.tu-darmstadt.de/ukp/ukp_home/index.en.jsp
https://github.com/Adapter-Hub/efficient-task-transfer
https://github.com/Adapter-Hub/efficient-task-transfer
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models (Wolf et al., 2020; Pfeiffer et al., 2020a),
the chances of finding pre-trained models that yield
positive transfer gains are high. However, it is infea-
sible to brute-force the identification of the best in-
termediate task. Existing approaches have focused
on beneficial task selection for multi-task learning
(Bingel and Søgaard, 2017), full fine-tuning of in-
termediate and target transformer-based LMs for
NLP tasks (Vu et al., 2020), adapter-based models
for vision tasks (Puigcerver et al., 2021) and unsu-
pervised approaches for zero-shot transfer for com-
munity question answering (Rücklé et al., 2020).
Each of these works require different types of data,
such as intermediate task data and/or intermediate
model weights, which, depending on the scenario,
are potentially not accessible.3

In this work we thus aim to address the effi-
ciency aspect of transfer learning in NLP from
multiple different angles, resulting in the follow-
ing contributions: 1) We focus on adapter-based
transfer learning which is considerably more pa-
rameter (Houlsby et al., 2019) and computationally
efficient than full model fine-tuning (Rücklé et al.,
2021), while achieving on-par performance; 2) We
evaluate sequential fine-tuning of adapter-based ap-
proaches on a diverse set of 42 intermediate and
11 target tasks (i.e. classification, multiple choice,
question answering, and sequence tagging); 3) We
identify the best intermediate task for transfer learn-
ing, without the necessity of computational expen-
sive, explicit training on all potential candidates.
We compare different selection techniques, con-
solidating previously proposed and new methods;
4) We provide a thorough analysis of the different
techniques, available data scenarios, and task-, and
model types, thus presenting deeper insights into
the best approach for each respective setting; 5) We
provide computational cost estimates, enabling in-
formed decision making for trade-offs between ex-
pense and downstream task performance.

2 Related Work

2.1 Transfer between tasks

Phang et al. (2018) show that training on interme-
diate tasks results in performance gains for many
target tasks. Subsequent work further explores the
effects on more diverse sets of tasks (Wang et al.,

3Bingel and Søgaard (2017) and Vu et al. (2020) require
access to both intermediate task data and models, Puigcerver
et al. (2021) require access to only the intermediate model,
and Rücklé et al. (2020) only to the intermediate task data.

2019a; Talmor and Berant, 2019; Liu et al., 2019a;
Sap et al., 2019; Pruksachatkun et al., 2020; Vu
et al., 2020). Wang et al. (2019a), Yogatama et al.
(2019), and Pruksachatkun et al. (2020) empha-
sizes the risks of catastrophic forgetting and neg-
ative transfer results, finding that the success of
sequential transfer varies largely when considering
different intermediate tasks.

While previous work has shown that intermedi-
ate task training improves the performance on the
target task in full fine-tuning setups, we establish
that the same holds true for adapter-based training.

2.2 Predicting Beneficial Transfer Sources

Automatically selecting intermediate tasks that
yield transfer gains is critical when considering
the increasing availability of tasks and models.

Proxy estimators have been proposed to evaluate
the transferability of pre-trained models towards a
target task. Nguyen et al. (2020), Li et al. (2021)
and Deshpande et al. (2021) estimate the trans-
ferability between classification tasks by building
an empirical classifier from the source and target
task label distribution. Puigcerver et al. (2021) ex-
periment with multiple model selection methods,
including kNN proxy models to estimate the target
task performance. In a similar direction, Reng-
gli et al. (2020) study proxy models based on kNN
and linear classifiers, finding that a hybrid approach
combination of task-aware and task-agnostic strate-
gies yields the best results.

Bingel and Søgaard (2017) find that gradients of
the learning curves correlate with multi-task learn-
ing success. Zamir et al. (2018) build a taxon-
omy of vision tasks, giving insights into non-trivial
transfer relations between tasks. Multiple works
propose using embeddings that capture statistics,
features, or the domain of a dataset. Edwards and
Storkey (2017) leverage variational autoencoders
(Kingma and Welling, 2014) to encode all samples
of a dataset. Jomaa et al. (2019) train a dataset
meta-feature extractor that can successfully cap-
ture the domain of a dataset. Vu et al. (2020)
encode each training example of a dataset by av-
eraging over BERT’s representations of the last
layer. Rücklé et al. (2020) capture domain simi-
larity by embedding dataset examples using a sen-
tence embedding model. Achille et al. (2019) and
Vu et al. (2020) compute task embeddings based on
the Fisher Information Matrix of a probe network.

While many different methods have been pro-
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posed, there lacks a direct comparison among them.
Additionally, previous work has only focus on
BERT, which we find to behave considerably dif-
ferent to other model types such as RoBERTa for
some methods. In this work we aim to consoli-
date all methods and experiment with newer model
types to provide a more thorough perspective.

3 Adapter-Based Sequential Transfer

We present a large-scale study on adapter-based
sequential fine-tuning, finding that around half of
the task combinations yield no positive gains. This
demonstrates the importance of finding approaches
that efficiently identify suitable intermediate tasks.

3.1 Tasks

We select QA tasks from the MultiQA repository
(Talmor and Berant, 2019) and sequence tagging
tasks from Liu et al. (2019a). Most of our clas-
sification tasks are available in the (Super)GLUE
(Wang et al., 2018, 2019b) benchmarks. We experi-
ment with multiple choice commonsense reasoning
tasks to cover a broader range of different types,
and domains. In total, we experiment with 53 tasks,
divided into 42 intermediate and 11 target tasks.4

3.2 Experimental Setup

We experiment with BERT-base (Devlin et al.,
2019) and RoBERTa-base (Liu et al., 2019b), train-
ing adapters with the configuration proposed by
Pfeiffer et al. (2021a). We adopt the two-stage se-
quential fine-tuning setup of Phang et al. (2018),
splitting the tasks in two disjoint subsets S and T ,
denoted as intermediate and target tasks, respec-
tively. For each pair (s, t) with s ∈ S and t ∈ T ,
we first train a randomly initialized adapter on s
(keeping the base model’s parameters fixed). We
then fine-tune the trained adapter on t.5

For target task fine-tuning, we simulate a low-
resource setup by limiting the maximum number
of training examples on t to 1000. This choice is
motivated by the observation that smaller target
tasks benefit the most from sequential fine-tuning
while at the same time revealing the largest per-
formance variances (Phang et al., 2018; Vu et al.,
2020). Low-resource setups, thus, reflect the most
beneficial application setting for our transfer learn-

4The choice for our intermediate and target task split was
motivated by previous work (Sap et al., 2019; Vu et al., 2020,
inter alia). For more details see Appendix A.

5For more details please refer to Appendix B.
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Figure 1: Comparison of transfer performance between
BERT and RoBERTa for the respective target tasks, pre-
trained on the 42 intermediate tasks.

ing strategy and also allow us to more thoroughly
study different transfer relations.

3.3 Results

Figure 2 shows the relative transfer gains and Ta-
ble 1 lists the absolute scores of all intermediate and
target task combinations for RoBERTa.6 We ob-
serve large variations in transfer gains (and losses)
across the different combinations. Even though
larger variances may be explained by a higher task
difficulty (see ‘No Transfer’ in Table 1), they also
illustrate the heterogeneity and potential of sequen-
tial fine-tuning in our adapter-based setting. At the
same time, we find several cases of transfer losses—
with up to 60% lower performances (see Figure 2)—
potentially occurring due to catastrophic forgetting.

