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Abstract

Recent efforts to develop deep learning mod-
els for text generation tasks such as extrac-
tive and abstractive summarization have re-
sulted in state-of-the-art performances on var-
ious datasets. However, obtaining the best
model configuration for a given dataset re-
quires an extensive knowledge of deep learn-
ing specifics like model architecture, tuning
parameters etc., and is often extremely chal-
lenging for a non-expert. In this paper, we
propose methods to automatically create deep
learning models for the tasks of extractive and
abstractive text summarization. Based on the
recent advances in Automated Machine Learn-
ing and the success of large language models
such as BERT and GPT-2 in encoding knowl-
edge, we use a combination of Neural Ar-
chitecture Search (NAS) and Knowledge Dis-
tillation (KD) techniques to perform model
search and compression using the vast knowl-
edge provided by these language models to
develop smaller, customized models for any
given dataset. We present extensive empir-
ical results to illustrate the effectiveness of
our model creation methods in terms of infer-
ence time and model size, while achieving near
state-of-the-art performances in terms of accu-
racy across a range of datasets.

1 Introduction

Machine learning algorithms, particularly, deep
learning techniques have led to the simplification
of several computationally expensive tasks. How-
ever, training and optimizing these models for dif-
ferent tasks demand the experienced engineering
resources and require expertise, making it difficult
for non-experts. Automated Machine Learning is
a strategy to automate this pipeline for model cre-
ation including automated generation of the model
itself.

∗Work done while authors were at Adobe Research.

In the case of Natural Language Processing and
Text analysis, the advent of large language models
such as BERT(Devlin et al., 2019), GPT2(Radford
et al., 2019), and more recently GPT3(Brown et al.,
2020) have created resources that can be exploited
for the creation of robust models for several down-
stream NLP tasks. However, the need for ML ex-
pertise creates a bottleneck. Further, these deep
learning models have thousands of parameters and
need fairly large datasets and computational re-
sources for training.

We focus on providing algorithms for auto-
generation of ML models for complex NLP tasks
such as extraction and generation, making them ac-
cessible to non experts. Our proposed approaches
feed off the knowledge available in large pretrained
models to auto-generate new, smaller, customized
models for a custom dataset. Specifically, the ma-
jor contributions are as follows.
(1) We propose a method to create machine learn-
ing models that are efficient and customized to a
given dataset for the tasks of extractive and abstrac-
tive summarization, using a combination of neural
architecture search and task-specific knowledge
distillation from large language models.
(2) Aditionally, we propose an alternate method
for summarization model generation using Trans-
former distillation, which is superior in terms of
performance and resource utilisation.
(3) We conduct extensive experiments and present
results illustrating the effectiveness of the proposed
methods for extractive and abstractive summariza-
tion on a range of datasets, and compare our models
in terms of model creation efficiency, model size,
inference time, and performance, with the state-of-
the-art models.

To the best of our knowledge, this is the first
effort towards automatically building customized
and compressed models for text generation tasks,
specifically summarization.
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2 Related Work

Neural Architectural Search is a trending area in
AutoML, which automates the process of model
creation by searching efficient model architectures,
without human expertise. A typical NAS problem
involves identifying the search space, employing a
search strategy to find the best task-specific model
architecture, and training the model from scratch.
Most of the NAS experiments are done on images -
(Real et al., 2017), (Real et al., 2018), (Suganuma
et al., 2018) using neuro-evolutional and genetic
algorithms, which are computationally very expen-
sive and time consuming. Recently, gradient based
methods like DARTS (Liu et al., 2019), SNAS (Xie
et al., 2019) and (Dong and Yang, 2019) are pro-
posed to speed-up the search strategy. But, the
explorations of using NAS for language-related
tasks are very limited. (Wang et al., 2020) propose
TextNAS with a search space for better understand-
ing of the text representations. They use a simple
and efficient, ENAS (Pham et al., 2018), which is
guided by reinforcement learning for model gen-
eration. However, these models mainly focus on
text understanding and do not directly extend to the
generation-related tasks like summarization.

