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Abstract
Pre-trained language models (PTLMs) have
achieved impressive performance on common-
sense inference benchmarks, but their ability
to employ commonsense to make robust infer-
ences, which is crucial for effective communi-
cations with humans, is debated. In the pursuit
of advancing fluid human-AI communication,
we propose a new challenge, RICA: Robust
Inference using Commonsense Axioms, that
evaluates robust commonsense inference de-
spite textual perturbations. To generate data
for this challenge, we develop a systematic and
scalable procedure using commonsense knowl-
edge bases and probe PTLMs across two dif-
ferent evaluation settings. Extensive experi-
ments on our generated probe sets with more
than 10k statements show that PTLMs per-
form no better than random guessing on the
zero-shot setting, are heavily impacted by sta-
tistical biases, and are not robust to pertur-
bation attacks. We also find that fine-tuning
on similar statements offer limited gains, as
PTLMs still fail to generalize to unseen in-
ferences. Our new large-scale benchmark ex-
poses a significant gap between PTLMs and
human-level language understanding and of-
fers a new challenge for PTLMs to demon-
strate commonsense.1

1 Introduction

Smooth and effective communication requires the
ability to make various forms of commonsense in-
ferences (Clark and Brennan, 1991). When a friend
texts, “I’m going to perform in front of thousands
tomorrow,” you may reply reassuringly, “Deep
breaths, you’ll do great!” Implicit to this com-
munication is a commonsense logical inference
that a person performing in front of a crowd may
feel anxious, and that a reassuring remark helps
ease anxiety (Figure 1). A growing body of liter-
ature (Bosselut et al., 2019; Petroni et al., 2019)

1Our code and data are public at https://sites.
google.com/usc.edu/rica.

Text Message:
“I’m going to perform in 
front of thousands 
tomorrow…”
----------------------------
Explicit Knowledge:
Friend is going to 
perform in front of 
many people tomorrow
-----------------------------
Commonsense Axiom:
Performing in front of 
people can cause anxiety

Text Message
“Deep breaths, you’ll do 
great!”
------------------------------
Inference Made:
My friend might be 
anxious, let me try to 
calm them

Linguistically-Varied
Statements of the same 
Commonsense Axiom
• A person performing 

in front of people 
might be nervous

• People performing in 
front of people find it 
harder to be relaxed

• It can be hard for 
someone to be calm 
when they’re about to 
perform 

Figure 1: Human communication requires common-
sense inferences. RICA evaluates such inferences via
commonsense axioms with many linguistic variations.

shows pre-trained language models (PTLMs) are
able to catalog the types of commonsense relation-
ships necessary for fluid communication. However,
as we show in this paper, PTLMs have a shocking
inability to leverage such commonsense knowledge
to make robust inferences.

Here we focus on two specific characteristics
crucial to human-AI communications: (1) com-
bining commonsense knowledge with information
expressed in natural language to make inferences
and (2) producing consistent inferences amidst
logically-equivalent yet linguistically-varied para-
phrases. We focus on commonsense axioms, such
as “Performing in front of people can cause anxi-
ety”, and exploit the flexibility of language to ex-
press the same axiom in many forms — e.g., “Per-
forming in front of people makes it hard to stay
calm.” We test these characteristics by generating
self-contained commonsense statements involving
novel entities (“Prindag is going to perform in front
of a crowd, so prindag is more likely to feel ner-
vous.”) and adapt them to two evaluation settings.

Unfortunately, these two capabilities have
largely been overlooked by existing natural lan-
guage inference (NLI) benchmarks (Williams
et al., 2018) and knowledge probing studies for
transformer-based PTLMs (Vaswani et al., 2017;

https://sites.google.com/usc.edu/rica
https://sites.google.com/usc.edu/rica
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Devlin et al., 2019; Liu et al., 2019; Clark et al.,
2020; Petroni et al., 2019). Most existing com-
monsense reasoning-focused datasets (Zhang et al.,
2017; Williams et al., 2018; Ostermann et al., 2019;
Zhou et al., 2021a; Talmor et al., 2019) do not sys-
tematically evaluate robustness against linguistic
variations, meaning we cannot preclude the possi-
bility that models are learning spurious patterns to
solve the needed task.

To fill this gap, we introduce RICA, a chal-
lenge to evaluate a model’s Robust Inference
using Commonsense Axioms in English.
RICA draws on linguistic and cognitive science
research (Schank and Abelson, 1977; Alshawi
and van Eijck, 1989) suggesting humans translate
language to logical representations and reason
using these abstract representations. RICA con-
sists of a set of natural language statements in
the “premise-conclusion” format that require
reasoning using latent (implicit) commonsense
relationships. We formulate these abstract com-
monsense relations between entities in first-order
logic and refer to them as commonsense axioms
(see Fig. 1). To insulate from PTLM biases
and test human-like acquisition ability on new
words (Carey and Bartlett, 1978), RICA uses
novel entities, which are unseen strings used to
ground axioms into natural language. Finally, we
introduce a set of linguistic perturbations that
paraphrase a commonsense axiom into natural
language in various forms.

Each component of RICA is generalizable, pro-
viding a systematic procedure to generate myr-
iad commonsense statements. In this paper, we
generate 257k commonsense statements capturing
43k axioms comprising different types of com-
monsense, such as physical, material, and social
properties. To demonstrate the quality of RICA,
we create a manually-curated set of 1.6k probes
based on commonsense axioms, and also under-
take a large-scale, crowdsourced verification of 10k
generated statements with multiple human annota-
tors. RICA is built by leveraging existing common-
sense knowledge bases such as ConceptNet (Liu
and Singh, 2004) and ATOMIC (Sap et al., 2019a)
to support easy expansion. Furthermore, RICA’s
statements can be posed as popular PTLM tasks
such as masked word prediction or sentence prob-
ability, making our benchmark widely applicable.
RICA provides an extensible platform for evaluat-
ing commonsense reasoning in a variety of PTLMs.

Masked Word Prediction: 
A prindag is lighter than a fluberg, so a prindag should float [MASK] 

than a fluberg. [more] or [less]

Novel Entity Pair: prindag and fluberg

Sentence Probability: 
A prindag is …, so …. more than a fluberg. [Correct]

VS
A prindag is …, so … less than a fluberg. [Incorrect]

Textual Entailment: 
(S1: A prindag is lighter than a fluberg. S2: A prindag should float more

than a fluberg.): [Entailment]
(S1: A prindag is lighter than a fluberg. S2: A prindag should float less

than a fluberg.): [Contradiction]
(S1: A prindag … S2: A prindag is more skilled than a fluberg.): [Neutral]

Figure 2: Illustration of two evaluation settings with a
pair of novel entities used by RICA probes.