Overall, for RoBERTa, 243 (53%) transfer com-
binations yield positive transfer gains whereas 203
(44%) yield losses. The mean of all transfer gains
is 2.3%. However, from our eleven target tasks
only five benefit on average (see ‘Avg. Transfer’
in Table 1). This illustrates the high risk of choos-
ing the wrong intermediate tasks. Avoiding such
hurtful combinations and efficiently identifying the
best ones is necessary; evaluating all combinations
is inefficient and often not feasible.

We further find that the best performing interme-
diate tasks for BERT and RoBERTa overlap con-
siderably as illustrated in Figure 1, with transfer
performances correlating with a Spearman correla-
tion of 0.94 when averaged over all settings, and
0.68 when averaged per target task.

6We list the corresponding transfer results for BERT in
Table 10 of the Appendix.
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Figure 2: Transfer gains/losses between all intermediate and target tasks with RoBERTa as base model. Each violin
represents one target task where each dot represents the relative transfer gain (y-axis) from one intermediate task.

Task BoolQ COPA CQ CS QA CoNLL
2003

DROP DepRel-
EWT

Quail R.
Toma-
toes

RTE STS-B

No Transfer 62.17 56.68 28.24 49.12 85.74 43.42 79.96 61.94 88.35 65.56 87.35

Avg. Transfer 66.93 66.49 30.60 47.88 83.80 43.96 74.59 60.50 86.95 70.38 86.31

ANLI 76.75 73.64 32.67 51.35 85.82 44.66 76.77 66.34 87.64 84.40 88.24
ART 70.87 79.00 27.12 53.02 84.48 41.01 74.39 64.00 87.73 73.43 88.45
CoLA 63.01 63.60 31.27 51.11 85.53 43.34 79.24 63.46 88.14 66.93 87.45
CoNLL’00 62.17 57.40 30.32 44.95 87.30 44.33 81.58 54.17 87.19 61.52 88.11
Cosmos QA 74.28 78.48 29.83 53.81 84.17 43.66 74.37 65.56 88.12 79.21 88.00
DuoRC-p 62.17 64.76 39.11 49.63 85.42 51.48 76.33 60.20 86.98 71.55 88.54
DuoRC-s 62.17 67.68 42.45 51.29 85.66 52.29 75.46 61.94 86.92 72.78 88.51
EmoContext 68.64 64.12 23.52 46.96 86.37 42.34 77.69 62.01 88.03 71.48 86.91
Emotion 65.54 60.36 22.58 45.54 84.41 42.22 77.03 59.99 88.01 63.97 87.59
GED-FCE 62.17 55.68 30.05 46.26 86.19 42.52 79.61 59.92 87.64 60.51 86.49
Hellaswag 69.44 77.24 30.67 56.05 85.87 42.86 75.34 62.06 87.64 76.82 88.67
HotpotQA 62.17 59.12 42.58 39.72 73.59 53.68 54.60 55.36 83.30 62.74 86.26
IMDb 68.09 62.76 28.04 46.18 85.90 43.30 77.55 61.60 88.97 68.45 86.38
MIT Movie 62.17 53.12 31.32 44.01 87.43 44.59 78.58 58.42 87.56 67.94 87.05
MNLI 75.86 76.20 31.52 48.80 85.59 43.95 71.41 61.27 88.31 83.47 89.25
MRPC 64.19 68.56 29.06 48.44 86.18 43.43 77.05 62.95 87.35 72.71 88.97
MultiRC 74.05 71.88 30.59 51.35 81.86 43.89 73.38 64.70 87.17 77.98 88.06
NewsQA 62.17 68.24 43.52 49.09 81.41 53.16 65.57 60.44 87.22 72.06 87.66
POS-Co.’03 62.17 51.08 20.09 23.11 87.14 40.74 81.84 41.31 71.24 53.14 78.53
POS-EWT 62.17 53.96 31.21 46.22 87.76 44.31 82.25 55.71 86.81 56.17 87.55
QNLI 73.61 72.00 36.01 51.94 85.96 46.47 76.91 64.67 87.64 70.76 89.07
QQP 63.03 72.16 24.27 48.85 81.77 41.79 69.14 61.57 87.58 72.71 89.51
QuaRTz 69.44 68.60 27.30 50.48 86.01 42.69 78.56 62.47 88.16 68.30 88.27
Quoref 62.17 60.72 40.34 46.83 85.86 52.95 76.98 62.75 87.04 71.48 88.19
RACE 76.72 72.04 23.91 53.15 81.05 42.46 65.74 67.89 87.19 83.32 88.13
ReCoRD 62.17 63.28 28.25 46.50 84.21 41.85 71.87 63.63 86.96 71.41 86.98
SICK 72.53 73.48 29.66 53.89 85.45 44.11 79.23 63.63 87.94 75.02 88.26
SNLI 69.61 72.36 19.08 42.21 32.29 14.66 28.62 52.53 82.78 76.39 85.90
SQuAD 62.17 68.36 39.71 51.09 86.48 57.40 76.33 61.99 86.21 72.27 87.82
SQuAD 2.0 68.34 73.24 44.40 50.43 86.14 59.78 76.99 63.79 87.90 75.60 89.06
SST-2 67.14 65.84 28.43 47.81 85.66 42.73 77.28 60.82 92.03 69.82 86.75
ST-PMB 62.17 52.16 15.53 26.36 87.47 28.00 81.94 38.31 78.71 53.43 39.12
SWAG 69.30 74.64 28.96 55.00 85.61 43.30 76.97 63.71 88.35 74.44 89.32
SciCite 65.98 64.44 28.75 47.71 86.07 42.18 78.95 62.40 87.77 68.59 86.63
SciTail 72.13 72.00 29.91 53.89 84.74 43.74 77.72 63.77 87.82 73.94 89.93
Social IQA 73.36 79.92 30.88 56.41 86.00 43.34 78.38 65.91 88.27 78.34 88.57
TREC 67.41 59.92 31.47 48.04 86.09 42.86 78.02 62.38 88.14 70.32 86.94
WNUT17 62.17 53.08 28.13 45.36 87.96 44.03 77.51 55.59 87.54 61.44 86.00
WiC 62.17 72.88 29.55 52.09 85.73 42.74 79.08 63.16 87.92 68.23 88.00
WikiHop 62.18 55.64 41.35 39.02 84.40 46.45 70.47 56.87 86.59 62.74 85.56
WinoGrande 69.93 73.04 29.58 54.58 86.16 43.54 76.75 63.93 87.94 75.16 87.88
Yelp Polarity 66.97 65.80 22.41 42.42 80.42 37.40 69.25 57.74 89.31 64.98 82.45

Table 1: Target task performances for transferring between intermediate tasks (rows) and target tasks (columns)
with RoBERTa as base model. The first row ‘No Transfer’ shows the baseline performance when training only on
the target task without transfer. All scores are mean values over five random restarts.
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4 Methods for the Efficient Selection of
Intermediate Tasks

We now present different model selection meth-
ods, and later in §5, study their effectiveness in
our setting outlined above. We group the differ-
ent methods based on the assumptions they make
with regard to the availability of intermediate task
data DS and intermediate models MS . Access to
both can be expensive when considering large pre-
trained model repositories with hundreds of tasks.

4.1 Metadata: Educated Guess

A setting in which there exist neither access to the
intermediate task data DS nor models trained on
the data MS , can be regarded as an educated guess
scenario. The selection criterion can only rely on
metadata available for an intermediate task dataset.

Dataset Size. Under the assumption that more
data implies better transfer performance, the selec-
tion criterion denoted as Size ranks all intermediate
tasks in descending order by the training data size.

Task Type. Under the assumption that similar ob-
jective functions transfer well, we pre-select the
subset of tasks of the same type. This approach
may be combined with a random selection of the
remaining tasks, or with ranking them by size.

4.2 Intermediate Task Data

With an abundance of available datasets,7 and the
continuous development of new LMs, fine-tuned
versions for every task-model combination are not
(immediately) available. The following methods,
thus, leverage the intermediate task data DS with-
out requiring the respective fine-tuned models MS .

