
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 9895–9901
November 7–11, 2021. c©2021 Association for Computational Linguistics

9895

PICARD:
Parsing Incrementally for Constrained Auto-Regressive Decoding

from Language Models

Torsten Scholak and Nathan Schucher and Dzmitry Bahdanau
ElementAI, a ServiceNow company

{torsten.scholak,dzmitry.bahdanau}@servicenow.com

Abstract

Large pre-trained language models for textual
data have an unconstrained output space; at
each decoding step, they can produce any of
10,000s of sub-word tokens. When fine-tuned
to target constrained formal languages like
SQL, these models often generate invalid code,
rendering it unusable. We propose PICARD1,
a method for constraining auto-regressive de-
coders of language models through incremen-
tal parsing. PICARD helps to find valid output
sequences by rejecting inadmissible tokens at
each decoding step. On the challenging Spider
and CoSQL text-to-SQL translation tasks, we
show that PICARD transforms fine-tuned T5
models with passable performance into state-
of-the-art solutions.

1 Introduction

While there have been many successes in applying
large pre-trained language models to downstream
tasks, our ability to control and constrain the out-
put of these models is still very limited. Many
enterprise applications are out of reach because
they require a degree of rigour and exactitude that
language models are not able to deliver yet. If the
target is a formal language like SQL, then we would
like the model to adhere exactly and provably to the
SQL specification with all its lexical, grammatical,
logical, and semantical constraints. Unfortunately,
with pre-training alone, language models may not
satisfy these correctness requirements.

For text-to-SQL translation, the most widespread
solution to constrained decoding is to make invalid
SQL unrepresentable. For a while now it has been
possible to restrict auto-regressive decoding to only
those token sequences that correctly parse to SQL
abstract syntax trees (Yin and Neubig, 2018; Lin
et al., 2019; Wang et al., 2020). More recently,
semi-auto-regressive improvements to this parsing

1The PICARD code is available at https://github.
com/ElementAI/picard.

1 2 4 8 16
beam size

0.50

0.55

0.60

0.65

0.70

0.75

ex
ac

tm
at

ch
ac

cu
ra

cy

T5-Base T5-Large T5-3B
none top-2 top-4 top-8

Figure 1: Exact-set-match accuracy of the highest-
scoring prediction as a function of beam size on the Spi-
der text-to-SQL development set. With PICARD turned
on, token predictions had to pass PICARD checking at
every decoding step. Only the top-2, -4, and -8 token
predictions of each hypothesis were considered in the
beam search. With PICARD turned off (none), all token
predictions were considered and none were checked.
The models, T5-Base, -Large, and -3B, did not have
access to any database content, only to the database
schemas.

paradigm have been proposed (Rubin and Berant,
2021). However, while effective, these approaches
have in common that they are achieved at the ex-
pense of using a custom vocabulary of special con-
trol tokens or a custom model architecture, or both.
Unfortunately, this makes them incompatible with
generic pre-trained language model decoders. A
less invasive and more compatible approach is to
not constrain the generation process, but instead to
filter finalized beam hypotheses by validity (Suhr
et al., 2020; Lin et al., 2020). Yet, such filtering is
at the expense of a very large beam size.

We address the expenses of these approaches
with a novel incremental parsing method for con-
strained decoding called PICARD, which stands
for "Parsing Incrementally for Constrained Auto-

https://github.com/ElementAI/picard
https://github.com/ElementAI/picard


9896

Figure 2: Illustration of constrained beam search with
beam size 2 and PICARD. Each vertical column repre-
sents three token predictions for a hypothesis from top
to bottom in descending order by probability. In this
example, PICARD is configured to only check the top-
2 highest ones. The rest is automatically dismissed by
setting their score to −∞. Tokens rejected by PICARD
(red, ×) are also assigned a score of −∞. Accepted
tokens (green, ) keep their original score.