When evaluating state-of-the-art transformer-
based PTLMs on the RICA probes following a
zero-shot setting (e.g., predicting “more” vs. “less”
in the first example in Fig. 2), we consistently
discover their performance is on par with ran-
dom guessing. Even after fine-tuning with large
amounts of labeled examples, PTLMs exhibit a sig-
nificant gap relative to human performance. We
drill down into this finding through (1) zero-shot,
(2) low-resource, (3) high-resource, and (4) noisy
training settings and find that even with apprecia-
ble performance gains on automatically generated
probes in high resource settings, PTLMs still re-
main on par with random guessing on difficult,
human-curated RICA probes. To better understand
these results, we identify a pervasive intrinsic bias
in PTLMs that demonstrates positivity bias in hu-
man languages (Dodds et al., 2015).

2 The RICA Challenge

The RICA challenge is posed as a set of tex-
tual statements (sentences), each expressing a la-
tent commonsense relationship in the “premise-
conclusion” format (see Stage 5 in Fig. 3 for ex-
amples). These statements use generated novel
entities such as “prindag” and “fluberg” instead of
real-world entities such as “thimble” and “elephant”
to separate factual recalling from reasoning. Each
statement can be viewed as an instantiation of a
commonsense principle, such as “smaller objects
cannot contain larger objects.”

We express these commonsense principles in
first-order logic, further generalizing statements
through the use of general predicates for object
properties (e.g., size) and object-object relations
(e.g., containment). We turn these logical formulae
into the associated textual statements using a set
of perturbation operators and a conversion module,
which together produce a logically-equivalent set
of commonsense statements. In the rest of this sec-



7562

2. Logical Template
Rel(A,B,r) à

Comp(Prop(A,p), Prop(B,p))

1. Base Predicates
• Property(A,p)
• Relation(A,B,r)
• Comparator(x,y)

5. Commonsense Statement Set
A is B’s lawyer, so A is more knowledgeable about law than B
B is A’s lawyer, so A is not more knowledgeable about law than B
A is B’s lawyer, so A is less clueless about law than B
A is B’s lawyer, so B is less informed on the law than A

…
Replace A and B with Novel Entities: A à prindag B à fluberg

Relation Property

Lawyer Knowledge of 
Law

Doctor Takes care of 
people

… …

4. Created Axiom
Rel(A,B,lawyer) à
Comp(Prop(A,knowledge of 
law), Prop(B,knowledge of 
law))

Text Conversion Module

Perturbation Functions

3. Knowledge Table

Figure 3: Overview of the workflow of our statement construction process. The output is a set linguistically-
diverse of masked sentences that follow the same reasoning template.

TERMINOLOGY Description

Logical Template (LT)
General FOL formula constructed from
predicates and logical connectives

Arguments Specific entities and relations to fill
predicates in LTs

Axiom Commonsense relationship expressed
in FOL by filling a LT with arguments

Commonsense Statement Natural language sentence after
converting an axiom using a TT

Statement Set Statements that inform the same
axiom after applying perturbations

Evaluation Instances/Probe A set of statements after adapting
to an evaluation task

Table 1: Description of terminology used in RICA.

tion, we first provide a formal definition of RICA
challenge, then provide a detailed description of
the statement construction process.

2.1 Challenge Formulation

Formally, we define a commonsense axiom ai, ex-
pressed via a first-order-logic (FOL) formula, as a
relationship between entities that can be inferred
using commonsense knowledge (see Stage 4 in
Fig. 3). To test whether PTLMs understand an ax-
iom ai, as well as examine their robustness to lin-
guistic variations, we instantiate the axiom ai by a
set of m syntactically-different commonsense state-
ments

{
si1, s

i
2, ..., s

i
m

}
, each expressing the same

logic as the axiom. Each statement takes the form
of an inferential implication with a premise and
conclusion. Finally, depending on the PLTM, we
select an appropriate task (Section 3), transform
each statement in the set into its task-specific probe,
and evaluate how well the PTLM can leverage
the logic of ai to solve each of ai’s correspond-
ing probes. We deem a model “successful” on the
challenge (or, understands the axioms) only if it can
perform like humans on all probes of the axioms.

2.2 Statement Set Construction Process

This subsection introduces our proposed procedure
for the construction of commonsense inference
statement sets for the challenge. A list of terminolo-
gies and descriptions can be found in Table 1 and
an overview of our workflow is shown in Figure 3.

Stage 1. Define Predicates. In FOL, predicates
are used to denote a property of objects or a re-
lation between objects and every predicate sym-
bol comes with an arity larger or equal to 1.
We define three general high-level predicates that
serve as the backbone for the logical formulations
of our axioms: Property, Comparator and Re-
lation. (1) PROP(A, p) represents that entity A
has a certain property p. “PROP(A, glass)” indi-
cates that A is made of glass. (2) REL(A,B, r)
represents that A and B have a certain relation
r. “REL(A,B, lawyer)” indicates that A is B’s
lawyer. (3) COMP(x, y) represents a compara-
tive relationship between values x and y, where
“COMP” will be replaced with comparison words
like “better,” “more,” or “easier.” We will later de-
fine multiple sub-types of these predicates to crawl
from Knowledge Bases (KBs) to ensure a wide
coverage of common knowledge.

Stage 2. Compose Logical Templates. We
manually create first-order logical formulae, re-
ferred to as logical templates (LT), using the pred-
icates defined in Stage 1. Each formula takes
the form of an implication, expressing an infer-
ence based on commonsense knowledge. For ex-
ample, REL(A,B, r) → COMP(PROP(A, p), PROP(B, p))

expresses a logical inference comparing a prop-
erty of two entities, A and B, based on a re-
lationship between them. An instantiated ver-
sion of this template can be REL(A,B, lawyer) →
MORE(PROP(A, know law), PROP(B, know law)).



7563

Stage 3. Populating Knowledge Tables. Materi-
alizing the abstract relationships in a logical tem-
plate requires connecting abstract logic to com-
monsense knowledge. We define a structure called
knowledge table (KT) that contains valid arguments
to populate a specific LT and form a FOL represen-
tation of the axiom. KTs are generated by crawl-
ining commonsense KBs such as ConceptNet (Liu
and Singh, 2004) and ATOMIC (Sap et al., 2019a).
The first step of the crawling process is to narrow
down the predicates to specific types. For example,
PROP is general enough to capture an entity’s ca-
pabilities (e.g., knowledge of law) or its intrinsic
properties (e.g., hardness). We pre-define several
type constraints for both properties (PROP) and re-
lations (REL). For PROP, we consider Capability,
Attribute, and Condition. For REL, we consider
Role and Action. Note that these categories can
be extended for wider coverage of knowledge and
allow our LTs to be adapted to a broader range
of KB schemas. After specifying type constraints,
we specify steps for crawling the arguments ei-
ther from commonsense KBs such as Concept and
ATOMIC or general web KB such as Wikipedia. In
our example in Fig. 3, we can crawl occupations
from Wikipedia, and then query ConceptNet for
triples with the occupation as the subject and Ca-
pableOf as the relationship to create a KT with
professions and capabilities. We show all crawling
steps for KTs in Appendix A.