Text Embeddings (TextEmb). Vu et al. (2020)
pass each example through a LM and average over
the output representations of the final layer (across
all examples and all input tokens). Assuming that
similar embeddings imply positive transfer gains,
they rank the intermediate tasks according to their
embeddings’ cosine similarity to the target task.

SBERT Embeddings (SEmb). Sentence embed-
ding models such as Sentence-BERT (SBERT;
Reimers and Gurevych, 2019) may be better suited
to represent the dataset examples. Similar to Tex-
tEmb, we rank the intermediate tasks according to
their embedding cosine similarity.

7e.g. via https://huggingface.co/datasets.

4.3 Intermediate Model

Scenarios in which we only have access to the
trained intermediate models (MS) occur when the
training data is proprietary or if implementing all
dataset is too tedious. With the availability of
model repositories (Wolf et al., 2020; Pfeiffer et al.,
2020a) such approaches can be implemented with-
out requiring additional data during model upload
(i.e. in contrast to TaskEmbs, where the training
dataset information needs to be made available).
The following describes methods only requiring
access to the intermediate models MS .

Few-Shot Fine-Tuning (FSFT). Fine-tuning of
all available intermediate task models on the entire
target task is infeasible. As an alternative, we can
train models for a few steps on the target task to
approximate the final performance. After N steps
on the target task, we rank the intermediate models
based on their respective transfer performance.

Proxy Models. Following Puigcerver et al. (2021),
we leverage simple proxy models to obtain a perfor-
mance estimation of each trained model MS on on
the target dataset DT . Specifically, we experiment
with k-Nearest Neighbors (kNN), with k = 1 and
Euclidian distance, and logistic/ linear regression
(linear) as proxy models. For both, we first com-
pute hMxi , the token-wise averaged output represen-
tations of MS , for each training input xi ∈ DT .
Using these, we define DM

T = {(hMxi , yi)}
N
i=1 as

the target dataset embedded by MS . In the next
step, we apply the proxy model on DM

T and obtain
its performance using cross-validation. By repeat-
ing this process for each intermediate task model,
we obtain a list of performance scores which we
leverage to rank the intermediate tasks.

4.4 Intermediate Model and Task Data

Access to both intermediate dataset DS and in-
termediates model MS provides a wholesome de-
piction of the intermediate task, as all previously
mentioned methods are applicable in this scenario.
Further methods which require access to both are:

Task Embeddings (TaskEmb). Achille et al.
(2019) and Vu et al. (2020) obtain task embeddings
via the Fisher Information Matrix (FIM). The FIM
captures how sensitive the loss function is towards
small perturbations in the weights of the model
and thus gives an indication on the importance of
certain weights towards solving a task.

Given the model weights θ and the joint distribu-

https://huggingface.co/datasets
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tion of task features and labels Pθ(X,Y ), we can
define the FIM as the expected covariance of the
gradients of the log-likelihood w.r.t. θ:

Fθ = Ex,y∼Pθ(X,Y ) [∇θ logPθ(x, y) · ∇θ logPθ(x, y)ᵀ]

We follow the implementation details given in Vu
et al. (2020). For a dataset D and a model M fine-
tuned on D, we compute the empirical FIM based
on D’s examples. The task embeddings are the
diagonal entries of the FIM.

Few-Shot Task Embeddings (FS-TaskEmb). We
also leverage task embeddings in our few-shot sce-
nario outlined above (see FSFT), where we fine-
tune intermediate models for a few steps on the
target dataset. With very few training instances, the
accuracy scores of FSFT (alone) may not be reli-
able indicators of the final transfer performances.
As an alternative, we compute the TaskEmb simi-
larity of each intermediate model before and after
training N steps on the target task. We then rank
all intermediate models in decreasing order of this
similarity.

5 Experimental Setup

We evaluate the approaches of §4, each having the
objective to rank the intermediate adapters s ∈ |S|
with respect to their performance on t ∈ T when
applied in a sequential adapter training setup. We
leverage the transfer performance results of our 462
experiments obtained in §3 for our ranking task.

5.1 Hyperparameters

If not otherwise mentioned, we follow the exper-
imental setup as described in §3. We describe
method specific hyperparameters in the following.

SEmb. We use a Sentence-(Ro)BERT(a)-base
models, fine-tuned on NLI and STS tasks, in con-
cordance with the respective target model type.

FSFT. We fine-tune each intermediate adapter on
the target task for one full epoch and rank them
based on their target task performances.8

Proxy Models. For both kNN and linear, we obtain
performance scores with 5-fold cross-validation
on each target task. The architectures slightly vary
across task types. For classification, regression, and
multiple-choice target tasks, proxy models predict
the label or answer choice. For sequence tagging

8As this represents a rather optimistic estimate of the few-
shot transfer performance, in Appendix D we also investigate
settings in which we train for only 5, 10, or 25 update steps.

tasks, each token in a sequence represents a training
instance of DM

T , with the tag being the class label.
Since this would increase the total number of train-
ing examples, we randomly select 1000 embedded
examples from DT , to maintain equal sizes of DM

T

across all target tasks. We do not study proxy mod-
els on extractive QA tasks as they cannot directly
be transformed into classification tasks.

TaskEmb. We perform standard fine-tuning of ran-
domly initialized adapter modules within the pre-
trained LM to obtain task embeddings.

FS-TaskEmb. We follow the setup of FSFT by
training for one epoch (50 update steps).

5.2 Metrics

We compute the NDCG (Järvelin and Kekäläinen,
2002), a widely used information retrieval metric
that evaluates a ranking with attached relevances
(which correspond to our transfer results of §3).

Furthermore, we calculate Regret@k (Renggli
et al., 2020), which measures the relative perfor-
mance difference between the top k selected inter-
mediate tasks and the optimal intermediate task:

Regretk =

O(S,t)︷ ︸︸ ︷
max
s∈S

E[T (s, t)]−
Mk(S,t)︷ ︸︸ ︷

max
ŝ∈Sk

E[T (ŝ, t)]

O(S, t)

where T (s, t) is the performance on target task t
when transferring from intermediate task s. O(S, t)
denotes the expected target task performance of an
optimal selection. Mk(S, t) is the highest perfor-
mance on t among the k top-ranked intermediate
tasks of the tested selection method. We take the
difference between both measures and normalize
it by the optimal target task performance to obtain
our final relative notion of regret.9

6 Experimental Results

Table 2 shows the results when selecting among
all available intermediate tasks for BERT and
RoBERTa.10 As expected the Random and Size
baselines do not yield good rankings when select-
ing among all intermediate tasks.

Access to only DS or MS. These methods typi-
cally perform better than our baselines.

9We provide more details about our selection of metrics in
Appendix C.