Text Summarization: The neural attention
model (Rush et al., 2015) marked the beginning
of using deep neural architectures for text sum-
marization. Seq2seq models variations with con-
volutional encoder (Chopra et al., 2016),(Narayan
et al., 2018b), hierarchical attention-based RNN
encoder (Nallapati et al., 2017), pointer-generator
networks (See et al., 2017) were used for both ex-
tractive and abstractive tasks. With the recent ad-
vent of multi-head attention (Vaswani et al., 2017),
transformer-based models like PEGASUS (Zhang
et al., 2019), BERT-Summ (Liu and Lapata, 2019a)
are proposed with pre-trained objectives tailored
for summarization tasks. While these methods give
good results, they demand extreme human exper-
tise and computational overhead for designing and
deployment.

Knowledge Distillation & Model Compres-
sion: These techniques aim to take advantage of
the immense knowledge from the pre-trained mod-
els. TinyBERT (Jiao et al., 2019) presents a distil-
lation approach for text classification and natural
language inference using BERT compression and
distillation. Adabert (Chen et al., 2020a) present
a differential NAS algorithm, leveraging a BERT
model through knowledge distillation for classifica-

tion and NLI tasks. (Chen et al., 2020b) transfers
BERT knowledge to a encoder-decoder model for
text generation. However, all these approaches are
limited to the specific tasks, and are not directly
extensible to a generation-based tasks.

3 Methodology

Figure 1 shows the overview of our model creation
framework. The input is the dataset and task speci-
fications (summary type, size) and the output is a
custom trained summarization model, which can
be further used to create text summaries. In this
paper, we generate models for both extractive and
abstractive summarization tasks, with the former
being a binary classification task to extract sum-
mary sentences from the input, while the latter aims
to generate summaries containing novel words and
phrases that may not be present in the input text.

Figure 1: Overview of the proposed approach.

Our proposed approaches distills knowledge
from a language-model based teacher network to
generate an encoder-decoder-based child model.
We present two algorithms that aid in auto-creation
of different types of resulting ‘child’ models - (1)
a model with convolutional and recurrent units
and (2) a mini-transformer based model. The
first is achieved by our approach AUTOSUMM-
CREATE and the second using AUTOSUMM-
DISTILL, which are detailed as follows.

3.1 AutoSumm-Create
Figure 2 illustrates AUTOSUMM-CREATE method.
Here, we combine knowledge distillation with neu-
ral architecture search to auto-create an encoder-
decoder based summarization model. The stages
in this method include:

1. Task-specific knowledge distillation: We
leverage knowledge from a transformer-based
BERT model (teacher) fine-tuned for extractive and
abstractive summarization (Liu and Lapata, 2019b)
on the given task-specific (summarization) dataset.
The predictions from the teacher model are used for
distillation, i.e., the sentences classification scores
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Figure 2: AUTOSUMM-CREATE.

for extractive and probability distributions over the
vocabulary for abstractive are augmented to the
ground truth. A Knowledge Distillation(LKD) loss
is included to perform informed search on the child
models, ensuring that they mimic the performance
of the teacher.
In extractive summarization, LKD is the MSE loss
between soft labels from augmented data and the
scored predicted by the child model.

LKD =

n∑
i=1

(yteacheri − ypredi )2 (1)

In abstractive summarization, LKD is calculated at
each time step t using soft labels Pteacher(yt) from
teacher model and the predicted labels Ppred(yt)
from child model over vocab V as follows:

LKD =
∑
t

∑
w∈V

Pteacher(yt = w|y1:t−1, X).

log(Ppred(yt = w|y1:t−1, X))

(2)

2. Neural Architectural Search: Augmented
dataset, along with a small labelled custom dataset,
is used to train the NAS module, which searches
for the right combination of cells that result in the
child model most suited for the summarization task.
In our approach, we use NAS to search the encoder
space while using a predefined (task-specific) de-
coder. The key components of this module are:

Search space. Following (Wang et al., 2020), we
define macro search space, such that the model
can be represented by a directed acyclic graph
(DAG) with nodes representing a layer from the
search space and edges representing the direction-
ality of flow of information. The search space has
4 key cell types - CNN (kernel sizes 1,3,5,7), RNN
(bidirectional GRU), Pooling layers (avg. pool and

max. pool with stride 1 and uniform padding), and
Multi-head self-attention (8 heads, no positional
embeddings). We constrain the search space by (1)
defining the number of skip connections allowed,
(2) limiting the maximum number of layers in the
child architecture, l (in our case l ∈ 1,5,10,18,20),
and (3) defining the cells allowed in the new archi-
tecture. These constraints define the exhaustive list
of possibilities for the NAS algorithm.

