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Abstract

Understanding how events are semantically re-
lated to each other is the essence of read-
ing comprehension. Recent event-centric read-
ing comprehension datasets focus mostly on
event arguments or temporal relations. While
these tasks partially evaluate machines’ ability
of narrative understanding, human-like read-
ing comprehension requires the capability to
process event-based information beyond argu-
ments and temporal reasoning. For example,
to understand causality between events, we
need to infer motivation or purpose; to estab-
lish event hierarchy, we need to understand the
composition of events. To facilitate these tasks,
we introduce ESTER, a comprehensive ma-
chine reading comprehension (MRC) dataset
for Event Semantic Relation Reasoning. The
dataset leverages natural language queries to
reason about the five most common event
semantic relations, provides more than 6K
questions, and captures 10.1K event relation
pairs. Experimental results show that the cur-
rent SOTA systems achieve 22.1%, 63.3% and
83.5% for token-based exact-match (EM), F1

and event-based HIT@1 scores, which are
all significantly below human performances
(36.0%, 79.6%, 100% respectively), highlight-
ing our dataset as a challenging benchmark. 1

1 Introduction
Narratives such as stories and news articles are
composed of series of events (Carey and Snod-
grass, 1999; Harmon, 2012). Understanding how
events are logically connected is essential for read-
ing comprehension (Caselli and Vossen, 2017;
Mostafazadeh et al., 2016b). For example, Fig-
ure 1 illustrates several pairwise relations for events
in the given passage: “the deal” can be consid-
ered as the same event of “Paramount purchased

∗ Part of the work was done while the author was at the
Allen Institute for AI.

1Data, models and reproduction code are available here:
https://github.com/PlusLabNLP/ESTER.

Paramount film studios has purchased DreamWorks for 1.6 billion dollars in 
cash, the company said in a statement Sunday. DreamWorks, which created
successful computer animated features such as Shrek, was also sought 
after by NBC Universal. In the deal, Paramount assumed DreamWorks debt. 
The final deal gives Paramount access to 59 films in DreamWorks' library. 
Paramount takes over all of  DreamWorks' current projects.

deal created

sought afterassumed access takes over

purchasedCo-refers

ConditionalSub-events

Figure 1: A graph illustration of event semantic rela-
tions in narratives. We use trigger words to represent
events in this graph.

DreamWorks,” forming a coreference relation; it is
also a complex event that contains “assumed debt,”

“gives access” and “takes over projects” as its sub-
events. The event “sought after” is facilitated by
a previous event “created features.” By capturing
these event semantic relations, people can often
grasp the gist of a story. Therefore, for machines to
achieve human-level narrative understanding, we
need to test and ensure models’ capability to reason
over these event relations.

In this work, we study five types of event se-
mantic relations: CAUSAL, SUB-EVENT, CO-
REFERENCE, CONDITIONAL and COUNTERFAC-
TUAL, and propose to use natural language ques-
tions to reason about event semantic relations.
Figure 2 shows example question-answer pairs for
each relation type.

Although previous works studied some subset
of these relations such as SUB-EVENT (Glavaš
et al., 2014; Yao et al., 2020), CAUSAL and
CONDITIONAL (Mirza et al., 2014; Mirza and
Tonelli, 2014; O’Gorman et al., 2016), most of
them adopted pairwise relation extraction (RE)
formulation by constructing (event, event, rela-
tion) triplets and predicting the relation for the
pair of events. Event relations of RE formulation
are rigidly defined as class labels based on expert
knowledge, which could suffer from relatively low
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Figure 2: Examples of event annotations and 5 types of QAs in our dataset. Not all events are annotated for clarity
purpose. Different colors are used for better visualization.

inter-annotator agreements (Glavaš et al., 2014;
O’Gorman et al., 2016) and may not be the most
natural way to exploit the semantic connections
between relations and events in their context.

We instead propose to reason about event seman-
tic relations as a reading comprehension / question
answering task. Natural language queries ease the
annotation efforts in the RE formulation by sup-
plementing expert-defined relations with textual
prompts. When querying CAUSAL relations, we
can ask “what causes / leads to Event A?” or “why
does A happen?”; when reasoning SUB-EVENT re-
lation, we can ask “what are included in Event B?”
or “What does B entail?” etc. “lead to,” “included”
and “entail,” as textual cues, can help models better
understand which relation is being queried.

Our question-answering task also poses unique
challenges for reasoning event semantic relations.
First, the correct answers can be completely differ-
ent with slight changes of queries. In Figure 2, if
we modify the third question to be “What would
happen if Europe supported Albania?” then “oust
President Sali” becomes an invalid answer. This
challenge allows us to test whether models possess
robust reasoning skills or simply conduct pattern
matching. Second, answers must be in the form
of complete and meaningful text spans. For the
COUNTERFACTUAL example in Figure 2, a ran-
dom text span “President Sali Berisha” is not a
meaningful answer while a shortened answer “oust”
is not complete. To get correct answers, models
need to detect both event triggers and their event
arguments. Finally, there could be multiple valid
events in a passage that can answer a question, and
a good system should be able to identify different
valid answers simultaneously as in the SUB-EVENT

QA of Figure 2. These challenges make our task
more difficult than the classification tasks in RE.

A few noticeable event-centric MRC datasets
have been proposed recently. TORQUE (Ning
et al., 2020b) and MCTACO (Zhou et al., 2019) are
two recent MRC datasets that study event tempo-
ral relations. However, knowing only the temporal
aspect of events could not solve many important
event semantic relations. For example, in Figure 1,
to understand that “assumed debt,” “gives access”
and “takes over projects” are sub-events of “the
deal,” a model not only needs to know that all these
four events have overlapped time intervals but also
share the same associated participants for “the deal”
to contain the other three.