10Table 5 in the appendix shows results when preferring
tasks of the same type for BERT and RoBERTa.
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Classification M. Choice QA Tagging All
NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3

- Random 0.49 11.09 5.55 0.43 13.80 6.30 0.33 26.95 18.98 0.60 7.65 2.82 0.47 14.09 7.70
Size 0.53 10.80 6.26 0.39 14.89 11.10 0.36 33.18 33.18 0.48 8.44 8.44 0.45 15.55 12.87

DS
SEmb 0.82 0.27 0.27 0.79 4.47 0.00 0.49 17.04 7.59 0.80 0.47 0.47 0.75 4.50 1.56
TextEmb 0.72 2.54 1.20 0.74 2.94 0.00 0.48 17.04 15.34 0.88 0.47 0.11 0.71 4.91 3.25

MS

FSFT 0.89 0.28 0.00 0.89 0.00 0.00 0.28 21.21 18.20 0.97 0.00 0.00 0.79 3.96 3.31
kNN 0.83 2.49 0.12 0.76 1.91 1.57 - - - 0.88 1.44 0.11 - - -
linear 0.79 2.51 1.00 0.89 0.00 0.00 - - - 0.92 0.28 0.28 - - -

DS ,MS
FS-TaskEmb 0.87 0.19 0.19 0.73 3.03 0.83 0.28 12.90 10.38 0.88 0.19 0.19 0.73 3.28 2.22
TaskEmb 0.71 14.04 3.08 0.67 6.70 1.92 0.24 30.02 22.40 0.78 31.84 0.19 0.63 18.18 5.75

(a) RoBERTa

Classification M. Choice QA Tagging All
NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3

- Random 0.45 8.61 6.04 0.50 8.40 5.03 0.44 29.35 18.65 0.56 7.26 2.95 0.48 12.08 7.50
Size 0.51 11.34 5.87 0.50 11.85 7.51 0.42 33.80 33.80 0.48 9.37 9.37 0.48 15.20 12.03

DS
SEmb 0.78 0.75 0.53 0.59 7.93 1.25 0.88 2.98 0.00 0.79 0.56 0.56 0.75 3.08 0.63
TextEmb 0.81 1.26 0.75 0.60 6.77 1.46 0.86 2.98 2.42 0.79 0.56 0.51 0.76 2.95 1.20

MS

FSFT 0.93 0.33 0.33 0.72 4.16 1.64 0.39 17.07 17.07 0.89 0.65 0.50 0.77 4.48 3.76
kNN 0.90 1.10 0.00 0.68 2.82 1.85 - - - 0.94 0.00 0.00 - - -
linear 0.82 3.66 1.86 0.76 1.35 0.86 - - - 0.96 0.00 0.00 - - -

DS ,MS
FS-TaskEmb 0.92 0.62 0.00 0.72 5.38 0.93 0.66 11.17 2.07 0.82 1.37 0.50 0.80 3.97 0.72
TaskEmb 0.83 3.89 2.02 0.72 4.19 1.17 0.67 3.61 3.61 0.73 1.36 0.50 0.75 3.46 1.80

(b) BERT

Table 2: Evaluation of intermediate task rankings produced by different methods for RoBERTa (a) and BERT (b).
The table shows the mean NDCG and Regret scores by target task type. The best score in each group is highlighted
in bold, best overall score is underlined. For NDCG, higher is better; for Regret, lower is better.

TextEmb and SEmb perform on par in most
cases.11 While FSFT outperforms the other ap-
proaches in most cases, it comes at the high cost
of requiring downloading and fine-tuning all inter-
mediate models for a few steps. This can be pro-
hibitive if we consider many intermediate tasks. If
we have access to TextEmb or SEmb information
of the intermediate task (i.e., individual vectors
distributed as part of a model repository), these
techniques yield similar performances at a much
lower cost.
Access to both DS and MS. Assuming the avail-
ability of both intermediate models and intermedi-
ate data is the most prohibitive setting. Surprisingly,
we find BERT and RoBERTa to behave consider-
ably differently, especially evident for QA tasks.
As shown by Vu et al. (2020), TaskEmb performs
very well for BERT, however we find that the re-
sults of this gradient based approach do not trans-
late to RoBERTa. While these approaches perform
best or competitively for all task types using BERT,
they considerably underperform all methods when
leveraging pre-trained RoBERTa weights. Here,
the two much simpler domain embedding methods
outperform the TaskEmb method based on the FIM.
Summary. We find that simple indicators such

11The used SBERT model is trained on NLI and STS-B
tasks, which are included in our set of intermediate and target
tasks, respectively. A direct comparison between TextEmb and
SEmb for the respective classification tasks is thus difficult.

as domain similarity are suitable for selecting in-
termediate pre-training tasks for both BERT and
RoBERTa based models. Our evaluated methods
are able to efficiently select the best performing
intermediate tasks with a Regret@3 of 0.0 in many
cases. Our results, thus, show that the selection
methods are able to effectively rank the top tasks
with relative certainty, thus considerably reducing
the number of necessary experiments.12

7 Analysis

Computational Costs. Table 3 estimates the com-
putational costs of each transfer source selection
method. Complexity shows the required data passes
through the model.13 For the embedding-based ap-
proaches, we assume pre-computed embeddings
for all intermediate tasks. For TaskEmb, we only
train an adapter on the target task for e epochs.

In addition to the complexity, we calculate the re-
quired Multiply-Accumulate computations (MAC)
for 42 intermediate tasks and one target task with
1000 training examples, each with an average se-
quence length of 128.14 Following our experi-

12We also find that combining domain and task type match
indicators often yield the best overall results, outperforming
computationally more expensive methods. See Appendix ??
for more experiments with task type pre-selection.

13We neglect computations related to embedding similari-
ties and proxy models as they are cheap compared to model
forward/ backward passes.

14We recorded MAC with the pytorch-OpCounter package.

https://github.com/Lyken17/pytorch-OpCounter/
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Method Complexity MACs
Metadata 1 0
TextEmb/ SEmb f 1.10E+13
TaskEmb (e+ 1)f + eb 3.30E+14
kNN/ linear nf 4.61E+14
FSFT/ FS-TaskEmb 2nef + neb 1.38E+15

Table 3: Computational cost of transfer source selec-
tion. f denotes a forward pass through all target task
examples once, b is the corresponding backward pass,
n is the number of source models, and e is the number
of full training epochs (for FS approaches e ≤ 1).

NDCG R@1 R@3 R@5

SEmb-BERTD 0.72 5.50 2.07 1.69
SEmb-BERTB 0.72 4.99 1.16 0.07
SEmb-BERTL 0.70 6.30 2.12 1.01
SEmb-RoBERTaD 0.77 4.60 0.82 0.44
SEmb-RoBERTaB 0.75 4.50 1.56 0.48
SEmb-RoBERTaL 0.74 3.96 0.47 0.07

Table 4: Intermediate SEmb rankings for RoBERTa
tasks produced by different model-type variants. D, B,
and L stand for Distill, Base, and Large, respectively.
The table shows the mean NDCG and Regret scores.
For NDCG, higher is better; for Regret, lower is better.

mental setup in §5, we set e = 15 for TaskEmb
and e = 1 for FSFT/ FS-TaskEmb. We find that
embedding-based methods require two orders of
magnitude fewer computations compared to fine-
tuning approaches. The difference may be even
larger when we consider more intermediate tasks.
Since fine-tuning approaches do not yield gains that
would warrant the high computational expense (see
§6), we conclude that SEmb has the most favorable
trade-off between efficiency and effectiveness.

SEmb Model Dependency. We compare differ-
ent pre-trained sentence-embedding model variants
to identify the extent to which SEmb is invari-
ant to such changes. We experiment with BERT
and RoBERTa variants of sizes Distill, Base, and
Large, and present results for RoBERTa tasks in Ta-
ble 4.15 We find that all variants perform compara-
bly, demonstrating that SEmb is a computationally
efficient, model-type invariant method for selecting
beneficial intermediate tasks.

BERT vs RoBERTa TaskEmb Space. To better
understand the TaskEmb performance differences
between BERT and RoBERTa models, we visualize
the respective embedding spaces using T-SNE in
Figure 3. We find that BERT embeddings are clus-
tered much more closely in the vector space than

15The full results can be found in Table 7 of the appendix.
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Figure 3: Clustering of BERT and RoBERTa
TaskEmbs, respectively, using T-SNE. Colors indicate
task types. We compared different random seeds, all of
which resulted in similar visualizations.
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Figure 4: Relative transfer gains for transfer within and
across types, split by target task type. Results shown
for RoBERTa.

RoBERTa embeddings. While TaskEmbs of BERT
also seem to be located in the proximity of related
tasks, TaskEmbs of RoBERTa are distributed fur-
ther apart. This can result in worse performance
due to the curse of dimensionality.