Search algorithm: We implement ENAS (Pham
et al., 2018), a reinforcement learning (RL) based
algorithm used for several NAS implementations
(Zoph and Le, 2017). It consists of an RNN con-
troller network, that samples a model architecture
from the search space and an RL reward to nudge
this controller towards generating an optimal archi-
tecture.

Pre-defined Model Specifications: As stated ear-
lier, we auto-create the encoder layers in the model
but predefine the task-specific decoder. For extrac-
tive summarization, the decoder is a scorer function
with sigmoid activation, which takes in the text rep-
resentations learnt from the encoder and scores
each sentence on a scale of (0,1]. The sentences
with the high scores are chosen as the final sum-
mary based on the summary size specified. For
abstractive summarization, a recurrent neural net-
work is used as the decoder. The input is the text
representation from the encoder and the output is a
generated summary (generated in auto-regressive
manner, by decoding a word at every time step).

Loss: The architectures are trained with a cross-
entropy loss at sentence level for extractive and
vocab level for abstractive as follows:

Ext(LCE) =
n∑

i=1

(pgt(yi).log(y
child
i ) (3)

Abs(LCE) =
∑
t

∑
w∈V

Pgt(yt = w).

log(Ppred(yt = w|y1:t−1, X))

(4)

Final Loss: The final end-end loss associated
with this framework is computed as the weighted
sum of the LKD and LCE in the NAS module:

Ltotal = α.LCE + (1− α).LKD (5)

RL Reward: A reward based on the performance
of the child model, is sent back to the RNN con-
troller. The policy gradients of the RNN controller
are updated through REINFORCE(Williams, 1992)
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algorithm. Reward (R) is defined as 1− Lossvalid,
normalized over the batchsize.

Re-training: The newly generated model, is
trained using the user-provided training data opti-
mizing for the total loss(Ltotal). This trained model
can generate summaries for any given test sample.

3.2 AutoSumm-Distill

In this approach, the structure of the child is de-
fined as a mini-transformer(4 layers). A knowledge
distillation technique called transformer distilla-
tion (Jiao et al., 2019) is used to create a general-
mini-transformer(4 layers) from a large transformer
model (12 layers). Then, the knowledge is distilled
from a task-specific fine-tuned BERT (‘teacher’)
model to the general-mini-transformer. Figure 3 il-
lustrates the workflow of this method. This method
differs from AUTOSUMM-CREATE, in the child
model architecture and the usage of two trans-
former teacher models. The key stages in this
method are detailed below.

Figure 3: AUTOSUMM-DISTILL.

Knowledge distillation: There are two forms
of knowledge distillation in this method (1 and
3 in Fig.3). We detail the knowledge distillation
from a task-specific transformer teacher (we
use BERT-Summ (Liu and Lapata, 2019b)) to
the general-mini-transformer which forms the
encoder layer for the final child model. The
decoder is pre-defined based on the task, similar
to AUTOSUMM-CREATE. A transformer model
has various types of layers including multi-headed
attention, embedding layers, and the hidden layers.
The intuition behind knowledge distillation is to
teach the layers in the child transformer to mimic
the corresponding layers in the teacher transformer.
This is implemented by introducing separate losses
for each layer type.