We summarize our contributions below.
1. We introduce ESTER, the first comprehensive

MRC / QA dataset for the five proposed event
semantic relations by adopting natural lan-
guage questions and requiring complete event
spans in the passage as answers.

2. By proposing a generative QA task that mod-
els all five relations jointly and comparing it
with traditional extractive QA task, we pro-
vide insights on how these event semantic re-
lations interplay for MRC.

3. Our experimental results reveal SOTA models’
deficiencies in our target tasks, which demon-
strates that ESTER is a challenging dataset
that can facilitate future research in MRC for
event semantic relations.

2 Definitions
Composing event-centric questions and answers
requires identifications of both events and their re-
lations. In this section, we describe our definitions
of events and five event semantic relations.

2.1 Events

Adopting the general guideline of ACE (2005), we
define an event as a trigger word and its arguments
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(subject, object, time and location). An event trig-
ger is a word that most clearly describes the event’s
occurrence, and it is often a verb or noun that
evokes the action or the status of the target event
(Pustejovsky et al., 2003). Later event-centric rea-
soning work mostly uses this trigger definition, e.g.,
TE3 (UzZaman et al., 2013), HiEve (Glavaš et al.,
2014), RED (O’Gorman et al., 2016) and TORQUE
(Ning et al., 2020b).

While event triggers must exist in the context,
some event arguments need to be inferred by an-
notators. In Figure 2, for example, “getting” is an
event trigger and its subject, object and location
are “Europe,” “Albania” and “Europe” respec-
tively. The event’s time can be inferred to be ap-
proximately the document writing time. To ensure
event-centric reasoning, we require all questions
and answers to include a trigger. Annotators are
allowed to use any event arguments including those
inferred to make questions natural and descriptive;
whereas for answers, they need to identify com-
plete and meaningful text spans in the passage.

2.2 Event Semantic Relations

Next, we discuss the definitions of the five types
of event semantic relations in our dataset, most of
which are consistent with previous studies. For
example, CAUSAL and CONDITIONAL have been
studied in Wolff (2007); Do et al. (2011); Mirza and
Tonelli (2014); Mirza et al. (2014). SUB-EVENT

and CO-REFERENCE were studied in Glavaš et al.
(2014); O’Gorman et al. (2016). Cosmos QA
(Huang et al., 2019) has a small amount of COUN-
TERFACTUAL questions, but it is not an event-
centric dataset. The examples we use below are all
presented in Figure 2.

Causal: A pair of events (ei, ej) exhibits a
CAUSAL relation if ei happens then ej will defi-
nitely happen according to the given passage. For
example, the passage explicitly says that the “meet-
ing” happens “in return” for “Europe planned for
getting stricken Albanian back.” Therefore, the
CAUSAL relation in the example can be established
because if “Europe planned for getting stricken
Albanian back” happens, the “meeting” will defi-
nitely happen in this context.

Conditional: A pair of events (ei, ej) exhibits a
CONDITIONAL relation if ei facilitates, but may
not necessarily leads to ej according to the given
passage. For example, the expectation of “the dis-
patch of a multinational force” is to “pull Albania

back from the brink”; in other words, the former
event can help but does not guarantee the occur-
rence of the latter one. Therefore, the relation be-
tween this pair of events is CONDITIONAL.

Counterfactual: ej may happen if ei does not
happen; in other words, if the negation of ei fa-
cilitates ej , then (ei, ej) has a COUNTERFACTUAL

relation. In our example, if “Europe didn’t sup-
port Albania,” which is a negation of what happens
in the passage, then “oust President Sali” by the

“armed rebels” would likely happen.

Sub-event: There is a semantic hierarchy where
a complex event ek consists of a set of sub-
events {ek,1, ..., ek,j , ..., ek,n}. In SUB-EVENT re-
lations, we require not only ek,j’s trigger word to be
semantically contained in ek’s trigger, but also the
arguments of ek,j are either identical or contained
in the associated arguments of ek. For example,
considering the complex event “efforts to pull Al-
bania back,” and its sub-event “aid is brought into
the chaotic Balkan state”, the trigger “brought” is
a part of the “efforts.” Both subjects are “Europe,”
both objects / locations are “Albania” or “Balkan
state” and their time can be inferred to be (nearly)
identical in the passage. Note that this definition
is similar to the event hierarchical structure defini-
tion in RED, but stricter than the “Spatial-temporal
containment” definition in HiEve.

Coreference: ei co-refers to ej when two
events are mutually replaceable. This requires
1) their event triggers are semantically the same
and 2) their event arguments are identical. In our
example, the event triggers in the question “pull”
(back from the brink) and in the answer “getting”
(back on to its feet) are semantically the same. They
also share the same subject - Europe, and object -
Albania. Their time and location can be inferred
from the passage to be the same. Therefore, these
two events form a CO-REFERENCE relation.

3 Related Work
We briefly survey related work in this section in or-
der to provide broader background over the two key
components of ESTER: 1) event semantic relations
and 2) event-centric reading comprehension.

3.1 Event Semantic Relations

Event semantic relations have been studied before
and most of them leverage relation extraction for-
mulation for annotations. Causality is one of the
widely studied event semantic relations. Mirza
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and Tonelli (2014); Mirza et al. (2014) follow the
CAUSE, ENABLE and PREVENT schema pro-
posed by Wolff (2007) where the first two rela-
tions align with our definitions in ESTER. Do et al.
(2011) adopted a minimally supervised method and
measure event causality based on pointwise mutual
information of predicates and arguments, which
resulted in denser annotations than previous works.