Regressive Decoding." PICARD is compatible with
any existing auto-regressive language model de-
coder and vocabulary—including, but not limited
to, those of large pre-trained transformers—and it
does not require very large beam sizes. PICARD is
entirely absent from pre-training or fine-tuning of
the model, and can be easily and optionally enabled
at inference time. PICARD operates directly on the
output of the language model which, in the case
of text-to-SQL translation, is the readable surface
form of the SQL code.

In our experiments, we find that PICARD can
significantly improve the performance of a large
pre-trained language model (Raffel et al., 2020)
after it is fine-tuned on the text-to-SQL task. On
the Spider text-to-SQL dataset (Yu et al., 2018), we
find that a T5-Base model with PICARD can out-
perform a T5-Large model without it, and likewise
for a T5-Large and a T5-3B model. Significantly,
with the help of PICARD, a T5-3B model can be
raised to state-of-the-art performance on the Spider
and CoSQL datasets (Yu et al., 2019).

2 The PICARD Method

PICARD warps model prediction scores and inte-
grates trivially with existing algorithms for greedy
and beam search used in auto-regressive decoding
from language models. Its arguments are the token
ids of the current hypothesis and, for each vocabu-
lary token, the log-softmax scores predicted by the
model’s language modeling head. PICARD also has

access to SQL schema information, in particular,
information about the names of tables and columns
and about which column resides in which table.

At each generation step, PICARD first restricts
prediction to the top-k highest probability tokens
and then assigns a score of −∞ to those that fail
PICARD’s numerous checks (see Figure 2). These
checks are enabled by fast incremental parsing
(O’Sullivan and Gamari, 2021) based on monadic
combinators (Leijen and Meijer, 2001). There are
four PICARD mode settings that control their com-
prehensiveness: off (no checking), lexing, parsing
without guards, and parsing with guards—the high-
est mode. A prediction that passes a higher mode
will always pass a lower mode but not necessarily
vice versa.

2.1 Lexing
In lexing mode, PICARD checks the output on
a lexical level only. It attempts to convert the
partial, detokenized model output to a white-space
delimited sequence of individual SQL keywords
like select, punctuation like (), operators like
+ and -, literals like string and number values in
SQL conditions, and identifiers like aliases, tables,
and columns—without being sensitive to the order
in which these lexical items appear. By making it
so, PICARD can detect spelling errors in keywords
or reject table and column names that are invalid
for the given SQL schema. For instance, consider
the question "What are the email, cell phone
and home phone of each professional?" from
Spider’s development set on the dog_kennels
database. Our fine-tuned T5-Large model predicts
select email_address, cell_phone,
home_phone from professionals while
the ground truth selects cell_number instead of
the invalid cell_phone column. This mistake is
caught and avoided by PICARD in lexing mode.

2.2 Parsing without Guards
In the lowest parsing mode above lexing—referred
to as parsing without guards—PICARD checks the
output on a grammatical level. PICARD attempts to
parse the detokenized model output to a data struc-
ture that represents the abstract syntax tree (AST)
of the predicted SQL query. Contrary to lexing
mode, the order in which keywords and clauses ap-
pear now matters. PICARD can reject invalid query
structures, e.g. find missing from clauses or incor-
rect orders of clauses and keywords. It can also
detect a range of issues with compositions of SQL



9897

expressions: Number one, if PICARD matches on
a tid.cid pattern, but the table with the id tid
does not contain a column with id cid, then that
parse is rejected. Secondly, if PICARD first matches
on an alias.cid pattern and then later matches
on the tid as alias pattern but tid does not
contain cid, then that parse is also rejected. An
equivalent rule also exists for sub-queries bound to
table aliases. Lastly, PICARD prohibits duplicate
binding of a table alias in the same select scope,
but permits shadowing of aliases defined in a sur-
rounding scope. This can happen in nested SQL
queries.