Stage 4. Creating Axioms. Combining knowl-
edge tables and logical templates allows us to gen-
erate commonsense axioms at scale, which are
partially-filled LT formulae. For example in Fig. 3
Stage 3, the arguments of predicates REL, PROP,
and COMP are set in order to reflect the common-
sense relationship between lawyer and knowledge
of law, while leaving the entities A and B un-
grounded. Once the predicates are instantiated, we
call this partially-filled LT a commonsense axiom.

Stage 5. Generate Statement Sets. After filling
the logical templates, each partially-filled LT rep-
resents one commonsense axiom. To comprehen-
sively challenge models’ understanding of an ab-
stract axiom, we construct a statement set express-
ing the same axiom with different phrasings, i.e.,
logically-equivalent yet linguistically-varied. We
define several perturbations to apply on the argu-
ments from knowledge tables.

(1) Linguistic Operators. We define seven types
of linguistic operators to facilitate and formalize

LINGUISTIC OPERATOR EXAMPLE

NEGATION NEG(fit into) = not fit into
ANTONYM ANT(fit into) = contain

PARAPHRASE PARA(fit into) = put into

PARAPHRASE INVERSION
PARA(ANT(fit into)) = Para(contain)

= hold inside

NEGATION ANTONYM
NEG(ANT(fit into)) = NEG(contain)

= not contain

NEGATION PARAPHRASE
NEG(PARA(fit into)) = NEG(put into)

= not put into

NEGATION PARA INV

NEG(PARA(ANT(fit into))) = NEG(PARA(
contain))= NEG(hold inside)

=not hold inside

Table 2: Linguistic operators, logic, and examples.

perturbations, shown in Table 2. We construct the
last four operators by combining some of the sin-
gle operators listed in the first three rows. Note
that for NEGATION, ANTONYM, PARAPHRASE IN-
VERSION, and NEGATION PARAPHRASE types, the
logic of the original phrase is changed, so words in
the statements have to be changed accordingly. For
example, if we apply ANTONYM to “fit into” in the
probe “A is smaller than B, so A is more likely to
fit into B,” we will get “A is smaller than B, so A is
less likely to contain B.” (2) Asymmetry Operator.
Most of our logical templates use several strongly-
ordered comparisons and relationships allowing us
to introduce asymmetries that preserve meaning.
For example, MORE(A,B) → ¬MORE(B,A)
and REL(A,B, parent) → ¬REL(B,A, parent).
Using this invariant, we can swap the positions of
two entities for these predicates and the logic will
also be negated, so we denote this perturbation as
ASYM(P(A,B)) → P(B,A) = ¬P(A,B).

We apply the defined operators to the arguments
in the predicates to first form a set of partially-filled
LTs (axioms) and use for a conversion module to
convert axioms to statements with diverse perturba-
tions. In practice, this module can be a sequence-to-
sequence (seq2seq) model (that takes in FOL and
outputs natural language text), or human-written
templates. Finally, commonsense axioms are gen-
eral logical relationships that hold for all entities.
To formulate specific commonsense statements, we
generate specific novel entities. These entities are
randomly generated character strings from length
3 to 12 that are not seen in the training data of the
PTLMs. Using novel entities enables us to avoid
conflating fact-based recall with commonsense rea-
soning when evaluating PTLMs.
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E.g.: A is made of glass, B is made of stone, so A is less opaque than B

LT1: Prop(A,p)ΛProp(B,q)àComp(Prop(A,m),Prop(B,m))

E.g.: A is B's priest, so A spends more time praying than B 

LT2: Rel(A,B,r)à Comp(Prop(A,m),Prop(B,m))

E.g.: A is able to concentrate more than B , so A is more effective than B 

LT4:Comp(Prop(A,m),Prop(B,m))àComp(Prop(A,n),Prop(B,n))

E.g.: A makes the varsity team but not B, so A is more skilled than B 

LT3: Prop(A,p)Λ¬Prop(B,p)àComp(Prop(A,m),Prop(B,m))

E.g.: A turned on the heater, so A was cold before turning on the heater 

LT5: Prop(A,p)à Comp(Prop(A,m),Prop(B,m))

Table 3: Example first-order logical templates we con-
struct for our probes and an example for each template.

3 Experiment Setup

3.1 Probing Tasks
To examine transformer-based PTLMs’ perfor-
mance on RICA challenge, we draw conclusions
from evaluation results on two distinct probing
tasks shown in Figure 2, described as follows.

Masked Word Prediction (MWP) Inspired by
the masked word prediction objective in BERT (De-
vlin et al., 2019), we examine if the models can re-
cover masked-out keywords in the statement given
the remaining context. Since RICA’s statements
take the form of implications, we mask words in
the consequent to evaluate the inference perfor-
mance, given the premise. Specifically, we choose
to mask the comparative words (from COMP) such
as ‘‘more/less” and “better/worse” as shown in Fig-
ure 2, since they not only capture the commonsense
relationship, but also focus on masking positions
where only a few options are appropriate logically
and syntactically.

Sentence Probability (SP) evaluates if PTLMs as-
sign higher probability for statements that express
commonsense axioms versus contradictory state-
ments. RICA statements are input to PTLMs, com-
puting SP by taking the product of each word’s
probability conditioned on previous words, i.e.,
the left-to-right language modeling loss. For each
RICA statement, we pair it with an incorrect (non-
commonsense) statement by swapping the compar-
ative word (i.e., the masked word in MWP) with its
opposite word, as shown in Figure 2.

3.2 Probing Data Details

Raw Set Following the process in Section 2, we
use the three high-level predicates to generate five
LTs as shown in Table 3. Then we construct knowl-
edge tables to fill in each template by crawling
from two commonsense KBs: ConceptNet (Liu

and Singh, 2004) and ATOMIC (Sap et al., 2019a).
Specifically, for each LT, we design 1 to 4 crawl-
ing strategies based on the type constraints we im-
pose on the predicates so that it covers multiple
aspects of commonsense knowledge (for all strate-
gies please see Table 4 in Appendix A). For ex-
ample, the example shown for LT1 in Table 3 is
about inference of physical properties based on the
material of two objects as we constrain PROP in
the premise to be materials. However, we can also
constrain PROP in the premise to be animals so
that we can use the same template to examine infer-
ence of properties based on the animal types of A
and B, e.g., “A is a fish, B is a horse, so A is more
likely to be in the bottom of the sea than B.”

We have 11 type-constrained LTs and we pop-
ulate the KTs using 11 human-designed crawl-
ing strategies shown in Appendix A, resulting in
around 43k axioms. Then we apply the perturba-
tion operators as described before to form a set of
257k perturbed axioms. For this large set, we apply
negation and asymmetry operators automatically by
adding negation and switching the order of entities.
To convert FOL axioms to text, we train a seq2seq
model based on BART (Lewis et al., 2020a) on 200
manually converted axiom-text pairs covering each
type-constrained LT and each perturbation type. Fi-
nally, we replace entities to unseen entities to form
a set of 257k commonsense statements.