HIEVE (Glavaš et al., 2014) defines pairwise
SUB-EVENT relation as spatiotemporal contain-
ment, which is less rigorous than our definitions
where we require containment for all event argu-
ments (subject, object, time and location). Our
definition of CO-REFERENCE is nearly identical
as HIEVE where two co-referred events denote the
same real-world events. Yao et al. (2020) utilized
a weakly-supervised method to extract large scale
SUB-EVENT pairs, but the extracting rules can re-
sult in noisy relations.

RED (O’Gorman et al., 2016) proposed to
annotate event temporal and semantic relations
(CAUSAL, SUB-EVENT) jointly. However, due
to the complexity of the annotation schema, the
data available for semantic relations are relatively
sparse. Mostafazadeh et al. (2016b) and Caselli and
Vossen (2017) annotate both event temporal and
semantic relations in ROCStories (Mostafazadeh
et al., 2016a) and Event StoryLine Corpus (Caselli
and Vossen, 2017) respectively. ESTER differs
from these works by disentangling temporal from
other semantic relations and focusing on MRC to
capture five proposed event semantic relations.

3.2 Event-centric MRC

Datasets leveraging natural language queries for
event-centric machine reading comprehension have
been proposed recently (Zhou et al., 2019; Ning
et al., 2020b). However, they focus on event tem-
poral commonsense, whereas ESTER studies other
event semantic relations. Du and Cardie (2020)
and Liu et al. (2020) reformulate event extraction
data as QA tasks to detect event triggers and ar-
guments in a short passage. However, they did
not propose new data, and knowing event triggers
and arguments are merely a sub-task in ESTER,
which require both event detection and relation un-
derstanding.

4 Data Collection
In this section, we show our data collection pro-
cedure and describe the details of our approach to
control annotation quality, including qualification

exams and steps to validate and train workers.

4.1 Passage Preparation

Passages are selected from news articles in
TempEval3 (TE3) workshop (UzZaman et al.,
2013) with initial event triggers provided. We
extracted 3-4 continuous sentences that contain
at least 7 event triggers. Our choice of the num-
ber of sentences is based on previous studies that
hierarchical relations such as SUB-EVENT and
CO-REFERENCE are likely to span over multi-
ple sentences, but the majority of them are con-
tained within 3-4 sentences (Glavaš et al., 2014;
O’Gorman et al., 2016).

4.2 Main Procedure

We use Figure 2 to illustrate our main data collec-
tion procedure, which consists of two components:
event selection and QA annotations. The actual
interface can be found in the appendix.

Event Selections. Annotators are presented with a
passage and initial event trigger annotations. They
are allowed to modify event trigger selections per
our definition in Section 2 by highlighting words.
These correspond to the highlighted words in the
passage of Figure 2. Our focus is not event ex-
traction, and thus we do not require workers to
identify all triggers as some of them are not used in
their QAs. Rather, the event selection serves as a
warm-up step for the following QA annotations by
1) helping workers locate where desirable events
are and 2) ensuring that all the annotated question-
answer pairs include events in the passage so that
their QAs reason about event relations.

QA Annotations. As the five questions in Fig-
ure 2 show, users must ask natural language ques-
tions that contain a highlighted event trigger. In
order to make questions natural, we allow workers
to use different textual forms of an event trigger
in the questions, such as “teach” v.s. “taught” and
“meeting” v.s. “meet.” After writing a question,
users need to pick the event semantic type (the blue
boxes in Figure 2) that they reason about, and then
select the corresponding answer spans from the
passage. If there are multiple answers, we instruct
users to select all of them. All answers must in-
clude an exact highlighted event trigger, and we
prohibit answers with more than 12 words to en-
sure conciseness. We pay $7.5 for an assignment
where annotators need to ask at least five questions
using two passages.
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Figure 3: An illustration of our quality control, worker
validation and training process.

4.3 Quality Control

Qualification. The initial worker qualification
was conducted via an examination in the format of
multiple-choice questions hosted by CROWDAQ
platform (Ning et al., 2020a). We created a set of
questions where a passage and a pair of QA are
provided, and workers need to judge the correct
type of this QA from six choices, including the five
defined event semantic relations, plus an invalid
option2. This examination intends to test workers’
skills to 1) distinguish valid QAs from invalid ones
based on our definitions; 2) judge the differences
for the five proposed event semantic relations.

We recruit workers via Amazon Mechanical
Turk with basic qualifications including: 1) at least
1K HITs3 approved; 2) at least 97% approval rate.
A single qualification exam consists of 10 multiple-
choice questions. Participants are given 3 attempts
to pass with a >= 0.6 score. We found this qualifi-
cation examination effectively reduces the rate of
spammers to nearly 0%.

Worker Validation and Training. Since the real
task is much more challenging than the qualifica-
tion exams, we adopted a meticulous five-stage
worker validation and training process to ensure
data quality. As Figure 3 shows, for workers who
passed the qualification exams, we repeat the vali-
dation and training steps four times until workers
reach the final large tasks.

In each validation and training step, two of our
co-authors independently judge workers’ annota-
tions to determine 1) whether a provided QA pair
is valid per our definitions and 2) whether the an-
swers provided are complete. Typically, we dis-
qualify workers whose QA validity rate falls below
90%. Exceptions are given upon careful exami-

2A full list of QA validity can be found in Appendix B.
3HIT is an assignment unit on Amazon Mechanical Turk.

nation and reviewer discussion. For workers who
pass a manual validation, we write a training mes-
sage correcting all errors they made and invite them
to the next task. We also add missing answers as
a part of the validation process and reserved the
validated annotations as our evaluation data.