Attention-based distillation builds on the intu-
ition that the attention layers in BERT capture
linguistic information such as syntax and coref-
erence information. Specifically, the student
aims to learn the matrices of the multi-headed
attention from teacher. This loss is given by
Lattn = 1/h[

∑h
i=1MSE(AS

i , A
T
i ), ] where h is

the number of attention heads Ai refers to the
attention matrix corresponding to the i-th head of
the teacher (T) or the student (S), l is the input text
length and MSE(.) refers to the mean squared
error loss.
Hidden-state distillation distills knowledge from
the output of transformer hidden layer, with
Lhidn = MSE(HsWh, H

T ) where Hs and HT

refer to the hidden states of the student and teacher
models. Wh is a learnable linear transformation.
Embedding-layer distillation: Formulated as
Lembd = MSE(EsWe, E

T ) where Es and
ET are embeddings in the student and teacher
networks respectively. We plays a similar role as
Wh. Using these distillation objectives along with
the general distillation already done to compress
the transformer model to general-mini-transformer,
the final loss is the unified distillation loss of
the corresponding layers between the teacher
and the student model. As a reminder, this
step helps auto-learn the task specific encoder
for extractive and abstractive summarization.
Pre-defined Model Specifications: For extractive
summarization, we define a single transformer
layer on top of the newly created encoder with a
classification layer as the decoder. For abstractive
summarization, the decoder is 6-layer transformer.
Training and Re-training:
General distillation & Fine-tuning: The above
model is trained in a phased manner. The first
distillation or training is done from a large trans-
former (BERT) to the general – mini- transformer.
Parallelly, a large BERT model is fine-tuned for
the specified tasks. Both these steps need not be
repeated for every new dataset from the user and
every run of the model. The fine-tuned model
and the general-mini-transformers may be created
once per task and once per a very large benchmark
dataset.
Task-specific Distillation: This process of teaching
the student model from a fine-tuned teacher model
is repeated each time a new user dataset is given to
the system. Once trained, this is coupled with the
specific decoder.
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Re-training: Once the final child model i.e. mini-
transformer encoder and corresponding decoder
are created, this complete model is trained on the
input user dataset. The final model is the output for
the user along with test summaries for any given
text input.

4 Experiments

We evaluate our proposed framework by perform-
ing experiments that test the performance of the
newly created models against benchmark summa-
rization datasets on both extractive and abstractive
tasks.

4.1 Datasets

Table 1 summmarizes the train/val/test split of all
the datasets. The CNN / Daily Mail dataset (Her-
mann et al., 2015) contains online news articles
(781 tokens on average) paired with multi-sentence
summaries (3.75 sentences or 56 tokens on aver-
age).

The New York Times (NYT) Annotated Cor-
pus contains the full text and metadata of NYT
articles from 1987 to 2007. Following (Durrett
et al., 2016), we extracted and filtered out the arti-
cles from 2000-2007, with abstractive summaries
having more than 50 words. The articles were split
based on the date of publication, where the articles
from January 1, 2007 were chosen as test set.

X-Sum (Narayan et al., 2018a) dataset is col-
lected from online BBC articles, with short one
sentence summaries. The Gigaword (Rush et al.,
2015) dataset contains 4M examples from news ar-
ticles for sentence summarization / headline gener-
ation task. The summaries are very short with 9 to-
kens per summary. The Contract dataset (Manor
and Li, 2019) is a dataset compiled from two web-
sites dedicated to explaining unilateral contracts in
plain English: TL;DRLegal1 and TOS;DR2. It is a
small dataset with 500 samples.

Dataset #train #valid #test
CNN/DM 287,113 13,368 11,490
NYT 106,826 6,000 6,258
XSum 204,045 11,332 11,334
Gigaword 300,000 10,000 2,000
Contract 400 23 23

Table 1: Dataset details

1https://tldrlegal.com/
2https://tosdr.org/

4.2 Models

The generated models through AUTOSUMM-
CREATE for extractive and abstractive are CHILD-
EXT and CHILD-ABS respectively. -KD denote the
child model variations trained through Knowledge
distillation (KD). The fine-tuned models through
AUTOSUMM-DISTILL are FT-TINYBERT-EXT

and FT-TINYBERT-ABS. We compare the per-
formance of our models against BERT-Summ (Liu
and Lapata, 2019a), as it had a general framework
for extractive and abstractive and was shown to
give state-of-the-art performances. These baseline
models are FT-BERT-EXT and FT-BERT-ABS.

4.3 Implementation Details

For all our experiments, we use the existing splits
if available, otherwise we split the data according
to the statistics in Table 1 and keep them constant
across all the experiments.