Quality Check. To check for language quality
of the generated probes from BART, we randomly
sample 5% of the 10k set and ask a native English
speaker to check for the naturalness. We found
that only 4 out of 500 (0.8%) probes contain gram-
mar or fluency issues. Since all probes follow a
premise-conclusion format, we find that using 200
pairs of first-order logic (FOL) and aligned text
for fine-tuning BART is sufficient to convert FOL
into text, both from our manual inspection and the
crowdsourcing verification of the generated probes.
We tried increasing the training set size and didn’t
observe a clear difference in quality.

Human-Verified Set To ensure the quality of
crawled data, we conduct human evaluation us-
ing Amazon Mechanical Turk (AMT) on 10k of
our collected 257k statements covering 1.7k dif-
ferent commonsense axioms. We present a pair
of statements by flipping the comparative term in
the original statement to its opposite, and ask two
annotators to choose the one that follows common-
sense. If they disagree, we subject the pairs to
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Figure 4: Performance of different transformer-based models on different settings of our data. BERT, RoBERTa,
ERNIE, and BART are evaluated using masked word prediction and GPT2 is evaluated using sentence probability.
Zero-shot performance is no better than random guessing. More data helps greatly for human-verified test set (10k)
although noisy training hinders the improvement. Increasing data does not help at all for our human-curated set.

a second round of turking with three annotators,
and use majority voting to validate the statement.
When annotators prefer a flipped statement over
the original, we replace the statement accordingly.

Quality Check. The Fleiss-kappa agree-
ment (Fleiss, 1971) on the two rounds of turking is
0.72 and 0.52, indicating that some statements are
difficult for humans to verify. Of 10k statements
in the verified set, we sample 10% (1k with 170
axioms) that 2 annotators agree on in the first or
second round to form our Human-Verified Test Set.

Human-Curated Set To further challenge mod-
els on more flexible forms of text, we ask humans
to write perturbed axioms. Specifically, given an
axiom in FOL, a human annotator is asked to pro-
vide input that perturbs the conclusions following
all 7 types of linguistic perturbations as shown in
Table 2, including compositional combinations that
are hard to generate using automated approaches,
Then we apply the asymmetry operators either on
the premises or conclusions. Thus we have in total
of 24 types of perturbations, including the unper-
turbed one. We focus on 80 axioms covering physi-
cal, social, and temporal commonsense knowledge
and create 1.6k statements. We show examples of
all perturbations for one probe in Appendix Table 7
and sampled 60 probes in Appendix Table 8.

Joint Test Set Combines the Human-Curated and
Human-Verified sets, for a total of 2.6k statements.

3.3 Evaluation Settings

Using the collected probe data introduced above,
we consider four evaluation settings to examine
models’ capabilities to perform robust inference on
our dataset.

1. Zero-Shot: In the zero-shot setting, we test
models without any exposure to training data.

2. Low-Resource: For the low-resource setting,
we fine-tune the models on 1k (10%) of the verified
10k set to determine how a small amount of in-
domain text influences PTLM performance.

3. High-Resource: We use 90% of the verified
training set (8k for training, 1k for validation). We
further increase the number of training instances by
introducing 5 different novel entities for each state-
ment, yielding 40k training instances that include 5
repetitions of each probe with different novel enti-
ties, providing models more opportunities to learn
patterns in the training set.

4. Raw Large-Scale Training: Finally, to analyze
the effects of training on an even larger but noisier
set with the similar format. Starting from the raw
set of 257k crawled statements, we sample 100k
statements from 17k axioms ensuring no overlap
with the test set.

3.4 Baseline Methods

We evaluate multiple state-of-the-art transformer-
based PTLMs covering both masked and genera-
tive language models. For the masked word pre-
diction task, we consider BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), ERNIE, a
knowledge enhanced LM (Zhang et al., 2019), and
BART (Lewis et al., 2020b). For sentence proba-
bility, we consider GPT-2 (Radford et al.), a unidi-
rectional language model for left-to-right language
generation.

4 Results and Analysis

We examine the performance of multiple language
models on each evaluation setting on our probe
data, including zero-shot and fine-tuning on vari-
ous splits, and present ablation studies to analyze



7566

Human RB-base RB-base-ft RB-largeRB-large-ft GPT2 GPT2-ft
Pre-trained Language Models and Human

0

20

40

60

80

100
Av

g 
Ac

cu
ra

cy
90.0 87.2

45.8

89.9

60.5

77.7

50.9

93.8

12.5

58.7

12.2

49.8

20.9

48.3

Performance on Positive and Negative Comparators
"Pos" Words
"Neg" Words
Random Guess

(a) Results on Positivity Bias

B-base B-large RB-base RB-large GPT-2
Pre-trained Language Models

0

20

40

60

80

100

Av
g 

Ac
cu

ra
cy

49.7 49.4 49.4 51.0 49.049.6 49.3 51.0 49.6 49.5

Comparison of Accuracy between Novel Entities and Real Names
Novel Entities (Random Strings)
English Names
Random Guess

(b) Ablation on Novel Entities

orig neg ant para para_inv
neg_ant

neg_para
neg_para_inv

Linguistic Perturbations

0

20

40

60

80

100

Av
g 

Ac
cu

ra
cy

65
55

5

35

15

65
60 62

Linguistic Variation Test on RoBERTa-Base Fine-tuned
Avg Accuracy
Random Guess

(c) Results per Linguistic Perturbation

Figure 5: Results of fine-tuning and the ablation study on novel entities. Shows that (a) models are biased to
positive words, requiring fine-tuning to correct (b) poor performance persists after replacing novel entities with
real names––indicating the use of random strings is not hindering PTLMs’ abilities, (c) fine-tuning mitigates the
bias towards positive words, but the inconsistency issue for linguistic variation become obvious.

performance more thoroughly. All of our results
are averages of testing on 3 seeds.

4.1 Zero-Shot Performance

As shown in the first group of bars in Figures 4a
and 4b, the average binary accuracies of all five
models (we show the large version) on both MWP
and SP tasks are around 0.5, regardless of the test
data. A random baseline that chooses between the
two comparative words would have an accuracy of
0.5. This shows that the tested models barely beat
a random guessing baseline without training.

Is Knowledge-Augmented Model Better? To see
if adding knowledge during training helps, we also
test a knowledge-enhanced LM, ERNIE (Zhang
et al., 2019). However, as we can see in Figures 4a
and 4b, ERNIE also performs on par with random
guessing, demonstrating that simply adding more
knowledge does not help with the robust inference
capability.

Human Performance To benchmark human per-
formance, we sampled 5% of our joint test set con-
sisting of both human-verified and human-curated
data and gathered answers from 20 subjects (an-
notators) with diverse backgrounds who were not
involved in the probe construction process. We
consider this as zero-shot testing for humans as
they have not seen the training set before. Humans
obtained 91.7% accuracy, taking a majority vote
for each probe, with a substantial inter-annotator
agreement of 0.768 Kappa (Cohen, 1960)).