There are 1, 2, 3, 10, and 25 HITs in Task 1-4
and Large Task respectively. For Task 1-3, we vali-
date all QAs, and for Task 4, we randomly select
20% questions per worker to validate. In order
to work on the final large task, a worker needs to
maintain an average QA validity rate higher than
90%. We further request one co-author to validate
all questions with passages overlapped with the val-
idated data above. This ensures that there are no
passage overlaps between the training and evalua-
tion data. All author validated data comprise our
final evaluation data in the experiments.

5 Data Analysis
Our passage preparation (Section 4.1) produces
4.3K passages in total with 1887 of them randomly
selected and annotated. We collect 6018 questions
from 70 workers using Amazon Mechanical Turk
and 1471 of them fully validated by co-authors
as the evaluation set. We further split our evalua-
tion data into dev and test sets based on passages.
The remaining data are used as the training set. A
summary of data statistics is shown in Table 1.

Train Dev Test

# of Passages 1492 108 287

# of Questions - Overall 4547 301 1170

- CAUSAL 2047 118 431
- CONDITIONAL 928 58 289
- COUNTERFACTUAL 294 28 106
- SUB-EVENT 678 59 204
- CO-REFERENCE 600 38 140

Table 1: Passages and questions (overall + type break-
down) statistics for different data splits.

5.1 Type Distribution

As we can observe in Table 1 and Figure 9 - 10 in
the appendix, ESTER consists of 64.2% CAUSAL

and CONDITIONAL questions. In Figure 4, we
further show the type disagreements using data
validated by two co-authors. The rows indicate
workers’ original types and the columns are the
majority votes between the annotators and co-
authors. As we can observe, the matrix is dom-
inated by diagonal entries. Some noticeable dis-
agreements are 1) between CAUSAL and CONDI-
TIONAL where people have different opinions on
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CAUSAL

CONDITIONAL

COUNTERFACTUAL

SUB-EVENT

COREFERENCE

CAUSAL

CONDITIONAL

COUNTERFACTUAL

SUB-EVENT

COREFERENCE

0.93 0.058 0 0.0069 0

0 0.98 0 0.0075 0.0075

0 0.13 0.87 0 0

0.017 0 0 0.95 0.033

0.038 0.09 0 0.1 0.77

Figure 4: Type confusion matrix between work-
ers’ original annotations and the majority votes after
co-authors’ validation. Rows are annotators’ types
whereas columns are the majority votes.

the degree of causality between events; 2) between
COUNTERFACTUAL and CONDITIONAL as some
COUNTERFACTUAL questions, with double nega-
tions4, are merely CONDITIONAL; 3) between CO-
REFERENCE and SUB-EVENT where annotated co-
referred events do not have identical event argu-
ments according to co-authors’ judgements. These
results align with previous studies that some event
semantic relations are inherently hard to distinguish
(Glavaš et al., 2014; O’Gorman et al., 2016).

Type Agreements. The inter-annotator-agreement
(IAA) score is 85.71% when calculated using pair-
wise micro F1 scores, and is 0.794 per Fleiss’s
κ5. The IAA scores are calculated using the same
data reported in Figure 4. The high IAA scores
demonstrate strong alignments between annotators
and co-authors in judging event semantic relations.

5.2 Other Statistics

We show n-grams in questions and the number
of answers below. More analysis on tokens and
worker distributions can be found in Appendix-E F.

Figure 5: Most frequent n-grams in questions for each
semantic type. First row: CAUSAL; second row: CON-
DITIONAL + COUNTERFACTUAL; third row: SUB-
EVENT + CO-REFERENCE.

Frequent N-grams in Questions. Figure 5 illus-
4Double negated questions have the form of “what will

not happen if Event A does not happen”
50.794 implies substantial agreement(Landis and Koch,

1977). The detailed calculation can be found in appendix C.

trates the most frequent unigram, bigram and tri-
grams in each type of questions after removing non-
informative stop-words. These n-grams can be con-
sidered as semantic cues in the questions to reason
about particular semantic relations. For example,
‘why’ and ‘what caused’ imply strong causality;
‘included’ indicates containment of events; ‘not’ in
COUNTERFACTUAL indicates negation of events.

Number of Answers. Table 2 shows the average
number of answers for each semantic type. SUB-
EVENT contains the most answers, which aligns
with our intuition that a complex event in the pas-
sage often contains multiple sub-events. The eval-
uation sets contain about 0.5 answers more than
the training set as co-authors added the missing an-
swers in the validation process. Considering each
unique question and answer as an event, ESTER
captures 10.1K event pairs, which are larger than
previous RE datasets such as RED and HiEve.

Semantic Types Train Dev Test

CAUSAL 1.3 1.5 1.9
CONDITIONAL 1.3 1.9 2.0
COUNTERFACTUAL 1.2 1.3 1.7
SUB-EVENT 3.0 3.6 3.1
CO-REFERENCE 1.2 1.2 1.6

Table 2: Average number of answers by semantic types.

6 Experimental setup
We design experiments to provide benchmark per-
formances and understand learning challenges to
facilitate future research on ESTER. We formulate
our QA task as a conditional answer generation
problem. This choice is inspired by recent works
such as UnifiedQA (Khashabi et al., 2020) that
achieve impressive outcomes by integrating vari-
ous QA tasks (extractive, abstractive and multiple-
choice) as a single generative QA pre-training task.
Li et al. (2021) and Paolini et al. (2021) also show
that by reformulating original extractive tasks as
generation tasks, it enables models to better exploit
semantic relations between context and labels as
well as the dependencies between different outputs.
To better demonstrate the benefits of the proposed
generative QA task, we compare it with a tradi-
tional extractive QA task. We introduce our experi-
mental design and evaluation metrics subsequently.