2.3 Parsing with Guards

In its highest parsing mode, PICARD engages
in additional analyses—called guards—while as-
sembling the SQL AST. If PICARD matches on
tid.cid or alias.cid, then guards require
that the table tid or the alias alias, respectively,
is eventually brought into scope by adding it to the
from clause. Moreover, the alias alias is con-
strained to resolve to a table or a sub-query that has
the column cid in it. If PICARD matches on the
pattern cid, then another guard requires that ex-
actly one table is eventually brought into scope that
contains a column with that id. These guards are
enforced eagerly in order to fail fast and to eject
invalid hypotheses from the beam at the earliest
possible time. The first time this is happening is
after parsing the from clause.

Only with these guards, PICARD is able to
reject a wrong prediction from our fine-tuned
T5-Large model like select maker, model
from car_makers for the question "What are
the makers and models?" Here, the correct table to
use would have been model_list, since it is the
only one in Spider’s car_1 schema that contains
both a maker and a model column.

Additional checks and guards are conceivable,
for instance, checking that only expressions of
the same type are compared or that column types
selected by union, except, or intersect
queries match. We leave these additional checks to
future work.

3 Experiments

Our experiments are mainly focused on Spider
(Yu et al., 2018), a large multi-domain and cross-
database dataset for text-to-SQL parsing. We train
on the 7,000 examples in the Spider training set and

evaluate on Spider’s development set and its hid-
den test set. We also report results on the CoSQL
SQL-grounded dialog state tracking task (Yu et al.,
2019), where we predict a SQL query for each
question given previous questions in an interaction
context. For this task, we train on both the Spider
text-to-SQL training data and the CoSQL dialog
state tracking training data, and evaluate on the
CoSQL development and test sets.

Spider and CoSQL are both zero-shot settings.
There is no overlap between questions or databases
between the respective training, development, and
test sets.

On Spider, we determine model performance
based on three metrics: exact-set-match accuracy,
execution accuracy, and test-suite execution accu-
racy (Zhong et al., 2020). Exact-set-match accu-
racy compares the predicted and the ground-truth
SQL query by parsing both into a normalized data
structure. This comparison is not sensitive to lit-
eral query values and can decrease under semantic-
preserving SQL query rewriting. Execution accu-
racy compares the results of executing the predicted
and ground-truth SQL queries on the database con-
tents shipped with the Spider dataset. This metric is
sensitive to literal query values, but suffers from a
high false positive rate (Zhong et al., 2020). Lastly,
test-suite execution accuracy extends execution to
multiple database instances per SQL schema. The
contents of these instances are optimized to lower
the number of false positives and to provide the
best approximation of semantic accuracy.

On CoSQL, we measure model performance in
terms of the question match accuracy and the inter-
action match accuracy. Both metrics are based on
exact-set-match accuracy. Interaction match accu-
racy is the joint accuracy over all questions in an
interaction.

We are encouraged by results by Shaw et al.
(2021), who showed that a pre-trained T5-Base
or T5-3B model can not only learn the text-to-
SQL task, but also generalize to unseen databases,
and even that T5-3B can be competitive with the
then-state-of-the-art (Choi et al., 2021; Wang et al.,
2020)—all without modifications to the model. We
therefore use T5 as the baseline for all our experi-
ments.

In order to allow for generalization to unseen
databases, we encode the schema together with the
questions. We use the same serialization scheme
used by Shaw et al. (2021). In experiments using



9898

database content, we detect and attach the database
values to the column names in a fashion similar to
the BRIDGE model by Lin et al. (2020). When
fine-tuning for the CoSQL dialog state tracking
task, we append the previous questions in the in-
teraction in reverse chronological order to the in-
put. Inputs exceeding the 512-token limit of T5 are
truncated. The target is the SQL from the Spider
and/or CoSQL training sets, unmodified except for
a conversion of keywords and identifiers to lower
case. We fine-tune T5 for up to 3072 epochs using
Adafactor (Shazeer and Stern, 2018), a batch size
of 2048, and a learning rate of 10−4.