Overall, our results and analysis suggest that
TaskEmb, unlike SentEmb, considerably depend
on the chosen base model.

Within- and Across-Type Transfer. Our experi-
mental setup includes tasks of four different types,
i.e. Transformer prediction head structures: se-
quence classification/ regression, multiple choice,
extractive question answering and sequence tag-
ging. Figure 4 compares the relative transfer gains
within and across these task types for RoBERTa.
We see that within-type transfer is consistently
stronger across all target tasks. We find the largest
differences between within-type and across-type
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transfer for the extractive QA target tasks. These
observations may be partly explained by the ho-
mogeneity of the included QA intermediate tasks;
They overwhelmingly focus on general reading
comprehension across multiple domains with para-
graphs from Wikipedia or the web as contexts.
Tasks of other types more distinctly focus on indi-
vidual domains and scenarios.

Overall, we find a negative across-type transfer
gain (i.e., loss) for 8 out of 11 tested target tasks
(on average). This suggests that task type match
between intermediate and target task is a strong
indicator for transfer success. Thus, in the next sec-
tion, we evaluate variants of all methods presented
in §4 that prefer intermediate tasks of the same type
as the target task.

Pre-Ranking by Task Types. We implement a
simple mechanism to ensure that tasks with the
same type as the target task are always ranked be-
fore tasks of other types during intermediate task
selection. Given a task selection method, we first
rank all tasks of the same type at the top before
ranking tasks of all other types below. Results for
applying this mechanism to all presented task se-
lection methods are given for BERT and RoBERTa
in Table 5 of the Appendix.

We find that even though the random and Size
baselines do not yield good rankings when select-
ing among all intermediate tasks (cf. Table 2), the
scores considerably improve when preferring tasks
of the same type. In general, we see almost consis-
tent improvements across all task selection methods
for both BERT and RoBERTa when implementing
pre-ranking by task types. Considering all target
tasks and all methods, preferring intermediate tasks
of the same type yields improved NDCG scores in
77 of 99 cases.

Further Analysis. We further find that embedding
based approaches are sample efficient, while FSFT
appproaches are not (§D). We also report results for
combining ranking approaches with Rank Fusion,
which does not yield consistent improvements over
the individual approaches presented before (§E).

8 Conclusion

In this work we have established that intermedi-
ate pre-training can yield gains in adapter-based
setups, however, around 44% of all transfer combi-
nations result in decreased performances. We have
consolidated several existing and new methods for
efficiently identifying beneficial intermediate tasks.

Experimenting with different model types, we find
that the previously proposed best performing ap-
proaches for BERT do not translate to RoBERTa.

Overall, efficient embedding based methods,
such as those relying on pre-computable sentence
representations, perform better or often on-par
with more expensive approaches. The best meth-
ods achieve a Regret@3 of less than 1% on aver-
age, demonstrating that they are effective at effi-
ciently identifying the best intermediate tasks. The
approaches evaluated and proposed in this work,
thus, enable the automatic identification of benefi-
cial intermediate tasks, deeming exhaustive experi-
mentation on many task-combinations unnecessary.
When applied on a broad scale, these methods can
contribute to more sustainable (Strubell et al., 2019;
Moosavi et al., 2020) and more inclusive (Joshi
et al., 2020) natural language processing.
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A Tasks

Our experiments cover a diverse set of 53 different
tasks, broadly divided into the four task types se-
quence classification/ regression, multiple choice,
extractive question answering and sequence tag-
ging. Motivated by previous work, we first select
tasks that are either part of widely used bench-
marks (Wang et al., 2018, 2019b; Talmor and Be-
rant, 2019) or have been successfully applied to se-
quential transfer setups previously (Sap et al., 2019;
Liu et al., 2019a; Pruksachatkun et al., 2020; Vu
et al., 2020). Additionally, we include other recent
challenging tasks that fall under the four defined
task types (e.g. Bhagavatula et al. (2020); Rogers
et al. (2020)) and tasks that extend the range of
included dataset sizes and task domains. In general,
we focus on tasks with publicly available datasets,
e.g. via HuggingFace Datasets16. Our full set of
tasks is split into 42 intermediate tasks, presented
in Table 8, and 11 target tasks, presented in Table 9.

B Transfer training details

For all our experiments, we use the PyTorch imple-
mentations of BERT and RoBERTa in the Hugging-
Face Transformers library (Wolf et al., 2020) as the
basis. The adapter implementation is provided by
the AdapterHub framework (Pfeiffer et al., 2020a)
and integrated into the Transformers library 17.

In the light of the number and variety of dif-
ferent tasks used, we don’t perform any extensive

16https://huggingface.co/datasets
17https://github.com/Adapter-Hub/

adapter-transformers
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https://github.com/Adapter-Hub/adapter-transformers
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hyperparameter tuning on each training task. We
mostly adhere to the hyperparameter recommen-
dations of the Transformers library and Pfeiffer
et al. (2021a) for adapter training. Specifically,
we train all adapters for a maximum of 15 epochs,
with early stopping after 3 epochs without improve-
ments on the validation set. We use a learning rate
of 10−4 and batch sizes between 4 and 32, depend-
ing on the size of the dataset. These settings apply
to the adapter training on each intermediate task
as well as the subsequent fine-tuning on the tar-
get dataset. Additionally, since performances on
the low-resource target tasks can be unstable, we
perform multiple random restarts (five restarts for
RoBERTa and three restarts for BERT) for all train-
ing runs on the target tasks, reporting the mean
of all restarts. The final scores on each task are
computed on the respective tests set if publicly
available, otherwise on the validation sets.

Results for RoBERTa are shown in Table 1 and
results for BERT are shown in Table 10.

C Metrics for transfer source selection

C.1 NDCG

Following Vu et al. (2020), we compute the Nor-
malized Discounted Cumulative Gain (NDCG)
(Järvelin and Kekäläinen, 2002), a widely used in-
formation retrieval metric that evaluates a ranking
with attached relevances. The NDCG is defined
via the Discounted Cumulative Gain (DCG), which
represents a relevance score for a set of items, each
discounted by its position in the ranking. The DCG
of a ranking R, accumulated at a particular rank
position p, can be computed as:

DCGp(R) =

p∑
i=1

2reli − 1

log2(i+ 1)

In our setting, R refers to a ranking of interme-
diate tasks where the relevance reli of the inter-
mediate task with rank i is set to the mean target
performance when transferring the adapter trained
on this intermediate task, i.e. reli ∈ [0, 100]. We
always evaluate the full ranking of intermediate
tasks, thus we set p = |S|.

The NDCG finally normalizes the DCG of the
ranking predicted by the task selection method
(Rpred) by the perfect ranking produced by the
empirical transfer results (Rtrue). An NDCG of
100% indicates a perfect ranking.

101 102 103

Dataset examples
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0.55

0.60

0.65
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CG

TextEmb
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TaskEmb

Figure 5: Intermediate task selection performances for
feature embedding methods with different data sizes on
the target task. Results shown for RoBERTa and aver-
aged over all targets.

NDCGp(R) =
DCGp(Rpred)

DCGp(Rtrue)

C.2 Choice of metrics

Our selection of evaluation metrics combines two
measures that both evaluate the quality of the full
ranking (NDCG) and the top selections of each
methods (Regret). We prefer this combination of
metrics over various other common possible eval-
uation metrics. We experimented with classical
correlation measures such as Spearman rank corre-
lation, finding they give poor indication on the over-
all quality of a selection method. The Spearman
correlation is agnostic to the location within the
ranking, thus penalizing mismatches at the bottom
of the ranking with the same weight as mismatches
at the top. In our setting, the top ranks are more im-
portant, making the NDCG which is biased towards
correct rankings at the top a better fit. Renggli et al.
(2020) further discuss the limitations of correlation
as an evaluation metric for task selection.