6.1 Generative QA

Given a question qi and a passage Pi =
{x1, x2, ...xj , ...xn} where xj represents a token
in the passage, the answer generation task re-
quires the model to generate natural language an-
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Dev Test

F T
1 HIT@1 EM F T

1 HIT@1 EM

Generative Zero-shot: T5-base 18.0 55.8 0.0 21.1 61.0 0.0
Generative Zero-shot: UnifiedQA-base 49.0 61.5 10.6 46.5 61.5 7.1
Generative Zero-shot: UnifiedQA-large 51.1 69.4 14.3 48.7 66.5 9.7

Generative Fine-tune: BART-base 53.1(±0.4) 66.9(±1.7) 14.1(±1.0) 53.3(±0.8) 68.1(±1.2) 15.1(±0.7)
Generative Fine-tune: BART-large 57.2(±1.0) 72.1(±1.4) 15.1(±2.1) 56.1(±1.0) 71.5(±2.2) 15.2(±0.9)
Generative Fine-tune: T5-base 63.2(±1.1) 80.8(±1.7) 22.1(±0.9) 58.5(±0.7) 76.2(±1.0) 20.5(±0.9)
Generative Fine-tune: UnifiedQA-base 64.6(±0.4) 82.0(±0.4) 23.8(±1.0) 59.3(±0.2) 78.1(±0.4) 20.6(±0.5)
Generative Fine-tune: UnifiedQA-large 66.8(±0.2) 87.2(±0.3) 24.4(±0.3) 63.3(±0.8) 83.5(±0.7) 22.1(±0.4)

Extractive Fine-tune: RoBERTa-large 68.8(±0.7) 66.7(±1.1) 16.7(±0.2) 66.1(±0.2) 63.8(±1.6) 15.9(±0.5)

Human Baseline - - - 79.6 100 36.0

Table 3: Experimental results for answer generation. All numbers are 3-seed average with standard deviation
reported, except for human baseline and zero-shot performances. All models refer to the generative QA task
except for RoBERTa-large, which we use for the extractive QA task. Statistical tests are shown in Appenidx I.

swers A′i = {a′i,1...a′i,k}. For the gold answers
Ai = {ai,1...ai,k}, each answer span ai,k ∈ Pi. We
follow the input format of UnifiedQA (Khashabi
et al., 2020) by concatenating qi and Pi with a “\n”
token. For training labels, we concatenate multiple
answers with a “;” token.

6.2 Extractive QA

Given qi and Pi, this task requires a model to pre-
dict whether each token xj ∈ Pi is an answer or not.
Following the “B-I-O” labeling conventions in the
IE field, we create a vector of labels with ‘2’ if xj is
the beginning token of an answer span; ‘1’ if xj is
an internal token of an answer span; ‘0’ if xj /∈ Ai.
The input is the same as generative QA except that
we concatenate qi and Pi with two “<\s>” tokens
to be consistent with the pair-sentence input for-
mat of the base model, RoBERTa-large (Liu et al.,
2019).

To compare fairly with the generative QA task,
we construct candidate answer spans by examining
predicted labels for all tokens. Both “BI*” and “I*”
cases are considered as valid answers. Finally, we
map positive answer tokens’ ids back to natural
language phrases. More formally, we can denote
the final candidate answers of the task as A′′i =
{a′′i,1...a′′i,k}, where a′′i,k ∈ Pi.

6.3 Evaluation Metrics.

It is important to assess how well models can find
all valid answer. We evaluate this by using token-
based F1 and exact-match measures. On the other
hand, when interacting with machines, we would
like the top answer returned to be correct. We
measure this by HIT@1 scores.

• Let Ui, U
′
i denotes all uni-grams in Ai, A

′
i.

We have F T
1 = 2∗P∗R

P+R where P =
|Ui∩U ′i |
|U ′i |

, R =
|Ui∩U ′i |
|Ui| .

• HIT@1 equals to 1 if the top predicted an-
swer, i.e. a′i,1 or a′′i,1 contains a correct event
trigger; otherwise it is 0. This metrics is well
defined as all questions in our data contain at
least an answer and all (well trained) models
return at least one answers. For both genera-
tive and extractive QAs, we use the leftmost
answer as the top answer.

• EM or exact-match equals to 1 if ∀a′i ∈
A′i, a

′
i ∈ Ai and ∀ai ∈ Ai, ai ∈ A′i; other-

wise, EM = 0.

6.4 Baselines

Model Baselines. For our primary generation QA
task, we fine-tuned several sequence-to-sequence
pre-trained language models on ESTER: BART
(Lewis et al., 2020), T5 (Raffel et al., 2020) and
UnifiedQA. As mentioned, UnifiedQA (based on
BART and T5) is pre-trained on various QA tasks.
It also demonstrates powerful zero-shot learning
capabilities on unknown QA tasks, which we tested
on ESTER too. Due to computation constraints, the
largest model we are able to finetune is UnifiedQA
(T5-large). We leave further investigation to future
modeling studies.

Since extractive QA can be considered as a to-
ken prediction task, we build our model based on
RoBERTa-large with token mask prediction pre-
training objectives. Models and fine-tuning details
can be found in Appendix G.