Results Our findings on the Spider dataset are
summarized in Table 1 and Figure 1. Our repro-
ductions of Shaw et al. (2021)’s results with T5
cannot compete with the current state of the art on
Spider. The issue is that these models predict a
lot of invalid SQL. For instance, 12% of the SQL
queries generated by the T5-3B model on Spider’s
development set result in an execution error. How-
ever, when these same models are augmented with
PICARD, we find substantial improvements. First,
invalid SQL predictions become rare. For T5-3B
with PICARD, only 2% of the predictions are un-
usable. In these cases, beam search exited without
finding a valid SQL prediction. Second, and most
significantly, by using PICARD, the T5-3B model is
lifted to state-of-the-art performance. We measure
an exact-set-match accuracy of 75.5% on the devel-
opment set and 71.9% on the test set. The execution
accuracy results are 79.3% and 75.1%, respectively.
These numbers are on par or higher than those of
the closest competitor, LGESQL + ELECTRA
(Cao et al., 2021) (see Table 1). Furthermore, we
achieve a test-suite execution accuracy of 71.9%
on Spider’s development set.

Our findings on the CoSQL dialog state tracking
dataset (see Table 2) are similar to those for Spider.
PICARD significantly improves the performance,
and our fine-tuned T5-3B model achieves state-of-
the-art performance.

PICARD is not only improving performance, it
is also fast. During evaluation of the T5-3B model
on Spider, the decoding speed with beam size 4
on an NVIDIA A100-SXM4-40GB GPU was, on
average, 2.5 seconds per sample without PICARD

and 3.1 seconds per sample with PICARD.

Beam Size Figure 1 shows results on Spider with-
out and with PICARD when parsing with guards

1 2 4 8
beam size

0.60

0.62

0.64

0.66

0.68

0.70

ex
ac

tm
at

ch
ac

cu
ra

cy

turned off
lexing
parsing w/o guards
parsing w guards

none
finalizing
incremental

Figure 3: Exact-set-match accuracy on the Spider de-
velopment set as a function of beam size for top-4
PICARD on T5-Large (schema only) and for different
operation modes: turned off, lexing, parsing without
guards, and parsing with guards. In each mode, PI-
CARD is either used incrementally at each step or only
when finalizing a hypothesis.

for different beam sizes and sizes of T5. For
each model size, PICARD increases performance
with increasing beam size. These increases are
the strongest for the step from beam size 1 to 2,
less pronounced from 2 to 4, and then saturating
for beam sizes above 4. Even with greedy search
(beam size 1), PICARD allows for some modest
improvements. Note that, without PICARD, these
models do not benefit from beam search. The num-
ber, k, of highest-probability tokens that are pro-
cessed by PICARD at each decoding step has a
modest to negligible impact on performance. It is
the largest for T5-Base, smaller for T5-Large, and
almost undetectable for T5-3B. We do not study
the case k = 1, because it reduces the beam search
to constrained greedy search.

Ablations In Figure 3, we have condensed our
ablation analysis for PICARD. We show results for
our T5-Large model in all four PICARD checking
modes and for four different beam sizes on the Spi-
der development set. When checking incrementally
at each decoding step, lexing shows a small im-
provement over the unconstrained T5 model. The
results without PICARD and with PICARD in lex-
ing mode are largely independent of the beam size.
This is different when PICARD is switched into
the more sophisticated parsing modes. Both, with
and without guards, improvements from PICARD

increase rapidly for increasing beam sizes, where
parsing with guards clearly has a strong lead over



9899

Development Test

System EM% EX% EM% EX%

BRIDGE v2 + BERT (ensemble)† (Lin et al., 2020) 71.1 70.3 67.5 68.3
SMBOP + GRAPPA† (Rubin and Berant, 2021) 74.7 75.0 69.5 71.1
RATSQL + GAP† (Shi et al., 2021) 71.8 - 69.7 -
DT-Fixup SQL-SP + ROBERTA† (Xu et al., 2021) 75.0 - 70.9 -
LGESQL + ELECTRA† (Cao et al., 2021) 75.1 - 72.0 -
T5-Base (Shaw et al., 2021) 57.1 - - -
T5-3B (Shaw et al., 2021) 70.0 - - -