Vu et al. (2020) use the average predicted rank ρ
of the source task with the best target performance
as an additional metric. However, this metric does
not account for the real target performance differ-
ence between the top ranked source tasks across
different methods. In a simple example, assume
two selection methods A and B assign the top per-
forming source task smax to the same average rank.
Further, A ranks a different source task on top
which nearly performs on par with smax while B
predicts a much weaker source task on top. In this
case, we clearly would want to prefer method A
over method B. Unlike ρ, our choice of regret as
evaluation metric considers these differences.
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Figure 6: Intermediate task selection performances for
fine-tuning methods at different checkpoints. Results
shown for RoBERTa and averaged over all targets.

D Sample Efficiency

Embedding-based approaches. Intermediate pre-
training can have a larger impact on small target
tasks. We therefore analyze and compare the effec-
tiveness of embedding-based approaches with only
10, 100, and 1000 target examples.

Figure 5 plots the results for all feature embed-
ding methods when applied to intermediate task
selection for RoBERTa. We find that the quality of
the rankings can decrease substantially in the small-
est setting with only 10 target examples. SEmb is
a notable exception, achieving results close to that
of the full 1000 examples (73% vs. 74.9% NDCG).
With that, SEmb consistently performs above all
other methods in all settings.
Few-Shot approaches. We experiment with N ∈
{5, 10, 25, 50} update steps for the fine-tuning
methods FSFT and FS-TaskEmb. Results for
RoBERTa are shown in Figure 6. While unsurpris-
ingly, the performance for both methods improves
consistently with the number of fine-tuning steps,
FS-TaskEmb produces superior rankings at earlier
checkpoints, however is outperformed by FSFT on
the long run. The results indicate that updating
for < 25 update steps does not provide sufficient
evidence to reliably predict the best intermediate
tasks.

E Rank Fusion

Vu et al. (2020) use the Reciprocal Rank Fusion
algorithm (Cormack et al., 2009) to aggregate
the rankings of TextEmb and TaskEmb. further
experiment with various combinations of ranks
produced by methods of different categories, e.g.
Size + SEmb. Table 6 shows the results for a selec-
tion of all possible method combinations when ap-
plied to intermediate task selection for RoBERTa.

In a few cases, fusing improves performance

over the single-method performances of all in-
cluded methods (e.g. TaskEmb+TextEmb). How-
ever, for most cases, rank fusion performance is
either roughly on-par with the performance of the
best included single method (e.g. SEmb+TaskEmb)
or even hurts task selection performance sometimes
significantly (e.g. Size+SEmb). Thus, while adding
additional computational overhead to the task se-
lection process, fusing does not yield better perfor-
mance in general.

F SEmb Model Dependency

The full results of our experiments with sentence-
embedding model variants can be found in Table 7.
Experiments were conducted on RoBERTa transfer
results.
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Classification M. Choice QA Tagging All
NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3

- Random-T 0.54 8.81 5.09 0.66 5.50 1.81 0.57 9.46 3.78 0.84 1.54 0.38 0.63 6.71 3.10
Size-T 0.54 10.80 6.26 0.66 4.30 1.22 0.96 0.00 0.00 0.87 0.47 0.47 0.71 5.18 2.69

DS
SEmb-T 0.83 0.27 0.27 0.92 0.00 0.00 0.54 7.76 4.04 0.94 0.47 0.00 0.82 1.59 0.83
TextEmb-T 0.75 2.13 0.19 0.89 0.38 0.00 0.62 4.04 2.05 0.95 0.47 0.00 0.80 1.70 0.44

MS

FSFT-T 0.86 0.28 0.00 0.93 0.00 0.00 0.49 10.99 10.39 0.97 0.00 0.00 0.83 2.10 1.89
kNN-T 0.82 2.49 0.12 0.81 1.91 1.91 - - - 0.95 0.11 0.11 - - -
linear-T 0.78 1.84 1.49 0.96 0.00 0.00 - - - 0.95 0.00 0.00 - - -

DS ,MS
FS-TaskEmb-T 0.88 0.19 0.00 0.75 3.03 0.83 0.46 12.90 4.19 0.93 0.19 0.19 0.78 3.28 1.02
TaskEmb-T 0.76 4.82 0.12 0.76 3.74 0.60 0.45 12.90 5.42 0.92 0.19 0.19 0.73 5.15 1.23

(a) RoBERTa

Classification M. Choice QA Tagging All
NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3

- Random-T 0.50 8.88 5.58 0.58 6.14 3.31 0.72 8.49 2.95 0.74 2.02 0.91 0.61 6.82 3.63
Size-T 0.53 11.34 5.87 0.60 5.97 1.78 0.84 3.61 0.00 0.74 1.36 0.85 0.64 6.65 2.78

DS
SEmb-T 0.82 0.75 0.31 0.74 0.93 0.93 0.89 2.98 0.00 0.83 0.56 0.51 0.81 1.17 0.46
TextEmb-T 0.82 1.26 0.75 0.72 1.95 0.93 0.87 2.98 2.42 0.82 0.56 0.51 0.80 1.63 1.06

MS

FSFT-T 0.92 0.33 0.00 0.73 5.38 1.95 0.78 0.00 0.00 0.88 0.65 0.50 0.84 1.70 0.62
kNN-T 0.91 1.10 0.00 0.70 2.82 1.46 - - - 0.88 0.56 0.51 - - -
linear-T 0.79 3.00 1.70 0.73 2.94 0.93 - - - 0.85 0.91 0.51 - - -

DS ,MS
FS-TaskEmb-T 0.95 0.00 0.00 0.71 5.38 0.93 0.67 11.17 2.07 0.80 1.37 0.50 0.81 3.75 0.72
TaskEmb-T 0.87 2.13 0.33 0.72 4.19 0.93 0.77 3.61 0.00 0.80 1.36 0.50 0.80 2.82 0.46

(b) BERT

Table 5: Evaluation of intermediate task rankings produced by different methods for RoBERTa (a) and BERT (b)
when preferring tasks of the same type. The table shows the mean NDCG and Regret scores by target task type.
The best score in each group is highlighted in bold, best overall score is underlined. For NDCG, higher is better;
for Regret, lower is better.

Classification M. Choice QA Tagging All
NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3

DS
Size+SEmb 0.72 5.68 0.47 0.64 6.95 2.39 0.61 33.18 0.00 0.60 7.81 1.33 0.66 11.41 1.06
Size+TextEmb 0.77 2.13 1.13 0.59 6.98 4.86 0.52 33.18 2.05 0.62 7.94 1.33 0.65 10.15 2.35

MS

FSFT+kNN+linear 0.91 0.19 0.12 0.83 1.91 0.00 - - - 0.95 0.11 0.11 - - -
Size+FSFT 0.80 1.21 0.19 0.55 9.56 2.39 0.28 57.20 18.52 0.66 5.33 0.47 0.62 14.42 4.17
Size+kNN 0.73 6.42 0.12 0.50 7.07 4.30 - - - 0.62 8.44 1.03 - - -
Size+linear 0.70 3.53 2.44 0.61 4.30 2.39 - - - 0.66 4.37 0.47 - - -