4.2 Fine-tuning Performance

To study if poor performance in §4.1 is from a lack
of exposure to RICA’s probe sets, we conduct ex-
periments to fine-tune baseline language models.
As in §3.3, we consider training on low-resource

data by sampling a subset of the verified set, on
high-resource by filling multiple novel entities in
the verified set, and the noisy 100k data. We fine-
tune BERT, RoBERTa, ERNIE, and BART using
the same masking approach as MWP evaluation,
and fine-tune GPT-2 on the causal language model-
ing task. Details for training are in the appendix.

More Data Helps on Human-Verified Set Fig-
ure 4a shows fine-tuning on our probe set helps
the model on the human-verified set, especially for
RoBERTa and ERNIE, where the high-resource
setting almost reaches 90% accuracy. This demon-
strates with enough data, PTLMs are able to reach
near-human performance on generated axioms.
The low-resource (except for ERNIE) and noisy
training settings, however, pose an enduring chal-
lenge for most models.

Diversity of Curated Set Stumps All. Evaluat-
ing models fine-tuned on human-verified data on
the human-curated set, where human editors pro-
vide greater diversity in probes, tells a different
story. The model accuracy (Figure 4b) remains
near 50%, on par with random guessing, for all
models in all settings. This indicates that expos-
ing these models to numerous linguistically similar
sentences does not improve robust inference ability.
Furthermore, we evaluate training data sensitivity
for both the human-verified and human-curated
set (Figure 4c). We vary training set size from
0 to 80k for RoBERTa-large. Our results show
that performance on the human-verified set sat-
urates around 80% accuracy after 10k instances,
but human-curated accuracy remains close to 50%
throughout. This casts doubt on the model’s gener-
alizability and whether the improved performance
may be due to pattern-matching seq2seq generation,
not commonsense acquisition. An inability to im-
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prove on reasoning tasks after fine-tuning supports
the challenging nature of RICA, which cannot be
trivially solved by fine-tuning.

4.3 Performance Analysis

Positivity Bias in PTLMs. We find a pattern that
when PTLMs are asked to infer a comparative rela-
tionship between the property of two entities, the
model is heavily biased towards predicting words
that evoke positive emotions (positive valence) re-
gardless of what commonsense axiom is embedded
in the statement. Figure 5a shows that the accu-
racy for “positive valence” words such as “more”
and “easier” is much higher than “negative valence”
words such as “less” and “harder”. Fine-tuning
on our probes, which have a balanced number of
sentences containing positive and negative compar-
atives, helps mitigate this bias for RoBERTa (base
and large) and GPT-2. We conjecture that this may
be due to the frequency difference between pos-
itive valence words and negative valence words
related to reporting bias in language (Gordon and
Van Durme, 2013). Dodds et al. (2015) shows a
universal positivety bias in human languages and
to check if our comparators also possess it, we
use Google Ngram Viewer 2 to find frequencies
for the masked words, and confirm that the posi-
tive valence words are about 5 times more frequent
than their negative counterparts. This correlation
supports the claim that PTLMs do not reason as
humans do, but are guided by statistical patterns.
Our challenge clearly reveals this bias in PTLMs
and suggests a potential mitigation using RICA.

Ablation of Novel Entities In order to ensure
novel entities used in RICA did not impact PTLM
performance, we conducted an ablation study on
4,800 of our human-curated set (each statement is
repeated for 3 times). These probes involved social
commonsense, where novel entities took the place
of names. We conduct an ablation by choosing
common names instead of novel entities, producing
probes containing only previously-seen words. As
Figure 5b shows, the performance of all models in
three settings did not change significantly, strongly
suggesting that novel entities are not critical to
PTLM performance. We conclude novel entities
do not introduce helpful or distracting sub-words.

Impact of Linguistic Perturbations Before
fine-tuning, a heavy bias for positive valence words

2https://books.google.com/ngrams

interfered with the perturbations analysis, since
each perturbation has a balanced number of posi-
tive and negative valence words. After fine-tuning,
however, the bias is mitigated and we find signif-
icant variations in performance for different per-
turbation types (Figure 5c). This shows that lan-
guage variation greatly affects a model’s capability
to make inference on our commonsense probes,
while suggesting models do not comprehend the
axioms. Interestingly, the composite perturbation
types such as NEGATION ANTONYM are not neces-
sarily harder for PTLMs, even though performance
on ANTONYM is the lowest. We speculate that
the model is exploiting some pattern in NEGATION

ANTONYM that is not present for just ANTONYM.

5 Related Work

Commonsense Reasoning has a long history in
AI, with classical work primarily focusing on ex-
ecuting symbolic rules as hand-crafted programs
for machines to learn (Mccarthy, 1960). The ma-
jority of recent commonsense reasoning bench-
marks (Zellers et al., 2018; Talmor et al., 2019; Bisk
et al., 2020; Sap et al., 2019b; Lin et al., 2021c,a,b;
Sakaguchi et al., 2020) test a model’s ability to
choose the correct option given a context and a
question; PTLMs have reached high performance
on these benchmarks after fine-tuning. We differ
from these benchmarks by focusing on robustness
to linguistic variation via our linguistically-varied
commonsense statements. RICA also challenges
PTLMs on two evaluation tasks to better probe the
PTLMs’ representations.
Reasoning-focused Inference There have been
many benchmarks that focus on reasoning abili-
ties in multiple tasks such as reading comprehen-
sion (Huang et al., 2019; Yu et al., 2020), dialogue
systems (Cui et al., 2020), and NLI (Williams et al.,
2018), that involve inferences on language. Recent
work also aims to probe models in these tasks to
see if reasoning is actually achieved (Richardson
and Sabharwal, 2020; Richardson et al., 2020).
Robustness to Linguistic Variations Previous
work has also examined model robustness against
paraphrases by producing linguistically-varied sen-
tences for different tasks such as NLI (Liu et al.,
2020; Li et al., 2020), question answering (Weller
et al., 2020), and sentiment analysis (Ribeiro et al.,
2018), just to name a few. Our work distinguishes
from them as we look into robustness in regard to
commonsense reasoning and develops a systematic

https://books.google.com/ngrams
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procedure to generate paraphrases using first-order
logic.
Probing PTLMs Prior works in analyzing the
(commonsense) reasoning ability of PTLMs have
primarily focused on creating probing tasks by gen-
erating ad-hoc masked sentences either from knowl-
edge bases (Petroni et al., 2019; Davison et al.,
2019; Lin et al., 2020) or existing datasets (Zhou
et al., 2020; Talmor et al., 2020; Kwon et al., 2019;
Zhou et al., 2021b). This first line of works aim
to test if PTLMs can work as knowledge bases, i.e.
can they retrieve factual knowledge; our work fo-
cuses on implicit commonsense relations, not facts.
We differ from the second line of work by propos-
ing a systematic procedure to generate probes and
evaluate for robustness. Clark et al. (2020) shows
that PTLMs can emulate deductive reasoning given
explicit rules, but we focus on unstated common-
sense relations.