Human Baselines. To show the human perfor-
mance on the task, we randomly select 20 questions
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Figure 6: Fine-tuning UnifiedQA-large results by using
500, 1K, 2K, 3K, 4K and full train data. Dashed lines
on the top are corresponding human performances.

for each semantic type from the test set. Two co-
authors provide answers for these questions, and
we compare their mutually agreed answers with the
original answers. We ensure co-authors never saw
these questions previously. F T

1 , HIT@1 and EM
scores are calculated as the human performances.

7 Results and Analysis

In this section, we present and analyze results for
the experiments described in Section 6.

7.1 Generative QA

As Table 3 shows, UnifiedQA-large achieves the
best average performances among all generative
QA baselines, with 63.3%, 83.5% and 22.5% for
F T
1 , HIT@1 and EM scores on the test set, which

are 16.3%, 16.5% and 13.1% below the human per-
formances. We also observe that UnifiedQA-base
with 220M parameters outperforms other compa-
rable or larger models such as T5-base and BART-
large with 2-3x more parameters, showing the effec-
tiveness of pre-training with generative QA tasks.

Zero-shot and few-shot Learning. UnifiedQA
also demonstrates powerful zero-shot and few-shot
learning capabilities in a variety of QA tasks. We
observe similar patterns where zero-shot learning
from UnifiedQA can significantly outperform its
T5 counterpart in Table 3. For few-shot learning,
we show in Figure 6 that fine-tuning with only 500-
1K examples, the model can achieve quite compa-
rable results with full-training. The model perfor-
mances level off as the second half of the training
data provide ≤ 1.2% improvements across all met-
rics. This suggests that the benefits of getting more
data diminish drastically and data size may not be
the bottleneck of learning for ESTER.

Breakdown performances. In Figure 7, we
show performances for each semantic type on the
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Figure 7: Test performances for each semantic type.

test data. Not surprisingly, CAUSAL and CONDI-
TIONAL achieve best performances as they are the
more dominant semantic types in ESTER. Model
training may favor these two types. Interestingly,
though COUNTERFACTUAL relation has the small-
est number of training questions and requires more
complex reasoning than CONDITIONAL due to its
negation, our models can learn this relation rela-
tively well per EM and F1 measures. This could
be contributed by 1) the similarity between COUN-
TERFACTUAL and CONDITIONAL relations, and
2) the negations are well detected through textual
cues in the model training. On the other hand, the
significantly lower HIT@1 score for COUNTER-
FACTUAL suggests that it is challenging for models
to pin-point the most confident answer.

Hierarchical relations, SUB-EVENT and CO-
REFERENCE in general have lower scores than
CAUSAL and CONDITIONAL, which could be at-
tributed to two factors: 1) these two categories have
smaller percentages (28.1% combined) in training
data; 2) understanding these two relations requires
complicated reasoning skills to capture not only
the hierarchical relations for event triggers but also
for their associated arguments. Figure 13 in the
appendix shows the similar plateauing effect of
adding more training samples for these two rela-
tions, which implies that data size may not be the
only factor for weaker performances, and these two
semantic relations could be inherently challenging
to comprehend.

Answer completeness. In Table 2, we show that
the validated data contain about 0.5 more answers
per question. Besides some rare obvious misses,
proximity and saliency are the two reasons we ob-
serve that contribute most to this discrepancy. Our
input data include long passages with an average
of 128 tokens. Even well-trained workers can over-
look relations for event pairs that are physically
distant from each other. Moreover, long-distance
relations are often less salient. For non-salient rela-
tions, expert or external knowledge may be needed
to disambiguate. We found workers tend to be con-
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servative by avoiding these non-salient answers.

#Ans. F T
1 HIT@1 EM

original 1.41 58.7(±0.2) 78.8(±0.3) 18.8(±0.4)
completed 1.84 59.3(±0.1) 78.5(±0.3) 16.9(±0.4)

Table 4: Performances on test data. Workers’ original
annotations v.s. completed by another worker.

To precisely gauge the impact of answer com-
pleteness, we randomly sample 500 questions with
type distribution similar to the training data and
request qualified workers to find more complete an-
swers. We then retrain UnifiedQA-large with both
the original and the more completed answer anno-
tations. Table 4 shows that that the “completed” set
has an average number of answers similar to those
in our validated data, but we observe no significant
improvements. We hypothesize that 1) through our
rigorous validation and training, workers are able
to identify important answers; 2) the request to find
more complete answers could inadvertently intro-
duce some noise, which cancels out the benefits of
increasing answer numbers.

7.2 Extractive QA

In this section, we discuss results for the extractive
QA task. In Table 3, we observe that extractive QA
by finetuning RoBERTa-large achieves the best to-
ken F1 scores, yet under-performs generative QA
per HIT@1 and EM metrics. We further com-
pare F T

1 with EM scores by increasing training
weights on positive tokens, i.e. ‘B’ or ‘I’. Figure 8
shows that as we train models to focus more on
the positive answer tokens, F T

1 keeps increasing up
to weight = 10, but answer EM starts to fall after
weight = 2. These results imply that extractive QA
excels at finding tokens or phrases that resemble
or partially overlap with true answers (good F T

1

scores), but falls short on producing complete and
meaningful texts that truly represent event spans.

To verify our hypothesis above, we examine real
predictions where both the best generative and ex-
tractive QA models do not predict exact answers
(i.e. per-sample EM = 0). We list several of them in
Table 8 of the appendix. In general, extractive QA
predicts many single or disconnected tokens that
are not meaningful, whereas generative QA, de-
spite making wrong predictions, produces answer
spans that are complete and coherent.

To summarize, the comparative studies between
generative and extractive QAs emphasize the im-
portance of using multiple metrics to evaluate mod-
els and highlight the contribution of leveraging
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Figure 8: FT
1 v.s. EM scores on the dev set by increas-

ing training weights on positive answer tokens.

answer generation to solve ESTER where complete
and meaningful event spans rather than partial to-
kens are crucial to answer questions.