DS ,MS

FSFT+FS-TaskEmb 0.90 0.46 0.00 0.88 0.83 0.00 0.25 34.25 18.20 0.93 0.19 0.19 0.78 6.66 3.34
SEmb+TaskEmb 0.92 0.27 0.27 0.78 4.88 0.00 0.30 28.20 20.15 0.81 0.65 0.19 0.75 6.68 3.80
Size+FS-TaskEmb 0.83 0.93 0.17 0.61 9.87 1.22 0.31 16.39 12.90 0.69 1.54 0.47 0.65 6.29 2.83
Size+SEmb+FSFT+FS-TaskEmb 0.91 0.19 0.19 0.80 4.88 0.00 0.33 21.21 10.38 0.86 0.65 0.47 0.76 5.38 2.04
Size+SEmb+linear+TaskEmb 0.85 3.45 0.19 0.79 4.88 0.00 - - - 0.78 1.54 0.47 - - -
Size+TaskEmb 0.66 5.98 1.15 0.50 9.56 3.37 0.28 43.50 32.70 0.55 64.25 1.53 0.53 24.38 7.56
Size+TaskEmb+TextEmb 0.81 2.13 0.12 0.67 4.88 2.39 0.32 38.07 32.68 0.68 31.84 0.47 0.66 14.82 6.72
TaskEmb+FS-TaskEmb 0.79 5.53 0.19 0.71 3.74 1.22 0.25 22.40 22.40 0.85 0.19 0.19 0.68 7.14 4.51
TaskEmb+TextEmb 0.86 1.12 0.12 0.76 4.88 0.00 0.30 36.36 28.75 0.83 0.19 0.19 0.73 8.39 5.30
All 0.90 0.19 0.19 0.87 0.38 0.00 - - - 0.91 0.65 0.00 - - -

Table 6: Evaluation of intermediate task rankings produced by method combinations for RoBERTa. The table
shows the mean NDCG and Regret scores by target task type. The best score in each group is highlighted in bold,
best overall score is underlined. For NDCG, higher is better; for Regret, lower is better.

Classification M. Choice QA Tagging All
NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3 NDCG R@1 R@3

SEmb-BERTD 0.83 0.27 0.19 0.67 8.13 2.56 0.48 17.04 7.16 0.84 0.47 0.00 0.72 5.50 2.07
SEmb-BERTB 0.82 0.27 0.24 0.58 12.85 2.56 0.61 7.16 2.05 0.84 0.47 0.00 0.72 4.99 1.16
SEmb-BERTL 0.82 0.27 0.27 0.58 11.07 2.56 0.49 17.04 7.16 0.84 0.47 0.11 0.70 6.30 2.12
SEmb-RoBERTaD 0.84 0.27 0.19 0.76 4.86 0.00 0.52 17.04 4.04 0.88 0.47 0.11 0.77 4.60 0.82
SEmb-RoBERTaB 0.82 0.27 0.27 0.79 4.47 0.00 0.49 17.04 7.59 0.80 0.47 0.47 0.75 4.50 1.56
SEmb-RoBERTaL 0.76 3.73 0.27 0.75 4.47 0.00 0.59 7.16 2.05 0.82 0.47 0.00 0.74 3.96 0.47

Table 7: Evaluation of intermediate task rankings produced by SEmb variations for RoBERTa tasks. D, B, and L
stand for Distill, Base, and Large, respectively. The table shows the mean NDCG and Regret scores by target task
type. The best overall scores are highlighted in bold. For NDCG, higher is better; for Regret, lower is better.
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Name |Train| Task Domain/ Source Metric(s) RoBERTa BERT

Sequence classification/
regression

MRPC (Dolan and
Brockett, 2005)

3.7K semantic textual
similarity

news acc./ F1 88.48/
91.53

84.80/
89.53

SICK (Marelli et al.,
2014)

4.4K NLI image/ video cap-
tions

acc. 89.29 84.24

WiC (Pilehvar and
Camacho-Collados,
2019)

5.4K word sense disam-
biguation

misc. acc. 65.52 65.99

TREC (Li and Roth,
2002)

5.5K question classifica-
tion

misc. acc. 96.4 95.60

SciCite (Cohan et al.,
2019)

8.2K citation intents scientific papers acc. 84.72 85.26

CoLA (Warstadt et al.,
2019)

8.5K linguistic accept-
ability

books, journals Matthews 59.18 62.18

Emotion (Saravia et al.,
2018)

16K emotion classifica-
tion

Twitter acc. 94.1 93.5

IMDb (Maas et al.,
2011)

25K sentiment classifica-
tion

movie reviews acc. 94.19 91.76

MultiRC (Khashabi
et al., 2018)

27K reading comprehen-
sion

misc. EM/ F1 28.96/
67.01

18.57/
66.35

SciTail (Khot et al.,
2018)

27K NLI science exams acc. 95.25 93.79

EmoContext (Chatterjee
et al., 2019)

30K emotion classifica-
tion

crowdsourced acc. 89 89.74

SST-2 (Socher et al.,
2013)

67K sentiment classifica-
tion

movie reviews acc. 94.95 92.20

ReCoRD (Zhang et al.,
2018)

101K commonsense rea-
soning

news articles EM/ F1 80.55/
81.25

64.58/
65.24

QNLI (Wang et al.,
2018)

105K question-answer
NLI

Wikipedia acc. 92.75 91.14

ANLI (Nie et al., 2020) 163K NLI misc. acc. 41.5 45.42
QQP (Iyer et al., 2017) 364K semantic textual

similarity
Quora acc./ F1 90.80/

87.68
90.31/
87.04

MNLI (Williams et al.,
2018)

393K NLI misc. acc.
(matched)

87.5 84.20

SNLI (Bowman et al.,
2015)

550K NLI misc. acc. 91.13 90.62

Yelp Polarity (Zhang
et al., 2015)

560K sentiment classifica-
tion

Yelp reviews acc. 96.61 95.71

Multiple-choice

QuaRTz (Tafjord et al.,
2019)

2.7K qualitative reason-
ing

crowdsourced acc. 79.69 52.86

Cosmos QA (Huang
et al., 2019)

25K commonsense rea-
soning

crowdsourced acc. 70.49 60.47

Social IQA (Sap et al.,
2019)

33K commonsense rea-
soning

knowledge base acc. 72.21 62.49

HellaSwag (Zellers
et al., 2019)

40K commonsense rea-
soning

misc. acc. 62.04 38.20

WinoGrande (Sak-
aguchi et al., 2020)

41K coreference resolu-
tion

crowdsourced acc. 63.54 54.38

SWAG (Zellers et al.,
2018)

74K commonsense rea-
soning

video captions acc. 83.29 80.06

RACE (Lai et al., 2017) 88K reading comprehen-
sion

English exams acc. 73.46 65.97

ART (Bhagavatula et al.,
2020)

170K NLI stories acc. 73.43 64.36

Extractive question an-
swering

Quoref (Dasigi et al.,
2019)

20K coreference QA Wikipedia EM/ F1 68.73/
73.22

64.06/
68.15

WikiHop (Welbl et al.,
2018)18

51K multi-hop QA Wikipedia EM/ F1 56.48/
61.71

55.72/
60.79



10604

DuoRC-s (Saha et al.,
2018)18

86K QA Wikipedia EM/ F1 59.36/
67.10

53.19/
60.73

HotpotQA (Yang et al.,
2018)18

90K multi-hop QA Wikipedia EM/ F1 57.60/
71.05

54.81/
68.49

DuoRC-p (Saha et al.,
2018)18

100K QA IMDb EM/ F1 49.76/
53.38

47.76/
51.31

SQuAD 1.0 (Rajpurkar
et al., 2016)18

108K QA Wikipedia EM/ F1 84.02/
91.06

80.26/
88.08

NewsQA (Trischler
et al., 2017)18

120K QA news articles EM/ F1 48.70/
63.93

48.68/
64.86

SQuAD 2.0 (Rajpurkar
et al., 2018)18

162K QA Wikipedia EM/ F1 78.39/
81.47

67.99/
71.22

Sequence tagging

NER-WNUT17 (Der-
czynski et al., 2017)

3.4K NER Twitter, forums F1 55.24 45.27

NER-MITMovie 7.8K NER movie reviews F1 69.29 68.63
Chunk-CoNLL2000
(Sang and Buchholz,
2000)

8.9K chunking Penn Treebank F1 96.35 95.92

POS-EWT (Silveira
et al., 2014)

12.5K POS web treebank F1 97.30 96.79

POS-CoNLL2003
(Sang and Meulder,
2003)

14K POS news F1 95.05 93.96

GED-FCE (Rei and
Yannakoudakis, 2016)

29K GED misc. F0.5 89.79/
68.12

64.94

ST-PMB (Abzianidze
and Bos, 2017)

63K semantic tagging meaning bank acc./ F1 89.50/
89.38

90.26/
90.26

Table 8: Overview of intermediate tasks used in our experiments, grouped by task type and ordered by training set
size.