6 Conclusion

We design RICA as an AI challenge to test ro-
bust inference capabilities on linguistically-varied
probes covering different commonsense axioms.
RICA is built on a systematic process to construct
probes using FOL formulae, perturbation operators,
and novel entities. Following this approach, we
generate and verify more than 10k statements from
1.7k axioms and test multiple PTLMs in various
settings. We find that PTLMs perform on par with
random guessing on zero-shot setting, have strong
positivity bias, and are not robust under linguistic
perturbations.
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A Probing Data Details

A.1 Raw Set Collection

We define 1-4 combinations of type constraints on
the predicates for each LT and designe crawling
strategies accordingly using resources: Concept-
Net, ATOMIC, and Wikipedia. Descriptions for
each of the 11 strategies are included in Table 4.
All data and code for crawling strategies is included
in the supplementary materials.

A.2 Turking Details for Human-Verified Set

We present a pair of statements by flipping the
comparative term in the original statement to its
opposite, and ask two annotators to choose the one
that follows commonsense. The AMT page for
turkers to annotate is shown in Figure 8. If they
disagree, we then take the pairs and do a second
round of turking by asking three annotators and use
majority voting to decide what is the right sentence
in the pair. We replace the original statement with
the opposite one if there are more annotators think
that the other one in the pair follows more common-
sense. In total, around 2500 pairs are sent to the
second round and 300 pairs are flipped to the op-
posite according to annotators. The estimated time
for completing each instance is around 20 seconds
and we pay each instance $0.06, which translates
to around $11 per hour.

A.3 Human-Curated Set Details

We show all perturbations for one probe in Table 7
and 60 of our human-curated set’s unperturbed
statement in Table 8 (for temporal refer to sup-
plementary material). Full data is included in the
supplementary material.

B Experimental Details

Model Detail We test our probes on in total 10
models, with the number of parameters and other
details in Table 6. For RoBERTa-base, RoBERTa-
large, RoBERTa-large-MNLI, and BART-large-
MNLI, we use the fairseq implementation 3. For
BERT-base-uncased, BERT-large-uncased, AL-
BERT, and GPT-2, we use the huggingface trans-
formers library 4. For COMET trained on Concept-

3https://github.com/pytorch/fairseq/
tree/master/examples/roberta, https:
//github.com/pytorch/fairseq/tree/
master/examples/bart

4https://huggingface.co/transformers/
model_doc/albert.html, https://

Net and ATOMIC, we follow their github repo 5.
We use ERNIE from their original github 6.

Fine-tuning Details We fine-tune BERT-base-
uncased, BERT-large-uncased, RoBERTa-base,
and RoBERTa-large based on HappyTransform-
ers 7 framework, using a consistent learning rate
of 1e-5. We fine-tune GPT-2 based on hugging-
face transformers library’s example code 8, us-
ing their default parameters. We train them on
one NVIDIA Quadro RTX 6000 GPU for 10
epochs and after each epoch we test the fine-
tuned model on our validation set, and save
the model with the highest validation set perfor-
mance. Fine-tuning RoBERTa-base and GPT-
2 takes around 30 minutes for each epoch and
RoBERTa-large takes around 1 hour. The best vali-
dation performance for RoBERTa-base is the fourth
epoch, with perplexity 1.3378140926361084 and
evaluation loss’: 0.2910370217429267. For
RoBERTa-large, the best is epoch 5, with per-
plexity 1.3949965238571167 and evaluation loss
0.3328918993473053. For GPT-2, the best is
epoch 3, with perplexity 1.2786548795017285.

Interpretation Details We use the AllenInterpret
demo 9. To identify important context words, we
run the algorithm over the same probe for 5 times,
each with different entity names, and select the
words that are ranked in the top 5 most important
words at least 3 times. We find that the interpreta-
tions are not very consistent as the most important
words change when we input the same sentence for
multiple times and will also change when different
names are used, so we conduct 5 trials with differ-
ent names for each probe and pick the words that
appear in the majority of the trials.

C Additional Studies

Does explicitly providing commonsense knowl-
edge help? Shocked by the severe bias observed
in PTLMs, we construct an easier set of probes,
where we explicitly state all knowledge needed to
make the correct logical inference. We have two

huggingface.co/transformers/model_doc/
gpt2.html

5https://github.com/atcbosselut/
comet-commonsense

6https://github.com/thunlp/ERNIE
7https://github.com/EricFillion/

happy-transformer
8https://github.com/huggingface/

transformers/tree/master/examples/
language-modeling

9https://demo.allennlp.org/masked-lm
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Logical Template Type Constraint Crawling Strategy Example Axiom (Adjusted for readability)

1

Attribute-Material (126)
Get a list of materials, and find properties in ConceptNet using HasProperty;
then find a second material using NotMadeOf from the previous property.

Material(A, glass) and Material(B, wood), so More(clear(A), clear(B))

Attribute-Grade (132)
Input an ordered list of numbers and form pairs and comparative relations
following the orders

Grade(A, first) and Grade(B, third), so More(young(A), young(B))

Condition-Location (1k)
Get a list of places with descending latitude from Wikipedia and form pairs
by the relation (higher latitude is colder than lower latitude), considering
both hemispheres.

Location(A,equator) and Location(B, north pole), so
More(living in hot condition(A), living in hot condition(B))

Attribute-Animal (10k)
Get a list of animals from Wikipedia and find properties in ConceptNet
using CapableOf and LocateAt

Animal(A, fish) and Animal(B, horse), so More(locate at the bottom
of the sea(A), locate at the bottom of the sea(B))

2
Role (1.2k)

Input a list of occupations from Wikipedia and find properties in ConceptNet
using CapableOf

Priest(A,B), so More(Pray(A), Pray(B))

Action (10k)
For every event in ATOMIC that involves two people, we find properties
by following the Attribute edge in ATOMIC

Forces upon(A, B), so More(pushy(A), pushy(B))

3
Action (10k)

For each event in ATOMIC that involves people, we find properties
by following the Attribute edge in ATOMIC, note that we replace PersonX
with ”themself” and PersonY with ”another person” to sound natural

Assesses patient(A) and not Assesses patient(B),
so More(analytical(A), analytical(B))

Capability-Physical (100)
Input a list of adjectives describing objects, we find properties by following
UsedFor edge in ConceptNet

Tie knot(A) and not Tie knot(B), so More(elastic(A), elastic(B))

4
Action (10k) Similarly to LT3-Event More(Concentrate(A), Concentrate(B)), so More(Effective(A), Effective(B))

Capability-Physical (100) Simiarly to LT3-Physical
More(square(A), square(B)), so
Better(divide two space(A), divide two space(B))

5 Attribute-Temporal (100)
Manually come up with temporal ordered-events, included in Human-Curated
Set

entered the building(A),so before(outside(A))

Table 4: Crawling strategies for 11 type-constrained KT crawling for our Raw Set.

CATEGORY EXAMPLE

Physical (30%)
A is smaller than B,
so A is easier to put into a box than B.

Material (30%)
A is made out of glass and B is made out of stone,
so A is more transparent than B.