7.3 Discussion and Future Research

Statistical tests. Modeling is not the main focus
of this paper, but we conduct McNemar’s tests (Mc-
Nemar, 1947) for comparable models in Table 7 of
Appendix I. Most of the pairwise tests show strong
statistical significance.

Future research. ESTER facilitates a promising
research direction of few-shot learning for event
semantic relations as a generative QA task, yet
remains challenging since large SOTA systems sig-
nificantly under-perform human baselines. Future
research can explore building question generation
systems to automatically annotate a larger scale
of data or study the possibilities of transfer learn-
ing between this MRC data and other event-centric
reasoning tasks.

8 Conclusion
We propose ESTER, an MRC datasets for com-
prehensive event semantic reasoning. We adopt
meticulous data quality control to ensure annota-
tion accuracy. ESTER enables a generative question
answering task, which can be more challenging
than the traditional event relation extraction work.
The difficulty of the proposed data and task is also
manifested by the significant gap between machine
and human performances. We thus believe that ES-
TER would be a novel and challenging dataset that
empowers future event-centric research.
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Appendix
A Interface
Please refer to Figure 14 for user interface of event
selection and Figure 15 for QA annotation.

B QA validity
A pair of QA is valid if and only if it fulfils the
following criteria,

1. Both questions and answers MUST contain
correct events. Events in questions can have
different textual form.

2. Both questions and answers MUST be nat-
ural and meaningful. Workers with spotted
spamming are immediately disqualified.

3. The semantic relation formed by a QA pair
MUST falls into one of the five relation cate-
gories we define.

Note that QA validity is different from QA com-
pleteness for which we instruct workers to find all
possible answers in the passage.

C Type Distribution
Figure 9 & 10 compare the semantic relation type
distribution between the train and evaluation data.

IAA Calculation. A pair-wise micro F1 score is
calculated by considering one of the annotations as
ground truth and the other annotations as predic-
tions. We then rotate the ground truth among all
annotations for the same QA and take the average
scores as the final IAA scores. For Fleiss’s κ score,
we follow the same process described in the Fleiss
et al. (2013) to evaluate the final IAA.

D Most Frequent N-grams
Enlarged imagines for frequent n-grams in ques-
tions can be found in Figure 12a-12e.
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Figure 9: Type Distribution: train data
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Figure 10: Type Distribution: evaluation data (dev +
test)
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Figure 11: Questions distributions by workers in train
v.s. evaluation sets. Equality baseline indicates each
participant provides equal number of questions.

E Worker Distribution

We had 70 workers in total who passed our qualifi-
cation exam and completed at least 1 assignment
in our project. Due to our rigorous validating pro-
cess, only 27 were able to make it into Task 4 and
the Large Task which consist of a large number of
assignments. Figure 11, known as Lorenze Curve
(Lorenz, 1905) illustrates the distribution of num-
ber of questions completed by workers. The equal-
ity baseline indicates the questions are perfectly
well distributed among all workers, i.e. everyone
completes the same numbers of questions. The
further a curve deviates from the equality baseline,
the more unevenly distributed a dataset becomes.
Compared with the train data, we observe that the
evaluation set is slightly better distributed, which
reflects our validation process: for workers who
failed our validation tasks and were disqualified,
they could still provide some good quality QAs,
which we keep in the evaluation data. This in-
creases the diversity of the evaluation set.
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(a) Most frequent n-grams for CAUSAL

(b) Most frequent n-grams for CONDITIONAL

(c) Most frequent n-grams for COUNTERFACTUAL

(d) Most frequent n-grams for SUB-EVENT

(e) Most frequent n-grams for CO-REFERENCE

Figure 12: Enlarged charts for most frequent n-grams
in questions.

F Number of Tokens.
Table 5 shows an average number of tokens in
questions and answers. The COUNTERFACTUAL

questions contain the most number of tokens as
additional words are often needed to specify the
negation reasoning. The average numbers of tokens
are all around 6.5 across 5 types of answers. This
is exactly the medium of our answer length limits
where we set the minimum and maximum numbers
of words to be 1 and 12 respectively. The average
number of tokens in the passages is 128.1 with the
longest passage containing 196 tokens.

G Reproduction Check List
We finetune BART-base, BART-large, T5-base,
UnifiedQA-base and UnifiedQA-large on ESTER.

# Tokens

Semantic Types Question Answer

CAUSAL 10.3 6.6
CONDITIONAL 12.1 6.4
COUNTERFACTUAL 13.7 6.0
SUB-EVENT 9.3 6.5
CO-REFERENCE 8.6 6.5

Table 5: Average number of tokens in questions and
answers.

UnifiedQA models are all based on T5. Hyper-
parameters search ranges are 1) learning rate:
(1e−5, 5e−5, 1e−4); batch size: (2, 4). Best hyper-
parameters can be found in Table 6. We also use
3 random seeds: (5, 7, 23) and report the average
performances for each model. For RoBERTa-large,
there is an additional hyper-parameter, positive to-
ken training weight mentioned in Section 7.2, and
it search range is (1, 2, 5, 10, 20).

For BART-base, BART-large, T5-base and
UnifiedQA-base models, we were able to finetune
on a single Nvidia GTX2020 GPU with 11G mem-
ory. For Pegasus and UnifiedQA-large, we have
to use a much larger Nvidia A100 GPU with 40G
memory. We tried to finetune UnifiedQA based
on T5-3B, but we were not able to fit batch size =
1 into a single Nvidia A100 GPU. So we stop at
UnifiedQA-large. All reproduction details can be
found in the separately submitted code.