In our AUTOSUMM-CREATE experiments, we
perform a 20-layer neural architectural search for
encoder. The decoders are task-specific and pre-
defined as explained in our previous section. We
use GloVe word embeddings while providing the
input to the generated model. We set the batch
size as 128, max input length as 64, hidden unit
dimension for each layer as 32, dropout ratio as 0.5
and L2 regularization. We utilize Adam optimizer
and learning rate decay with cosine annealing. The
parameter of KD proportion α is varied in NAS
module.3. We also perform experiments with vary-
ing layer size, discussed in the later sections.

4.4 Evaluation metrics

Summarization quality is evaluated using F1 mea-
sure of ROUGE score (Lin, 2004) calculated be-
tween generated and ground-truth summary.4We
report unigram and bigram overlap (ROUGE-1
and ROUGE-2) to assess informativeness and the
longest common sub-sequence (ROUGE-L) to ac-
cess fluency. Additional metrics like number of pa-
rameters, disk-space and the inference time taken
are considered to compare the computational effi-
ciency between models.

5 Results and discussion

Extractive Summarization: Table 2 shows re-
sults comparing the performance of our generated

3Results are included in supplementary material
4https://github.com/google-research/google-

research/tree/master/rouge
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(a) Number of parameters (↓) (b) Disk Space(↓) (c) Inference Time(↓)

Figure 4: Efficiency comparison for the extractive summarization models on the CNN/DM dataset

MODEL CNN/DM NYT
R-1 R-2 R-L R-1 R-2 R-L

FT-BERT-EXT 43.58 20.69 28.08 45.68 26.20 33.11
FT-TINYBERT-EXT 42.28 19.53 26.76 43.94 24.61 32.06
CHILD-EXT 39.10 14.68 20.78 45.68 26.38 35.04
CHILD-EXT-KD 41.08 18.73 26.72 45.89 26.60 35.20

Table 2: A comparison of the generated models for
Extractive summarization on CNN/DM and NYT ; FT-
BERT-EXT is used as a baseline to compare against

models and the baseline for extractive summariza-
tion across different datasets. The ROUGE scores
show that the summaries by the auto-generated
models from our proposed framework are close to
the state-of-the-art BERT baseline. Whereas, our
models gained significantly in terms of computa-
tional efficiency. Figure 4 illustrates the same -
when the models trained on CNN/DM dataset are
compared along three aspects - Number of parame-
ters (in millions), disk space for storing the model
(in MB) and the inference time(in milliseconds)
needed to generate the summary of an input sample.
These graphs depict that the generated models with
comparable performance to FT-BERT significantly
reduce the disk space usage and the number of pa-
rameters. We note that the generated models from
AUTOSUMM-CREATE lose some performance in
terms of inference time, which is because the model
architecture consists of RNNs and does not have
the advantage of parallel computation present in
BERT models. However, our FT-TINYBERT-EXT

model overcomes this and significantly reduces the
inference time.

Abstractive Summarization: Table 3 compares
the performance of our abstractive-summarization
models on Gigaword dataset, curated for extreme
summarization. It is to be noted that our proposed
summarization model with Transformer distillation
FT-TINYBERT-ABS beats the FT-BERT-ABS
with a huge margin, across all R-1,R-2,R-L.

Model R-1 R-2 R-3
FT-BERT-ABS 21.03 6.04 19.34
FT-TINYBERT-ABS 32.36 13.80 29.93
CHILD-ABS 25.04 8.14 23.13
SOTA (Song et al., 2020) 39.08 20.47 36.69

Table 3: Abstractive Summarization on Gigaword

MODELS R1 R2 RL
Baseline Lead-K 24.38 7.52 17.63

CHILD-ABS 40.04 23.63 35.21

Table 4: Abstractive Summarization on Contracts

The other dataset for extreme summarization
is the Contract dataset. Table 4 shows the per-
formance of our generated CHILD-ABS model on
contracts dataset. We compare our results against
the reported best performing Lead-K scores by Co-
hen et al.,(2018). Note that the limited size of the
dataset was a bottleneck to train FT-TINYBERT-
ABS model.