T5-Base (ours) 57.2 57.9 - -
T5-Base+PICARD 65.8 68.4 - -
T5-Large 65.3 67.2 - -
T5-Large+PICARD 69.1 72.9 - -
T5-3B (ours) 69.9 71.4 - -
T5-3B+PICARD 74.1 76.3 - -
T5-3B† 71.5 74.4 68.0 70.1
T5-3B+PICARD† 75.5 79.3 71.9 75.1

Table 1: Our results (bottom) and relevant prior art (top) on the Spider text-to-SQL task. Shown are the exact-set-
match accuracy (EM) and execution accuracy (EX) percentages on Spider’s development and test sets. Our results
are for a beam of size 4, and PICARD is parsing with guards for the top-2 token predictions. A dagger (†) indicates
use of database content, otherwise schema only.

Development Test

System QM% IM% QM% IM%

RATSQL + SCORE (Yu et al., 2021) 52.1 22.0 51.6 21.2

T5-3B 53.8 21.8 51.4 21.7
T5-3B+PICARD 56.9 24.2 54.6 23.7

Table 2: Our results (bottom) and relevant prior art (top) on the CoSQL dialog state tracking task. Shown are the
question match accuracy (QM) and interaction match accuracy (IM) percentages on CoSQL’s development and
test sets. Our results are for a beam of size 4, and PICARD is parsing with guards for the top-2 token predictions.

parsing without them.
In order to compare PICARD with the filtering-

by-validity approach of Suhr et al. (2020) and Lin
et al. (2020), we have studied also what happens
when PICARD is only checking hypotheses when
the model predicts their finalization with the end-of-
sequence token.2 In this restrained mode, PICARD

is still effective, but much less so compared to
normal incremental operation. The gap between
these two modes of operation only begins to shrink
for large beam sizes. This is understandable since
Lin et al. (2020) used beam sizes of at least 16
and up to 64 to reach optimal results with filtering
while Suhr et al. (2020) used a beam of size 100.

4 Conclusion

We propose and evaluate a new method, PICARD,
for simple and effective constrained decoding with

2This is not exactly equivalent to filtering a completely
finalized beam, because the hypotheses rejected by PICARD
never enter it and never take up any space.

large pre-trained language models. On both, the
Spider cross-domain and cross-database text-to-
SQL dataset and the CoSQL SQL-grounded dialog
state tracking dataset, we find that the PICARD de-
coding method not only significantly improves the
performance of fine-tuned but otherwise unmodi-
fied T5 models, it also lifts a T5-3B model to state-
of-the-art results on the established exact-match
and execution accuracy metrics.

Acknowledgements

We thank Lee Zamparo for his contributions to the
experiments on the CoSQL dataset. Further, we
would like to thank Pete Shaw for his input on
the reproduction of the T5 results on Spider. We
would also like to extend our gratitude to Tao Yu
and Yusen Zhang for their efforts in evaluating our
model on the test split of the Spider and CoSQL
datasets. Finally, we thank our anonymous review-
ers for their time and valuable suggestions.



9900

References
Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,

Su Zhu, and Kai Yu. 2021. LGESQL: Line graph en-
hanced text-to-SQL model with mixed local and non-
local relations. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2541–2555, Online. Association for
Computational Linguistics.

DongHyun Choi, Myeong Cheol Shin, EungGyun Kim,
and Dong Ryeol Shin. 2021. RYANSQL: Re-
cursively Applying Sketch-based Slot Fillings for
Complex Text-to-SQL in Cross-Domain Databases.
Computational Linguistics, 47(2):309–332.