Social (30%)
A makes the varsity team while B does not,
so A is more skilled than B.

Temporal (10%)
A was eating dinner,
so A was hungry before eating dinner.

Table 5: Different types of commonsense axioms in-
cluded in our human-curated probe set

Model Details
BERT-base-uncased 12-layer, 768-hidden, 12-heads, 125M parameters
BERT-large-uncased 24-layer, 1024-hidden, 16-heads, 355M parameters

RoBERTa-base 12-layer, 768-hidden, 12-heads, 125M parameters
RoBERTa-large 24-layer, 1024-hidden, 16-heads, 355M parameters

ALBERT 12 repeating layer, 128 embedding,
4096-hidden, 64-heads, 223M parameters

GPT-2 12-layer, 768-hidden, 12-heads, 117M parameters.
COMET-Concept GPT-2 config + Traning on ConceptNet
COMET-ATOMIC GPT-2 config + Traning on ATOMIC
RoBERTa-L-MNLI 24-layer, 1024-hidden, 16-heads, 355M parameters

BART-L-MNLI 24-layer, 1024-hidden, 16-heads, 406M parameters
+ a classification head

Table 6: Models tested and details.

settings for this test, one where parroting the now-
provided commonsense fact is all that is needed to
correctly answer the probe, and the other where a
simple negation switch of the commonsense fact is
needed to solve the probe:

• A is made of glass, B is made of stone, and
glass is more transparent than stone, so A is
[MASK] transparent than stone. (parrot)

• A is made of glass, B is made of stone, and
glass is more transparent than stone, so A is
not [MASK] transparent than stone. (negation
switch)

We do this so to investigate whether RoBERTa

is actually able to use the provided commonsense
fact, or is it possibly just pattern matching.

We add this piece of background knowledge to
the 60 original (unperturbed) statements along with
their corresponding negated statements to form an
“easier” setting of our task. As shown in Figure 6,
we find two patterns PTLMs exhibit. For RoBERTa,
ALBERT, and GPT-2, there is a stark difference in
performance between the two settings. When they
are being asked to parrot the commonsense fact,
the performances jump up to near perfect scores,
however when all they have to do is the equivalent
of applying a negation operator on the fact, they
fail even worse than when they are not provided the
fact. These results suggest that in the parrot easier
setting, it is likely RoBERTa, ALBERT, and GPT-2
are just parroting the commonsense fact they see in
the sentence and not utilizing some sort of reason-
ing ability, as when asked to perform the simplest
of logical operations they fail. The other pattern
we notice is that providing background knowledge
does not help or hurt the performances for COMET
and models tested on the textual entailment task.
For COMET models, this may be due to the fact
that COMET is trained on triplets from knowledge
bases: given a head entity and a relation, predict
the tail entity, so it is not used to taking auxiliary
knowledge into its input. As for models fine-tuned
on MNLI, the performance stays unchanged be-
cause they still think most of the sentence pairs of
our probes are neutral, failing to grasp the embed-
ded logical inference step.

Case Study on Contextual Clues To gain a bet-
ter understanding on model behaviors, we con-
duct analysis to identify context words that the
model relies on when solving our probes. We use
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RB-base RB-large ALBERT GPT-2 CM-CN CM-A RB-NLI BART-NLI
Pre-trained Language Models
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Figure 6: Results of average performance of PTLMs when
we provide background knowledge in our probes. For
RoBERTa, ALBERT, and GPT-2, we notice a huge increase
in accuracy when provided knowledge. However, we find that
they are merely parroting what appears in the context since
when we apply a negation in the probe, which should change
the prediction, they are simply predicting the same as the
context shows, resulting in performance drop. For COMET
moddels and models tested on the NLI setting, we do not
observe the same pattern and it seems that adding knowledge
does not help or hurt.

the SmoothGrad (Smilkov et al., 2017) algorithm
from AllenNLP Interpret (Wallace et al., 2019) for
masked word prediction on our probes with real
people’s names (the same set as our ablation study)
using BERT. Aggregated across all probe sets, we
find that the three words BERT finds most impor-
tant are: “than”, “not”, and “so”, which make sense
as they are indicators for comparison, negation, and
causality, respectively.

“Not” and “so” are also the textual forms of the
logical connectives ¬ and →, which we use to
construct LTs.

Furthermore, we find that BERT also regards
argument words (inputs into LTs’ predicates via a
knowledge table, such as “lawyer” or “knowledge
of law”) important. The model finds on average
3.4 words as contextual clues and 1.5 out of them
are knowledge-specific argument words. This find-
ing shows that a PTLM is able to recognize words
specific to the commonsense axiom tested. How-
ever, noticing all these clues does not necessarily
aid in a PTLM’s ability to understand their logical
implications, as evidenced by their performances.
In other words, a PTLM, in this case BERT, knows
that these words are important when making a deci-
sion, but it does not know how to properly answer
RICA’s questions based on these lexical signals.
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Figure 7: Results of average accuracy of RoBERTa-
large on MWP. We can see that the PTLM makes
random-guessing like predictions across all sets.
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linguistic perturbation asymmetric perturbation probe

original original A is wider than B, so A finds it harder to slip through cracks than B
original asymmetric premise B is wider than A, so A finds it easier to slip through cracks than B
original asymmetric conclusion A is wider than B, so B finds it easier to slip through cracks than A
negation original A is wider than B, so A does not find it easier to slip through cracks than B
negation asymmetric premise B is wider than A, so A does not find it harder to slip through cracks than B
negation asymmetric conclusion A is wider than B, so B does not find it harder to slip through cracks than A
antonym original A is wider than B, so A finds it easier to be blocked by cracks than B
antonym asymmetric premise B is wider than A, so A finds it harder to be blocked by cracks than B
antonym asymmetric conclusion A is wider than B, so B finds it harder to be blocked by cracks than A
paraphrase original A is wider than B, so A is worse at fitting into openings than B
paraphrase asymmetric premise B is wider than A, so A is better at fitting into openings than B
paraphrase asymmetric conclusion A is wider than B, so B is better at fitting into openings than A
paraphrase inversion original A is wider than B, so A is more impeded by small openings than B
paraphrase inversion asymmetric premise B is wider than A, so A is less impeded by small openings than B
paraphrase inversion asymmetric conclusion A is wider than B, so B is less impeded by small openings than A
negation antonym original A is wider than B, so A does not find it harder to be blocked by cracks than B
negation antonym asymmetric premise B is wider than A, so A does not find it easier to be blocked by cracks than B
negation antonym asymmetric conclusion A is wider than B, so B does not find it easier to be blocked by cracks than A
negation paraphrase original A is wider than B, so A is not better at fitting into openings than B
negation paraphrase asymmetric premise B is wider than A, so A is not worse at fitting into openings than B
negation paraphrase asymmetric conclusion A is wider than B, so B is not worse at fitting into openings than A
negation paraphrase inversion original A is wider than B, so A is not less impeded by small openings than B
negation paraphrase inversion asymmetric premise B is wider than A, so A is not more impeded by small openings than B
negation paraphrase inversion asymmetric conclusion A is wider than B, so B is not more impeded by small openings than A