Model Architectures: The AUTOSUMM-
CREATE approach generates a new encoder archi-
tecture from scratch for a desired task and dataset.
It is an interesting study to dive deeper into the
distribution of the cells in the generated models.
Table 5 shows the distribution of cell type in the
generated models with a 10 layer encoder archi-
tecture, on extractive (on CNN/DM) and abstrac-
tive (on Gigaword) tasks. It can be observed that
the pooling and the attention layers are sparse in
the extractive models, but are major contributors
in the abstractive architecture. Most recent models
use the multi-head attention from transformer to
get good results in the language generation task. A
similar pattern is observed in the models generated
through our AutoSumm framework.
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Percentage of cells Extractive Abstractive
Child Model

(w/o KD)
Child Model
(with KD)

Child Model
(w/o KD)

Child Model
(with KD)

CNN(1,3,5,7) 0,0,0,2 0,0,0,6 1,1,0,0 1,0,0,2
RNN 8 4 1 0
Avg-Pool, Max-pool 0,0 0,0 2,0 1,0
Attention 0 0 5 6

Table 5: Division of CNN and RNN cells for Extractive
(CNN/DM) and Abstractive(Gigaword)

5.1 Ablation Study

Variation in Layer Size: We analyze the perfor-
mance of our framework across varying sizes of the
target model i.e. varying the number of layers to be
generated by the RNN-controller. We experiment
with CHILD-EXT models. Figure 5 illustrates the
results of this experiment for extractive summariza-
tion on the CNN/DM dataset. We observe that the
CNN and RNN layers are the major constituents in
these architectures. We can see that RNN cells are
more preferred when the architecture is restricted
to fewer layers (like 2, 5, 6), but as we increase the
layers, Convolutional layers with larger stride(7)
are preferred. Table 6 refers to the performance
of these models. While the model with 15 layers
gives the best performance, the performance does
not drop too much with varying number of layers.
Hence, a smaller model, with fewer layers and in
turn lesser number of parameters can be efficiently
generated for extractive summarization through our
approach.

Figure 5: Cell distribution across varying layer size

Table 7 and Figure 6 presents the results when
the same experiment is conducted on XSUM and
Contract datasets with the layer sizes 5, 10, 12 and
15. While the trend in RNN preference for fewer
layers and CNN preference for more layers still
continues, it is noted that the larger architectures
generated use the pooling and attention layers.

Cross-Dataset Experiments: Table 8 shows ex-

Layer Size R-1 R-2 R-L
2 40.8 18.5 26.55
5 41.03 18.67 26.71
10 41.08 18.73 26.7
12 40.98 18.65 26.68
15 41.1 18.78 26.84
20 41.1 18.7 26.73

Table 6: CHILD-EXT-KD model performance with
layer size variation on CNN/DM

Layer Size XSUM CONTRACT
R-1 R-2 R-L R-1 R-2 R-3

5 20.7 3.69 13.52 21.15 6.14 15.96
10 20.84 3.64 13.68 21.2 6.26 15.99
12 20.73 3.59 13.63 21.23 6.12 15.9

Table 7: Varying layer size on CHILD-EXT-KD for
XSUM and Constract

(a) XSUM (b) Contract

Figure 6: Layer distribution for XSUM and Contract

periments with CHILD-EXT-KD-X models trained
on one dataset (X) and tested on another. The visu-
alisations of these results as in Figure 7, also show
that the architectures trained on one dataset can be
used to generate summaries on a different dataset
without significant loss in performance, establish-
ing the generalizability of the proposed approach
making it usable by non-experts for real-world ap-
plications.