Daan Leijen and Erik Meijer. 2001. Parsec: Direct
style monadic parser combinators for the real world.
Technical Report UU-CS-2001-27. User Model-
ing 2007, 11th International Conference, UM 2007,
Corfu, Greece, June 25-29, 2007.

Kevin Lin, Ben Bogin, Mark Neumann, Jonathan Be-
rant, and Matt Gardner. 2019. Grammar-based neu-
ral text-to-sql generation.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2020. Bridging textual and tabular data for cross-
domain text-to-sql semantic parsing. Findings of the
Association for Computational Linguistics: EMNLP
2020.

Bryan O’Sullivan and Ben Gamari. 2021. attopar-
sec: Fast combinator parsing for bytestrings and text.
Software available on the Haskell package reposi-
tory.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21:1–67.

Ohad Rubin and Jonathan Berant. 2021. SmBoP:
Semi-autoregressive bottom-up semantic parsing. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 311–324, Online. Association for Computa-
tional Linguistics.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional general-
ization and natural language variation: Can a se-
mantic parsing approach handle both? In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 922–938,
Online. Association for Computational Linguistics.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.

In International Conference on Machine Learning,
pages 4596–4604. PMLR.

Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu,
Alexander Hanbo Li, Jun Wang, Cicero Nogueira
dos Santos, and Bing Xiang. 2021. Learning con-
textual representations for semantic parsing with
generation-augmented pre-training. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 35, pages 13806–13814.

Alane Suhr, Ming-Wei Chang, Peter Shaw, and Ken-
ton Lee. 2020. Exploring unexplored generalization
challenges for cross-database semantic parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8372–
8388, Online. Association for Computational Lin-
guistics.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-sql:
Relation-aware schema encoding and linking for
text-to-sql parsers. Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics.

Peng Xu, Dhruv Kumar, Wei Yang, Wenjie Zi, Keyi
Tang, Chenyang Huang, Jackie Chi Kit Cheung, Si-
mon J.D. Prince, and Yanshuai Cao. 2021. Optimiz-
ing deeper transformers on small datasets. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2089–
2102, Online. Association for Computational Lin-
guistics.

Pengcheng Yin and Graham Neubig. 2018. Tranx: A
transition-based neural abstract syntax parser for se-
mantic parsing and code generation. Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Wal-
ter Lasecki, and Dragomir Radev. 2019. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

Tao Yu, Rui Zhang, Alex Polozov, Christopher Meek,
and Ahmed Hassan Awadallah. 2021. Score: Pre-
training for context representation in conversational
semantic parsing. In International Conference on
Learning Representations.

https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.18653/v1/2021.acl-long.198
https://doi.org/10.1162/coli_a_00403
https://doi.org/10.1162/coli_a_00403
https://doi.org/10.1162/coli_a_00403
https://www.microsoft.com/en-us/research/publication/parsec-direct-style-monadic-parser-combinators-for-the-real-world/
https://www.microsoft.com/en-us/research/publication/parsec-direct-style-monadic-parser-combinators-for-the-real-world/
http://arxiv.org/abs/1905.13326
http://arxiv.org/abs/1905.13326
https://doi.org/10.18653/v1/2020.findings-emnlp.438
https://doi.org/10.18653/v1/2020.findings-emnlp.438
http://hackage.haskell.org/package/attoparsec
http://hackage.haskell.org/package/attoparsec
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.naacl-main.29
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2021.acl-long.75
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.742
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2020.acl-main.677
https://doi.org/10.18653/v1/2021.acl-long.163
https://doi.org/10.18653/v1/2021.acl-long.163
https://doi.org/10.18653/v1/d18-2002
https://doi.org/10.18653/v1/d18-2002
https://doi.org/10.18653/v1/d18-2002
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://openreview.net/forum?id=oyZxhRI2RiE
https://openreview.net/forum?id=oyZxhRI2RiE
https://openreview.net/forum?id=oyZxhRI2RiE


9901

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, and et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Seman-
tic evaluation for text-to-sql with distilled test suites.
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/d18-1425
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29