Models # Params. Best Hyper. GPU

RoBERTa-large 355M lr= 1e−5; b= 2 GTX2080
BART-base 139M lr= 5e−5; b= 4 GTX2080
BART-large 406M lr= 1e−5; b= 2 GTX2080
T5-base 220M lr= 1e−4; b= 4 GTX2080
UnifiedQA-base 220M lr= 5e−5; b= 2 GTX2080
UnifiedQA-large 770M lr= 5e−5; b= 4 A100

Table 6: Model and fine-tuning details. Learning rate:
lr; batch size: b.

H Sub-sample Performances
In Figure 13 we show the fine-tuning UnifiedQA-
large using different numbers of training samples
for SUB-EVENT and CO-REFERENCE. We observe
the same level-off after using 2K training data as
in Figure 6 for all semantic types.

I Model Significance Test
To conduct statistical tests over model improve-
ments, we pick the model with highest F T

1 score
among the three random seeds for the “best” hyper-
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Figure 13: Sub-sample fine-tuning performances for hi-
erarchical relations: SUB-EVENT + CO-REFERENCE.
All numbers are average over 3 random seeds.

parameters chosen in Table 6. We then perform
McNemar’s tests for HIT@1 and EM. Specifically,
if HIT@1 = 1.0 for a sample, we treat it as a cor-
rect prediction; otherwise, it is incorrect. The same
logic applies to EM. We only conduct statistical
tests over pairs of models that are comparable in
Table 3, and test results are shown in Table 7 below.

Model Comparisons HIT@1 EM

Zero-shot

T5-base→ UnifiedQA-base 0.790 �0.001
UnifiedQA-base→ UnifiedQA-large �0.001 0.001

Finetune

BART-base→ BART-large 0.865 0.231
T5-base→ UnifiedQA-base 0.018 0.574
UnifiedQA-base→ UnifiedQA-large �0.001 0.022
RoBERTa-large→ UnifiedQA-base �0.000 0.001
RoBERTa-large→ UnifiedQA-large �0.000 �0.000

Table 7: McNemar’s test per HIT@1 and EM metrics.
Models on the right-hand side of “→” are better. All
numbers are p-values with ≤ 0.05 indicating statisti-
cally significant (underlined).

J Generative v.s. Extractive QA
In Table 8, we show 3 examples comparing pre-
dicted answers between generative and extractive
QA. In general, scattered answers occur frequently
in extractive QA, but barely occur in generative QA.
In other words, generative QA is able to consis-
tently produce complete and meaningful answers.
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Ex. 1
Passage: the serbs only lifted their threat of a boycott friday after heavy international pressure and
the intervention of serbian president slobodan milosevic, a longtime supporter of the rebels.
in a last-minute attempt to get people to vote, the independent democratic serb party (sdss), led by
vojislav stanimirovic, launched into what seemed more like a mobilisation rather than a real
political campaign.
Question: what could happen if there was no intervention by the serbian president?
Generative Answers: 1. a boycott
Extractive Answers: 1. the; 2. bs; 3. lifted their threat of a boycott

Ex.2
Passage: french defence minister michele alliot-marie on sunday stressed paris’s support for the
government of lebanese prime minister fuad siniora during a visit to the crisis-wracked nation.
"i have come to reaffirm france’s support for the legitimate government of lebanon," she told
reporters after meeting her lebanese counterpart elias murr. alliot-marie also stressed paris’s
backing for the beirut government to "exercise its sovereignty completely", and that the lebanese
army play "a role across all its territory". lebanon is undergoing a political crisis with opposition
led by shiite movement hezbollah seeking to bring down siniora’s government and install a
government of national unity. the french minister, who arrived in beirut on saturday for a 48-hour
visit, was also to meet siniora before heading to south lebanon for new year’s eve with the french
contingent of the united nations interim force in lebanon (unifil).
Question: what caused alliot-marie to visit lebanon?
Generative Answers: 1. lebanon is undergoing a political crisis
Extractive Answers: 1. banon is undergoing a political crisis; 2. to; 3. bring down
siniora’s government

Ex.3
Passage: vieira seems very enthusiastic about bringing in chinese capital and technology into the
west african country. he said priorities for bilateral cooperation could expand to ports, roads,
bridges and mineral resources. inspired by vieira’s enthusiasm, cmec vice president zhou li promised
that a special team would fly to guinea-bissau to discuss the details. vieira reminded her that apart
from guinea-bissau, other west african countries such as senegal and guinea also need power-
generation facilities badly. regarding china as a strategic friend who offers aids without political
strings, many african countries impressed with the country’s two-digit economic growth are seizing
time to explore cooperative opportunities during their stay in beijing to boost domestic economy.
Question: what does the bilateral cooperation include?
Generative Answers: 1. bringing in chinese capital and technology; 2. a special team would fly to
guinea-bissau; 3. talk about the details; 4. explore cooperative opportunities during their stay
in beijing
Extractive Answers: 1. bringing in chinese capital and technology; 2. expand to;
3. ports, roads, bridges and mineral resources; 4. a; 5. special team would fly to guinea-bissau;
6. discuss the details; 7. explore

Table 8: Examples of answers predicted by generative v.s. extractive QA models. Some passages are shortened for
demonstration purpose. Incomplete predictions from extractive QA are highlighted.
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(a) Event Selections in Progress

(b) Event Selections Completed

Figure 14: An Illustration of Event Selection Interface
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(a) QA Annotations in Progress

(b) QA Annotations Completed

Figure 15: An Illustration of QA Interface