(a) Test on CNNDM (b) Test on Contract

Figure 7: Cross-Data experiments

Training data variation: To reiterate, in our
AUTOSUMM-CREATE framework, we generate an
architecture with cells from a given search space,
and re-train the generated architecture with the



10169

CHILD-EXT-KD
CNN/DM

(R1:R2:RL)
XSUM

(R1:R2:RL)
Contract

(R1:R2:RL)
CHILD-EXT-KD-CNNDM 41.06, 18.91, 27.04 16.78, 1.83, 12.35 24.07, 6.42, 17.71
CHILD-EXT-KD-XSUM 18.05, 2.7, 13.52 20.84, 3.64, 13.68 24.07, 6.42, 17.71

CHILD-EXT-KD-Contract 40.32, 17.84, 25.57 18.52, 2.43, 11.93 21.22, 6.07, 15.95

Table 8: Cross-Dataset experiments on CHILD-EXT-KD models

Model 1 (R1 : R2 : RL) 3 (R1 : R2 : RL) 5 (R1 : R2 : RL)
CHILD-EXT-KD 33.05, 14.86, 24.1 41.08, 18.73, 26.72 37.31, 17.43, 24.05
CHILD-EXT 30.20, 12.04, 21.38 40.00, 18.18, 25.91 38.02, 18.03, 24.86
FT-BERT-ABS 33.84, 15.72, 24.88 43.58, 20.69, 28.08 39.85, 19.26, 24.93
FT-TINYBERT-EXT 32.65, 14.95, 24.07 42.29, 19.53, 26.76 38.48, 18.04, 23.87

Table 9: Performance comparison with different decoding sizes

Contract
Input Third party vendors including Google use cookies to serve ads based on a user s prior visits to our website or other websites . google

s use of advertising cookies enables it and its partners to serve ads to you based on you visit to our sites and or other sites on the
internet .

Reference This service allows tracking via third party cookies for purposes including targeted advertising .
CHILD-ABS This service allows tracking via third party cookies

Gigaword
Input Tens of thousands of demonstrators marched through brussels sunday , calling for EU action to defend jobs , amid widespread anger

at a decision by French carmaker Renault to close a factory here .
Reference Tens of thousands march through brussels to defend jobs
FT-BERT-ABS Tens of thousands march in brussels against renault ’s closures plant closures closure
CHILD-ABS Thousands march in brussels as eu protest over

Table 10: Examples of Abstractive summaries on Contract and Gigaword

Figure 8: Performance vs Training data variation

training size and Knowledge Distillation. In order
to measure the amount of data required for this re-
training, we performed an experiment by varying
the size of the training data used for this purpose.
Figure 8 illustrates the result of this experiment,
where we vary the amount of training data(from
0% to 100% of the total available data), used to
re-train an architecture searched for extractive sum-
marization on CNN/DM dataset. Here, 0% data
refers to randomly initialized model that has not
been re-trained. Note that the Rouge scores(R-1,
R-2, R-L) reported for all these model variations
are calculated on the test set. While it is intuitive

that, more training data results in improved perfor-
mance, we note that even with 10% data the decent
performance value is achieved. We believe such
an observation can help support the hypothesis that
the using the proposed framework, we can build
usable models with limited training data.

Decoding Size variation: Table 9 denotes the
results of varying ROUGE scores with the decod-
ing summary sizes (1,3,5) on CNN/DM extractive
summarization task. While, a summary size of 3
sentences yields best result (some of it due to the
nature of the training data), we observe that the
proposed framework allows generating shorter or
longer summaries without significant loss in per-
formance, again establishing the generalizability.

Table 10 shows qualitative examples of the out-
put summaries for a couple of newly generated
models. Through the above experiments, we estab-
lish that the auto-generated models generated us-
ing the proposed NAS and transformer-distillation
based frameworks report near state-of-the-art per-
formance for both extractive and abstractive sum-
marization. We establish the generalizability of the
models through various experiments, while also
showing the efficacy when learning with limited
data.
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6 Conclusions

We present a framework for auto- generation of ML
models for extract and generate tasks by leverag-
ing knowledge distillation, NAS, and transformer-
distillation techniques. The proposed approach suc-
cessfully creates new model architectures that are
more efficient in terms of inference time and space
while achieving near state-of-the-art performance
in terms of accuracies across datasets for extrac-
tive and abstractive summarization. We believe
our work can help create the foundation towards
democratizing the use of deep-learning for NLP
applications for non-experts in practice.
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(a) Rouge-1 (b) Rouge-2 (c) Rouge-L

Figure 9: Variation of performance with the increase in KD proportion on CNN DM dataset

Figure 10: Model created with NAS module in AUTOSUMM-CREATE, as visualised through tensorboard