Table 7: An example probe set––24 logically equivalent, but semantically different statements.
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Figure 8: AMT annotation user interface for human verification on collected set.
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template probe

1 A is made out of glass and B is made out of stone, so A is more transparent than B
1 A is made out of cotton and B is made out of glass, so A is less sharp than B
1 A is made out of concrete and B is made out of paper, so A should be more heavy than B
1 A is made out of metal and B is made out of rubber, so A should float worse than B
1 A is made out of glass and B is made out of copper, so A is more fragile than B
1 A is made out of steel and B is made out of wool, so A is less soft than B
1 A is made out of wood and B is made out of glass, so A is more combustible than B
1 A is made out of sponge and B is made out of nylon, so A is worse for water resistance than B
1 A is made out of copper and B is made out of concrete, so A is more ductile than B
1 A is made out of metal and B is made out of cloth, so A is less foldable than B
1 A is made out of chocolate and B is made out of metal, so A is harder to keep frozen than B
1 A is made out of metal and B is made out of dirt, so A is a better electrical conductor than B
1 A is made out of stone and B is made out of helium, so A has a harder time flying than B
1 A is made out of honey and B is made out of water, so A is more viscous than B
1 A is made out of titanium and B is made out of rubber, so A is less elastic than B
1 A is made out of water and B is made out of methane, so A is more safe to store than B
1 A is made out of mercury and B is made out of oxygen, so A is worse for your health to consume than B
1 A is made out of wood and B is made out of fur, so A will more easily expand when heated than B
1 A is made out of concrete and B is made out of wood, so A is less penetrable than B
1 A is made out of glass and B is made out of tar, so A will reflect light better than B
3 A makes the varsity team while B does not, so A is more skilled than B
3 A is going to perform for people while B is not, so A finds it harder to be relaxed than B
3 A won the competition while B did not, so A finds it easier to be happy than B
4 A is able to concentrate more than B, so A finds it easier to be productive than B
3 A bullies people while B does not, so A is less kind than B
2 A is B’s boss, so A commands more respect than B
4 A has more work than B, so A finds it harder to be at ease than B
2 A has a crush on B, so A finds it harder to be relaxed around B
4 A has more dedication than B, so A will have a harder time failing than B
2 A is B’s parent, so A initially takes more care of B
2 A is B’s doctor, so A takes more care of B
2 A hurt B’s feelings, so A must be more insensitive than B
2 A is B’s priest, so A spends less time sinning than B
2 A is B’s lawyer, so A is less ignorant of the law than B
4 A has a lot less money than B, so A is less financially secure than B
4 A watches more tv shows than B, so A is more capable of understanding pop-culture references than B
2 A always loses to B in tennis, so A is a less proficient tennis player than B
2 A makes B late, so A has less reason to be annoyed at B
4 A is a better friend than B, so A is more thoughtful than B
2 A is B’s teacher, so A should be more informed than B
4 A is smaller than B, so A is easier to put into a box than B
4 A is heavier than B, so A is better at sinking than B
4 A is denser than B, so A should withstand piercing more easily than B
4 A is wider than B, so A finds it harder to slip through cracks than B
4 A is hotter than B, so A should be easier to melt than B
4 A is more elastic than B, so A should bounce better than B
4 A is tougher than B, so A is harder to rip apart than B
4 A is harder than B, so A is less comfortable than B
4 A is taller than B, so A will cast a more lengthy shadow than B
4 A is lighter than B, so A finds it harder to support weight than B
4 A has less momentum than B, so A has a worse ability to damage on impact than B
4 A is more luminous than B, so A is more dangerous to look at than B
4 A is more soluble than B, so A is harder to discern in water than B
4 A is more pungent than B, so A is easier to detect than B
4 A is smaller than B, so A finds it harder to displace liquid in a tub than B
4 A is shorter than B, so A is worse for keeping things out of reach than B
4 A is larger than B, so A is more difficult to carry than B
4 A is more taut than B, so A is worse at withstanding additional force than B
4 A is much hotter than B, so A will be more painful to hold onto than B
4 A is more magnetic than B, so A is harder to separate from another magnet than B

Table 8: Sixty probes and their corresponding logical templates
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BERT-base BERT-large
Easy Set Hard Set Joint Set Easy Set Hard Set Joint Set

Zero-shot 49.32 49.7 49.56 49.15 49.35 49.27

Low resource

10% 56.38 49.85 52.37 63.08 50.18 55.16
20% 59.3 50.5 53.89 65.64 50.37 56.26
30% 55.09 50.22 52.1 65.3 50.27 56.07
50% 60.62 50.33 54.3 63.48 50.25 55.35

Full resource
with 1 novel entity 54.26 50.5 51.95 61.02 49.46 53.97

with 5 novel entities 64.48 50.58 55.94 69.92 49.72 57.51
with 10 novel entities 82.58 51.18 63.3 85.93 50.64 64.74

100k 45.4 50.09 46.03 46.14 50.93 47.02

RoBERTa-base RoBERTa-large
Easy Set Hard Set Joint Set Easy Set Hard Set Joint Set

Zero-shot 53.6 49.39 55.32 51.81 49.69 58.79

Low resource

10% 59.08 49.36 53.1 59.93 50.65 54.23
20% 60.53 49.41 53.7 64.31 50.31 55.71
30% 60.79 49.93 54.21 65.47 50.95 56.55
50% 64.11 49.4 55.07 75.88 52.58 61.57

Full resource
with 1 novel entity 64.24 49.89 55.43 79.1 52.84 62.97

with 5 novel entities 82.32 49.93 62.43 87.03 51.69 65.32
with 10 novel entities 85.63 50.64 64.14 84.74 51.08 64.07

100k 72.35 50.02 70.06 78.13 53.92 73.71

GPT2
Easy Set Hard Set Joint Set

Zero-shot 51.27 49.6 50.1

Low resource

10% 50.57 49.91 50.29
20% 48.22 49.33 49.01
30% 48.18 49.2 48.97
50% 50.44 49.87 49.96

Full resource
with 1 novel entity 55.95 49.34 52.16

with 5 novel entities 66.3 49.53 55.98
with 10 novel entities 71.6 49.91 58.25

100k 32.94 49.16 35.21



7579

BART
EASY HARD

Zeroshot 47.46 50.37

Low resource

10% 60.55 49.72
20% 61.58 49.91
30% 63.54 49.96
50% 61.65 49.68

Full resource
with 1 novel entity 63.94 49.31

with 5 novel entities 69.05 49.73
with 10 novel entities 79.73 50.52

100k 50.87 49.95

ERNIE
EASY HARD

Zeroshot 47.97 50.31

Low resource
1% 63.11 50.22
3% 72.91 48.89
5% 87.42 49.70

Full resource
with 1 novel entity 87.66 50.06

with 5 novel entities 87.65 50.03
with 10 novel entities 87.36 49.77

100k 69.25 50.95