Name Task Domain/ Source Metric(s)

Sequence classification/ regression

BoolQ (Clark et al., 2019) binary QA Wikipedia, web queries acc.
RTE (Dagan et al., 2005) NLI news, Wikipedia acc.
Rotten Tomatoes (Pang and Lee, 2005) sentiment classification movie reviews acc.
STS-B (Cer et al., 2017) semantic textual similarity misc. Spearman

Multiple-choice

COPA (Gordon et al., 2012) commonsense reasoning blogs, encyclopedia acc.
CS QA (Talmor et al., 2019) commonsense reasoning knowledge base acc.
QuAIL (Rogers et al., 2020) multiple-choice QA misc. acc.

Extractive question answering

CQ (Bao et al., 2016)18 QA web snippets EM/ F1
DROP (Dua et al., 2019)18 QA Wikipedia EM/ F1

Sequence labeling

DepRel-EWT (Silveira et al., 2014) relation classification19 web treebank F1
NER-CoNLL2003 (Sang and Meulder, 2003) NER news F1

Table 9: Overview of target tasks used in our experiments, grouped by task type.

18We use the version provided in MultiQA (Talmor and Berant, 2019).
19Instead of performing full dependency parsing, we only label each token in a sentence with a label corresponding to the

dependency relation to its head as this task can be modeled directly as a sequence tagging task.
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Task BoolQ COPA CQ CS QA CoNLL
2003

DROP DepRel-
EWT

Quail R.
Toma-
toes

RTE STS-B

No Transfer 63.60 67.04 23.98 51.06 83.66 14.36 76.20 54.31 85.35 60.94 86.52

Avg. Transfer 67.29 67.99 25.76 50.28 82.33 13.96 75.06 54.83 85.16 67.21 86.72

ANLI 75.84 71.87 26.55 51.73 83.80 13.99 74.66 59.23 84.08 77.38 87.77
ART 68.55 71.27 23.43 51.05 81.21 12.85 73.36 55.82 84.99 69.43 87.13
CoLA 64.96 68.93 24.61 51.57 82.25 13.74 77.02 54.81 85.62 64.26 86.24
CoNLL’00 64.00 57.13 22.49 43.57 82.23 10.62 78.97 51.88 84.99 64.74 84.98
Cosmos QA 71.36 73.73 25.00 52.03 82.29 13.92 75.21 56.84 85.30 75.21 86.92
DuoRC-p 68.17 66.53 36.97 51.79 85.47 17.22 75.03 52.76 85.05 67.63 87.88
DuoRC-s 68.43 70.80 40.97 52.28 85.69 17.13 76.46 53.80 85.21 66.06 87.20
EmoContext 66.79 68.93 22.84 50.42 82.23 13.85 76.88 54.42 85.93 65.82 86.44
Emotion 65.79 66.13 20.42 50.15 82.38 13.65 73.49 54.71 84.74 64.02 86.22
GED-FCE 64.11 68.47 22.37 49.36 82.47 12.37 77.84 54.36 85.55 63.42 86.14
Hellaswag 65.81 68.93 20.74 51.41 81.65 13.56 75.78 55.75 84.93 67.99 86.69
HotpotQA 65.14 65.40 42.35 48.02 80.99 17.91 68.55 50.94 83.74 66.67 85.84
IMDb 67.55 69.73 23.56 50.56 82.49 14.06 75.56 54.74 86.62 60.65 86.21
MIT Movie 63.64 66.20 23.69 48.65 84.60 12.10 76.58 53.14 85.99 64.86 85.66
MNLI 76.26 69.00 24.32 52.36 82.23 14.45 73.39 59.69 85.99 78.10 88.90
MRPC 67.88 72.73 23.35 52.36 82.90 14.23 75.59 54.54 85.90 66.91 87.19
MultiRC 70.14 71.73 22.20 53.18 83.71 14.05 75.25 56.82 85.58 73.65 87.11
NewsQA 68.71 72.80 40.60 50.34 83.89 18.13 74.18 52.73 84.83 66.79 87.80
POS-Co.’03 63.52 56.93 19.64 44.88 84.72 11.46 80.27 51.85 84.49 61.01 85.25
POS-EWT 64.48 62.87 22.93 48.18 84.86 10.74 80.84 53.16 84.08 64.26 86.23
QNLI 69.09 71.73 35.15 52.72 83.47 15.79 76.76 56.45 84.40 69.07 88.08
QQP 68.88 73.80 22.94 48.89 81.34 11.42 72.63 53.77 85.24 70.16 88.02
QuaRTz 64.14 63.40 22.84 51.87 83.45 14.16 76.13 54.37 85.77 60.89 86.40
Quoref 66.92 75.40 34.47 50.83 85.45 17.47 77.94 54.50 84.62 67.03 87.46
RACE 73.00 72.80 21.23 49.93 72.29 12.90 69.47 61.09 85.87 73.41 88.29
ReCoRD 62.17 61.13 27.86 50.26 81.59 12.69 70.01 56.16 84.83 65.70 85.58
SICK 67.32 71.93 21.18 52.63 82.99 14.37 75.93 55.36 85.24 67.63 87.22
SNLI 71.07 68.80 15.26 46.82 67.23 10.22 61.90 53.68 82.65 73.04 85.36
SQuAD 69.54 68.47 37.45 52.42 85.73 18.80 77.24 53.70 84.96 68.95 87.13
SQuAD 2.0 70.18 68.13 39.30 52.63 85.51 19.05 77.39 54.87 85.40 68.71 87.34
SST-2 66.99 69.67 21.46 50.31 80.08 12.37 74.37 55.61 91.78 63.54 86.36
ST-PMB 64.51 54.47 19.21 41.47 84.84 10.79 79.46 50.52 83.08 62.09 85.03
SWAG 65.26 66.33 22.33 52.63 83.55 13.93 76.50 56.41 85.21 71.36 86.86
SciCite 65.74 67.93 22.08 51.11 83.69 14.00 76.63 55.07 85.46 58.72 86.72
SciTail 70.23 72.00 21.84 52.58 83.11 14.23 76.39 55.99 85.65 72.20 87.70
Social IQA 70.60 74.07 21.74 52.61 78.50 13.77 76.61 57.46 84.96 71.72 87.02
TREC 64.48 67.60 22.83 52.03 82.60 14.09 77.30 55.45 85.58 64.62 86.53
WNUT17 64.20 64.73 22.45 49.85 84.49 12.17 75.78 54.00 84.83 63.30 86.54
WiC 64.04 72.13 22.11 50.31 83.46 14.11 74.76 55.25 84.99 62.58 86.53
WikiHop 62.95 62.07 39.02 48.24 84.16 15.47 71.11 51.96 84.30 65.82 85.47
WinoGrande 67.92 65.47 20.31 49.09 81.93 13.98 73.65 55.14 83.02 69.55 86.91
Yelp Polarity 66.04 63.40 19.79 48.57 76.51 10.40 69.65 54.16 85.18 63.90 85.76

Table 10: Target task performances for transferring between intermediate tasks (rows) and target tasks (columns)
with BERT as base model. The first row ‘No Transfer’ shows the baseline performance when training only on the
target task without transfer. All scores are mean values over three random restarts.


